
crystals

Article

Quantitative Analysis of Photon Density of States for
One-Dimensional Photonic Crystals in a
Rectangular Waveguide

Ruei-Fu Jao 1 and Ming-Chieh Lin 2,*
1 School of Information Technology, Guangdong Industry Polytechnic, Guangdong 510300, China;

2014108048@gditc.edu.cn
2 Multidisciplinary Computational Laboratory, Department of Electrical and Biomedical Engineering,

Hanyang University, Seoul 04763, Korea
* Correspondence: mclin@hanyang.ac.kr; Tel.: +82-2-2220-0358

Received: 1 August 2019; Accepted: 30 October 2019; Published: 4 November 2019
����������
�������

Abstract: Light propagation in one-dimensional (1D) photonic crystals (PCs) enclosed in a rectangular
waveguide is investigated in order to achieve a complete photonic band gap (PBG) while avoiding
the difficulty in fabricating 3D PCs. This work complements our two previous articles (Phys. Rev.
E) that quantitatively analyzed omnidirectional light propagation in 1D and 2D PCs, respectively,
both showing that a complete PBG cannot exist if an evanescent wave propagation is involved.
Here, we present a quantitative analysis of the transmission functions, the band structures, and the
photon density of states (PDOS) for both the transverse electric (TE) and transverse magnetic (TM)
polarization modes of the periodic multilayer heterostructure confined in a rectangular waveguide.
The PDOS of the quasi-1D photonic crystal for both the TE and TM modes are obtained, respectively.
It is demonstrated that a “complete PBG” can be obtained for some frequency ranges and categorized
into three types: (1) below the cutoff frequency of the fundamental TE mode, (2) within the PBG of
the fundamental TE mode but below the cutoff frequency of the next higher order mode, and (3)
within an overlap of the PBGs of either TE modes, TM modes, or both. These results are of general
importance and relevance to the dipole radiation or spontaneous emission by an atom in quasi-1D
periodic structures and may have applications in future photonic quantum technologies.

Keywords: photonic crystals; photonic band gap; waveguide; complete PBG; PDOS; TE; TM

1. Introduction

Photonic crystals (PCs), also known as artificial materials, have attracted much attention in the
past three decades due to the tremendous needs of gaining complete control over light propagation
and emission [1,2]. PCs, according to the dimension of the periodicity, are divided into three categories:
one- (1D), two- (2D), and three-dimensional (3D) crystals. Due to the periodicity, the stop band and
the pass band are formed, according to the Bloch theorem [3]. Therefore, periodic dielectric materials
are characterized by photonic band gaps (PBGs). As an analogy to the electronic band gaps in solid
state materials [4], a PBG in PCs can prohibit the propagation of electromagnetic (EM) waves whose
frequencies fall within the band gap region. The continuing success of the semiconductor industry in
controlling electric properties of materials from the last century has encouraged us to manipulate the
flow of light in PCs and control their optical properties. These PC-based materials are expected to have
many applications in optoelectronics, optical communications, and photonic quantum technologies in
the next decades [5]. In optical range, PCs have been extensively studied. It was proposed that the
emission of EM radiation can be modified by the environment [6,7]. Several environments such as
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metallic cavities [8], dielectric cavities [9], superlattices [10–15], and 2D PCs [16] have been studied.
The environmental effects have been described by the photon density of states (PDOS), which is related
to the transition rate of the Fermi golden rule. In principle, a PC with a complete PBG can be best
realized in a 3D system to prohibit the propagation of electromagnetic waves of any polarization
traveling in any direction from any source [1]. However, the difficulty in fabricating such 3D crystals
with PBGs in the optical regime prohibits the progress of many applications.

On the other hand, there has been a lot of interest in microwave and millimeter wave applications
of PBG, such as the significant progress in the design of filters [17,18], microstrip antennas [19],
and slow wave structures [20,21], and so on. However, the design of PBG in this frequency range
is still difficult due to complexities of the modeling. There are too many parameters affecting the
PBG properties, such as the number of lattice periods [22], lattice shapes [23,24], lattice spacing [25],
and relative volume fraction [26–30]. Since the actual fabrication of 3D PCs remains difficult, another
simpler choice is periodic dielectric or PC waveguides, which have only a one-dimensional periodic
pattern [1]. The rigorous study of the PC waveguide can be traced back to the 1970s, where a more
detailed review can be found [31,32]. Recently, it was demonstrated that, by considering a quantum
dot spin coupled to a PC waveguide mode, the light–matter interaction can be asymmetric, leading to
unidirectional emission and a deterministic entangled photon source, which might have application in
future optical quantum devices [5,33]. One interesting feature of electromagnetism in dielectric media
is that there is no fundamental length scale, namely the scaling properties of Maxwell’s equations,
i.e., the solution of problem at one length scale determines the solutions at all other length scale [1].
In a previous work [34], a multilayer dielectric window in a rectangular waveguide had been studied
to achieve a wide-bandwidth transmission of a millimeter wave. A transfer matrix approach was
successfully employed to discretize the dielectric function profile and the transmission functions could
be calculated efficiently. In principle, the approach can be extended to study a quasi-1D PC, a PC
confined in a waveguide. However, the transmission method is limited to study radiation modes in a
finite-length system. In order to study the PBG phenomena such as the suppression of spontaneous
emission [35] in a quasi-1D PC, the calculation of the dispersion relations or band structures (BS)
and the PDOS are needed. Metallic waveguides and cavities are widely used to control microwave
propagation. One of the main concerns is visible light energy is quickly dissipated within the metallic
components, which makes this method of optical control almost impossible to generalize. Recently,
an unconventional superconductivity in magic-angle graphene superlattices had been discovered and
studied [36]. The superconductivity might help realize the metallic waveguide confinement of optics
in the near future.

In this work, light propagation in 1D PCs enclosed in a rectangular waveguide or quasi-1D PCs is
investigated in order to achieve a complete PBG while avoiding the difficulty in fabricating 3D PCs.
This work complements two previous articles [15,16] that quantitatively analyzed omnidirectional
light propagation in 1D and 2D PCs, respectively, both showing that a complete PBG cannot exist if
an evanescent wave propagation is involved. The transfer matrix method is extended to study the
transmittance of the quasi-1D PCs for both TE and TM polarization modes [34]. The corresponding BS
are obtained by solving the eigenvalue equations with proper periodic boundary conditions following
the Bloch theorem [3,4]. The formulas for evaluating the PDOS of the quasi-1D PCs for TE and TM
modes are derived, respectively, for determining the PBGs. The contributions of the PDOS from
each modes can be distinguished. The model is formulated in Section 2. The calculated results and
discussion are presented in Section 3. The conclusions are given in Section 4.

2. Formulations

A transfer matrix approach is employed to discretize the dielectric function profile of the dielectric
multilayer heterostructures and the transmission functions are calculated by matching the boundary
conditions at each interfaces. In order to solve the PDOS, it is necessary to calculate the dispersion
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relation, and the corresponding band structures are obtained by solving the eigenvalue equations with
proper periodic boundary conditions.

2.1. Transfer Matrix Method

Let us consider a waveguide with its rectangular cross section of sides a and b, and the enclosed
multilayer dielectric slab with thickness, (t1, t2, t1, t2, ...) and dielectric function, (ε1, ε2, ε1, ε2, ...),
as shown in Figure 1. The TE mode (H mode) and TM mode (E mode) in the rectangular waveguide are
characterized by the z components of the magnetic field and the electric field, Hz and Ez, respectively.
By definition, these components are never absent in the corresponding modes. The z components of
the Helmholtz’s equations for the inhomogeneous media are{

ε(z)~∇×
[

1
ε(z)

~∇× ~H
]}

z
+ ω2ε(z)µ(z)Hz = 0 (1)

and {
µ(z)~∇×

[
1

µ(z)
~∇× ~E

]}
z
+ ω2ε(z)µ(z)Ez = 0. (2)

(a) (b)

Figure 1. (a) 3D schematic of periodic multilayer heterostructure along the z-direction confined in a
rectangular waveguide with a width a and a height b and (b) the corresponding dielectric function
profile ε(z) in the cross-sectional view.

In these cases, the effect of losses of the medium inside the waveguide is characterized by the
complex permittivity ε(z) and permeability µ(z). Thus, Equations (1) and (2) can be rearranged as:[

∂2

∂x2 +
∂2

∂y2 + ε(z)
∂

∂z
1

ε(z)
∂

∂z

]
Hz + ω2ε(z)µ(z)Hz = 0 (3)

and [
∂2

∂x2 +
∂2

∂y2 + µ(z)
∂

∂z
1

µ(z)
∂

∂z

]
Ez + ω2ε(z)µ(z)Ez = 0. (4)

By symmetry, using separation of variables, Equations (3) and (4) can be split into transverse and
longitudinal parts, and the problem can be simplified as solving the one-dimensional Helmholtz’s
equation along the z direction, the longitudinal parts,

ε(z)
∂

∂z
1

ε(z)
∂

∂z
ψ(z)TE +

[
ω2ε(z)µ(z)− k2

c

]
ψ(z)TE = 0 (5)

and
µ(z)

∂

∂z
1

µ(z)
∂

∂z
ψ(z)TM +

[
ω2ε(z)µ(z)− k2

c

]
ψ(z)TM = 0, (6)
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with eigenvalues kc which are determined by the following eigenvalue equations, the transverse parts,(
∂2

∂x2 +
∂2

∂y2 + k2
c

)
φ(x, y)TE = 0 (7)

and (
∂2

∂x2 +
∂2

∂y2 + k2
c

)
φ(x, y)TM = 0. (8)

The corresponding boundary conditions for φ(x, y)TE and φ(x, y)TM are

∂
∂x φ(x, y)TE|x=0,a = 0 and ∂

∂y φ(x, y)TE|y=0,b = 0,
(9)

and

φ(x, y)TM|x=0,a = 0 and φ(x, y)TM|y=0,b = 0.
(10)

It then follows that

kc =
2π

λc
=

√(mπ

a

)2
+
(nπ

b

)2
. (11)

Applying the eigenvalue equations, Equations (7) and (8), and the boundary conditions,
Equations (9) and (10), to the general solutions of Equations (1) and (2), the following particular
solutions can be found by separation of variables,

Hz(x, y, z) = H0 cos
(mπx

a

)
cos

(nπy
b

)
ψ(z)TE (12)

and
Ez(x, y, z) = E0 sin

(mπx
a

)
sin
(nπy

b

)
ψ(z)TM, (13)

where H0 and E0 are determined by the energy of electromagnetic waves propagating inside the
waveguide, and m and n are integers. The function ψ(z) is chosen for a particular solution since it
represents propagating waves in the z-direction. A transfer matrix approach is employed to discretize
the dielectric function profile of the heterostructure. For an N-layer dielectric-filled waveguide,
ε(z) and µ(z) can be divided into p = 1, 2, ..., (N + 2) layers with a piecewise constant permittivity εp

and constant permeability µp, respectively. The discretized one-dimensional Helmholtz’s equation,
for the pth region with constant permittivity εp and constant permeability µp can be written as

d2

dz2 ψp(z) + k2
pψp(z) = 0 for zp−1 ≤ z ≤ zp (14)

with

kp =
√

ω2εpµp − k2
c =

2π

λ

√
εrpµrp −

(
λ

λc

)2
, (15)

where ψp(z) represents the wave function in the pth layer, and kp defines the complex wavevector
in the same layer along the z-direction, λ represents the wavelength in free space at the operating
angular frequency ω, εrp and µrp are the relative dielectric constant and permeability of the medium,
respectively, and λc is the cutoff wavelength. The solutions of Equations (12) and (13) can be written as
a superposition of the forward and backward traveling wave functions:

ψp = ap exp(−jkpz) + bp exp(jkpz) f or zp−1 ≤ z ≤ zp. (16)
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The boundary conditions for ψ(z) at the interface between layers p and (p + 1) at position z = zp

where p = 1, 2, ..., (N + 1) are (for TE modes)

µpψp(zp) = µp+1ψp+1(zp) and d
dz ψp(zp) =

d
dz ψp+1(zp), (17)

and (for TM modes)

εpψp(zp) = εp+1ψp+1(zp) and d
dz ψp(zp) =

d
dz ψp+1(zp). (18)

By matching the boundary conditions at each discontinuity, we arrive at(
aN+2

bN+2

)
= MN+1 · · ·Mp · · ·M1

(
a1

b1

)
=

(
M11 M12

M21 M12

)(
a1

b1

)
, (19)

where for TE modes:

Mp =
1
2

[
exp(jkp+1zp) 0

0 exp(−jkp+1zp)

]
·

 µp
µp+1

+
kp

kp+1

µp
µp+1
− kp

kp+1
µp

µp+1
− kp

kp+1

µp
µp+1

+
kp

kp+1

 ·
[

exp(−jkp+1zp) 0
0 exp(jkp+1zp)

]
, (20)

and for TM modes:

Mp =
1
2

[
exp(jkp+1zp) 0

0 exp(−jkp+1zp)

]
·

 εp
εp+1

+
kp

kp+1

εp
εp+1
− kp

kp+1
εp

εp+1
− kp

kp+1

εp
εp+1

+
kp

kp+1

 ·
[

exp(−jkp+1zp) 0
0 exp(jkp+1zp)

]
. (21)

Using Equation (19) with a1 = 1, b1 = r, aN+2 = t, and bN+2 = 0, the reflection and transmission
amplitudes, r and t, can be obtained, respectively, by

r = −M21

M22
(22)

and
t =

M11 ·M22 −M12 ·M21

M22
. (23)

The reflection and transmission coefficients, R and T, can be implicitly represented by
S-parameters, S11(dB) and S12(dB), as a function of the operating frequency, , for TE modes

S11(dB) = 10log
∣∣∣M21

M22

∣∣∣2 and S12(dB) = 10log µ1kN+2
µN+2k1

∣∣∣M11·M22−M12·M21
M22

∣∣∣2 ,
(24)

and for TM modes

S11(dB) = 10log
∣∣∣M21

M22

∣∣∣2 and S12(dB) = 10log ε1kN+2
εN+2k1

∣∣∣M11·M22−M12·M21
M22

∣∣∣2 .
(25)
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2.2. Band Structures

In this model, Ez and Hz both are periodic with period Λ. According to the Bloch theorem,
the electric and magnetic fields in a periodic layered medium are Ez(z) = Ez(z + Λ) and Hz(z) =

Hz(z + Λ), respectively. The column vector of the Bloch wave satisfies the following eigenvalue
equation for consistency(

a3

b3

)
=

1
4

(
ATE/TM BTE/TM
CTE/TM DTE/TM

)
·
(

a1

b1

)
= ejkBΛ

(
a1

b1

)
. (26)

For the TE mode:

ATE = ej(k1t1−k2t2)

(
µ1

µ2
− k1

k2

)(
µ2

µ1
− k2

k1

)
+

e−j(k1t1+k2t2)

(
µ1

µ2
+

k1

k2

)(
µ2

µ1
+

k2

k1

)
, (27)

BTE = e−j[k1t1−k2(2t1+t2)]

(
µ1

µ2
+

k1

k2

)(
µ2

µ1
− k2

k1

)
+

ej[k1t1+k2(2t1+t2)]

(
µ1

µ2
− k1

k2

)(
µ2

µ1
+

k2

k1

)
, (28)

CTE = B∗TE, (29)

and
DTE = A∗TE. (30)

For the TM mode:

ATM = ej(k1t1−k2t2)

(
ε1

ε2
− k1

k2

)(
ε2

ε1
− k2

k1

)
+

e−j(k1t1+k2t2)

(
ε1

ε2
+

k1

k2

)(
ε2

ε1
+

k2

k1

)
, (31)

BTM = e−j[k1t1−k2(2t1+t2)]

(
ε1

ε2
+

k1

k2

)(
ε2

ε1
− k2

k1

)
+

ej[k1t1+k2(2t1+t2)]

(
ε1

ε2
− k1

k2

)(
ε2

ε1
+

k2

k1

)
, (32)

CTM = B∗TM, (33)

and
DTM = A∗TM. (34)

The phase factor ejkBΛ is thus the eigenvalue and satisfies the secular equation∣∣∣∣∣ ATE/TM − ejkBΛ BTE/TM
CTE/TM DTE/TM − ejkBΛ

∣∣∣∣∣ = 0. (35)

Finally, the dispersion relation for the Bloch wave function is

kB(kz, ω) =
1

t1 + t2
cos−1[

1
2
(ATE/TM + DTE/TM)]. (36)
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2.3. Photon Density of States

The quasi-one-dimensional photonic crystal has been confined in the xy-plane, so the wave
vectors kx and ky are determined according to the guiding modes. To perform the PDOS calculation,
it is required to use the formal definition which is the number of available photon modes per unit
frequency range. Then, we construct two frequencies, namely, ω(kB) = ω and ω(kB) = ω + ∆ω,
where ∆ω is a small increment. We calculate the line therein, and divide it by the line segment occupied
by a single mode. The differential line element in K space within the frequency range, is given by
∆Lk = ∆kB. Now, ∆kB is defined as

∆kB =
∆ω

|∇kω| . (37)

Integrating over the frequency increment, we have that the total phase space line segment
contributing to the frequency range (ω, ω + dω) is∫

ωk

dLk =
∫

ωk

1
|∇kω|dω, (38)

where we take the limit of infinitesimal increments. The number of modes within the range (ω, ω + dω)

is obtained by dividing the length calculated in Equation (38) by the line segment corresponding to
one mode, 2π/Λ in the phase space. This yields

dN(ω) =
Λ
2π

∫
ωk

1
|∇kω|dω ≡ D(ω)dω. (39)

Because ω is a function of k , we can write

∇kω =
dω

dkB
ẑ. (40)

For the TE mode:

∇kωTE = − (t1 + t2) sin[0.5kB(t1 + t2)]

α1 + α2 + α3 + α4 + α5 + α6
ẑ (41)

and for the TM mode:

∇kωTM = − (t1 + t2) sin[0.5kB(t1 + t2)]

β1 + β2 + β3 + β4 + β5 + β6
ẑ, (42)

where the functions, αi and βi, with i = 1, 2, ..., 6, are listed in the Appendix A. Finally, the formula for
evaluating the PDOS can be expressed as

D(ω)TE/TM =
Λ
2π

∫
ωk

1
|∇kωTE/TM|

dω. (43)

3. Results and Discussion

All of macroscopic electromagnetism, including the propagation of light in a photonic crystal,
is governed by the four macroscopic Maxwell’s equations with no free charges or currents.
One interesting feature of electromagnetism in PCs is that there is no fundamental length scale
other than the assumption that the system is macroscopic [1]. Therefore, to study physical phenomena
in PCs, one may scale a system from the optical frequency range to the microwave one and vice
versa if suitable conditions are fulfilled. For the purposes of demonstration and easier verification by
experimentalists, a WR28 (7.11 mm × 3.555 mm) rectangular waveguide, usually used for Ka-band
millimeter waves, is chosen. The periodic dielectric heterostructure is arranged along the longitudinal
(z) direction to form the quasi-1D PCs [34]. In the microwave or millimeter wave frequency ranges,
the PC experiments are very popular and more affordable compared to those in the optical frequency
ones. Nevertheless, in order to extend the results for general use, the data are normalized for solutions
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at all length scale. Consider the quasi-1D PCs with the arrangement shown in Figure 1, 15 double-layer
stacks (n = 30) have been included in the waveguide for investigation. The transmittance is calculated
using the transfer matrix approach mentioned above. In order to demonstrate the stop band and
pass band, the transmittances, expressed as the S-parameters, S12, in dB, of the lowest TE and TM
modes for three quasi-1D PCs have been calculated and plotted in Figure 2. For the three cases, the
dielectric constants used are the same as ε1 = 3.8 (quartz) and ε2 = 1.0 (air), while the thicknesses
are varied as (t1, t2) = (1.00, 3.30), (1.00, 3.60), and (1.00, 3.90) mm, corresponding to the filling ratios
t1/Λ = 23.26%, 21.74%, and 20.41% for the periods of the stacks Λ = 4.3, 4.6, and 4.9 mm, respectively.
As one can see, the central frequencies of the PBGs for both the TE10 and TM11 modes, as shown in
Figure 2a,b respectively, are shifted to lower values as the filling ratio decreases. As mentioned above,
the frequency axes in the plots are normalized to the cutoff frequency of TE10 for general use.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
-120

-100

-80

-60

-40

-20

0

 t1/  = 23.26 %
 t1/  = 21.74 %
 t1/  = 20.41 %

  

 

 

 S
12

 (d
B

)

Normalized frequency (f/fc)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

-50

-40

-30

-20

-10

0

 t1/  = 23.26 %
 t1/  = 21.74 %
 t1/  = 20.41 %

 

 

 

 
 S

12
 (d

B
)

Normalized frequency (f/fc)

(a) (b)

Figure 2. Calculated transmittance, S12(dB), of the quasi-1D PCs with 15 double-layer stacks enclosed
in the rectangular waveguide for (a) TE10 and (b) TM11 modes of light propagation. The dielectric
constants used are ε1 = 3.8 and ε2 = 1.0, and the corresponding filling ratios are t1/Λ = 23.26%,
21.74%, and 20.41% in the three cases. The frequency axes are normalized to the cutoff frequency
of TE10.

In order to look for a complete PBG for all possible modes in the quasi-1D PCs, one may want to
enlarge a PBG for a specific mode of choice. For the following four cases, the dielectric constants used
are (ε1, ε2) = (2.3, 1.0), (3.8, 1.0), (4.9, 1.0), and (11.4, 1.0), while the thicknesses are varied as (t1, t2) = (2.15,
2.15), (1.00, 3.30), (0.72, 3.58), and (0.27, 4.03) mm, corresponding to the filling ratios t1/Λ = 50.00%,
23.26%, 16.74%, and 6.28% for the fixed period of the stacks Λ = 4.3 mm, respectively. The dielectric
constants of 2.3, 3.8, 4.9 and 11.4 used in the chosen microwave frequency range correspond to the
dielectric materials, polyethylene, quartz, phenolic resin, and barium sulfate, respectively. As one can
see, the calculated transmittances, S12(dB), of the four quasi-1D PCs with different 15 double-layer
stacks for the TE10 and TM11 modes are plotted in Figure 3a,b, respectively. The width of PBGs for
both the TE10 and TM11 modes in the quasi-1D PCs is widened to larger sizes as decreasing the filling
ratio while increasing the dielectric contrast between ε1 and ε2. One may notice that the configurations
of these quasi-1D PCs have been specially arranged so that the central frequencies of the PBGs of the
TE10 mode are kept the same while tuning the PBG sizes. However, those of the PBGs of the TM11

mode are not centralized. This indicates that a tremendous computational effort is still needed to
find a complete PBG in spite of the approach with a closed form developed is very efficient for the
quasi-1D PCs.
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Figure 3. Calculated transmittance, S12(dB), of the quasi-1D PCs with 15 double-layer stacks enclosed
in the rectangular waveguide for (a) TE10 and (b) TM11 modes of light propagation. The dielectric
constants used are ε1 = 2.3, 3.8, 4.9, and 11.4 and ε2 = 1, and the corresponding filling ratios are
t1/Λ = 50.00%, 23.26%, 16.74%, and 6.28% in the four cases. The frequency axes are normalized to the
cutoff frequency of TE10.

A better way to identify PBGs more accurately and efficiently is to perform the BS calculation and
further compute the PDOS [15,16]. Figure 4 shows the band structures of (a) TE10 and (b) TM11 modes
for the quasi-1D PC with the dielectric constants ε1 = 3.8, ε2 = 1 and the thicknesses t1 = 1.00 mm,
t2 = 3.30 mm, corresponding to the case presented in Figures 2 and 3 in a black solid line with a filling
ratio of 23.26%. The PBGs of the TE10 mode show no overlap with those of TM11 mode, all marked in
gray stripes in the figure. However, from Figure 4, one may notice that there are no photon states in
the frequency ranges below the cutoff frequency of the TE10 mode nor within the first PBG of TE10

which is under the cutoff frequency of the TM11 mode. Note that only the lowest TE amd TM modes
are plotted in Figure 4. As there might be other modes involved within the frequency range of the
PBG of interest, it is easier to identify a complete PBG from the PDOS plots compared to the BS ones.
Figure 5 shows the PDOS of TE10, TE01, TE11, and TM11 modes for the same quasi-1D PC. As one can
see, the PDOS of the TE10 and TM11 modes are consistent with the BS calculations shown in Figure 4.
The PDOS contributed from the TE01 and TE11 modes tend to fill up the first PBG of the TE10 mode.
Other higher order modes are not considered as their cutoff frequencies are too high to contribute any
PDOS in the frequency range of the PBG. Finally, the combined PDOS of TE10, TE01, TE11, and TM11

modes shows no photon states in some frequency ranges. The first one is below the cutoff frequency of
the TE10 mode, (0–0.77)fc, the second one is within the first PBG of TE10 but under the cutoff frequency
of the TE01 mode, (1.26–1.48)fc, and the third one is the overlap of the PBGs of TE10, TE01, and TE11

modes, (1.79–1.87)fc. Therefore, a “complete PBG” can be obtained for some frequency ranges and
categorized into three types: (1) below the cutoff frequency of the fundamental TE mode, (2) within
the PBG of the fundamental TE mode but below the cutoff frequency of the next higher order mode,
and (3) within an overlap of the PBGs of either TE modes, TM modes, or both.
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Figure 4. Band structures of (a) TE10 and (b) TM11 modes for the quasi-1D PC with the dielectric
constants ε1 = 3.8, ε2 = 1 and the thicknesses t1 = 1.00 mm, t2 = 3.30 mm, corresponding to a filling
ratio of 23.26%. The PBGs of TE10 mode show no overlap with those of TM11 mode.

 TM11 mode 
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Figure 5. PDOS of TE10, TE01, TE11, and TM11 modes for the quasi-1D PC with the dielectric constants
ε1 = 3.8, ε2 = 1 and the thicknesses t1 = 1.00 mm, t2 = 3.30 mm, corresponding to a filling ratio of
23.26%. The combined PDOS of TE10, TE01, TE11, and TM11 modes shows no photon states in some
frequency ranges.

4. Conclusions

In summary, light propagation in quasi-1D PCs has been investigated quantitatively.
The transmittances for both the TE and TM modes through a periodic multilayer heterostructure
in a rectangular waveguide are calculated using the transfer matrix method. The corresponding band
structures are obtained by solving the eigenvalue equations with proper periodic boundary conditions
following the Bloch theorem. The formulas for determining the PDOS have been obtained to facilitate
identifying the photonic band gaps for all the modes residing in the system. With our approach, the
quantitative determination of PDOS can be performed very accurately and efficiently. A complete PBG
can exist in these quasi-1D PCs, but the determination must be carefully conducted and verified. It is
demonstrated that three types of “complete PBG” can be found and categorized as follows. The first
type is the frequency range within which the TE and TM modes are both cutoff, the second type is for
which the fundamental TE mode has a PBG while other higher order modes are cutoff, and the last
type is an overlap of the PBGs of either TE modes, TM modes, or both. The model might be easier for
an experimental validation in a millimeter wave frequency range while the optical counterpart might
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be possibly pursued as well. We believe these results are of general importance and relevance to the
dipole radiation or spontaneous emission by an atom in quasi-1D periodic structures and may have
applications in future photonic quantum technologies.
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Abbreviations

The following abbreviations are used in this manuscript:

1D one-dimensional
2D two-dimensional
3D three-dimensional
BS band structure
EM electromagnetic
PBG photonic band gap
PC photonic crystal
PDOS photon density of states
TE transverse electric
TM transverse magnetic

Appendix A. FORMULAS

Here, we give the formulas of the functions employed in Equations (41) and (42).

α1 = exp[−j(k1t1 + k2t2)] [exp(j2k1t1) + exp(j2k2t2)][
ω

k1

(
ε1µ1k2

k2
1
− ε2µ2

k2

)](
− k1

k2
+
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µ2

)
, (A1)
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ω
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1

+
ε2µ2
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)](
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k2
+
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+
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+
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α5 = exp[−j(k1t1 + k2t2)]{1 + exp[j2(k1t1 + k2t2)]}[
ω
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α6 = −j exp[−j(k1t1 + k2t2)]{−1 + exp[j2(k1t1 + k2t2)]}[
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and

β6 = −j exp[−j(k1t1 + k2t2)]{−1 + exp[j2(k1t1 + k2t2)]}[
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