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Abstract: Investigation on the solid-state pharmaceutical chemistry has been known as an intriguing
strategy to not only modify the physicochemical properties of drugs but also expand the solid form
landscape. Vortioxetine (VOT) is an effective but poorly soluble antidepressant. To improve the
solubility of vortioxetine and expand possible solid forms, in this paper, four novel solid forms of
vortioxetine with dihydroxybenzoic acids (VOT-23BA, VOT-24BA-TOL, VOT-25BA, and VOT-26BA,
23BA = 2,3-dihydroxybenzoic acid, 24BA = 2,4-dihydroxybenzoic acid, 25BA = 2,5-dihydroxybenzoic
acid, 26BA = 2,6-dihydroxybenzoic acid, and TOL = toluene) were synthesized first by a solvent
evaporation method and then characterized by single-crystal X-ray diffraction (SCXRD), thermal,
and XRD techniques. VOT-24BA-TOL, VOT-25BA, and VOT-26BA, showed similar [2+2] tetrameric
R4

4 (12) hydrogen bonds by acid-piperazine heterosynthon. In the VOT-23BA-H2O salt, the VOT
cation and 23BA anion interacted through protonated piperazine-hydroxyl N-H···O hydrogen
bonds, not protonated piperazine-deprotonated carboxylic acid N-H···O hydrogen bonds. Solubility
studies were carried out in purified water and it was found that the VOT-23BA-H2O, VOT-25BA,
and VOT-26BA salts exhibited an increase in water compared to pure VOT. The solubility of the
stabilized salt formations followed the order of VOT-25BA > VOT-26BA > VOT-23BA-H2O in
purified water.
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1. Introduction

In recent years, the study of solid-state pharmaceutical chemistry, including cocrystals,
salts, polymorphs, and solvates, has been extensively applied in the area of pharmaceutical
technology [1–5]. Thus, the design of pharmaceutical solid forms of drugs has become an important step
in the pharmaceutical process [6]. Salt formations, in particular, usually improve the physicochemical
properties, solubility, and dissolution rate of drugs [7–11]. These advantages are useful for judging
whether salt formations can be new API candidates.

Dihydroxybenzoic acids contain two hydroxyl groups and one carboxyl group and have the
ability to form complex and robust hydrogen-bond networks [11–20], which are often used as the
preferred candidate. Furthermore, these molecules are considered GRAS (generally recognised as safe)
compounds, except for 2, 4-dihydroxybenzoic acid (24BA).

Vortioxetine (VOT), 1-[2-(2, 4-dimethylphenylsulfanyl) phenyl] piperazine, is a novel
antidepressant drug that is used mainly for the treatment of major depressive disorder (MDD) [21,22].
However, because of its low aqueous solubility (0.04 mg/mL in water at 37 ◦C), it was commercialized
in the form of hydrobromide [23]. He et al. [23], Li et al. [24], Zhou et al. [25] and Zhang et al. [26]
reported the synthesis of different pharmaceutical solid forms of VOT, and we have previously reported
on three straight-chain dicarboxylic acid salt hydrates of VOT [27]. These salt forms could enhance the
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solubility of VOT. In this paper, we describe four new dihydroxybenzoic acid salts of VOT, as well as
their crystal structures, physicochemical properties, and aqueous solubility. The chemical structures of
VOT and dihydroxybenzoic acid are displayed in Scheme 1.
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2. Materials and Methods

2.1. Instrumentations and Materials

The corresponding chemicals and reagents were obtained from commercial sources and used
without further purification. The differential scanning calorimetry (DSC) analyses were performed on
Mettler Toledo DSC2 equipment (Mettler Toledo, Zurich, Switzerland) at a heating rate of 10 ◦C/min
using nitrogen as the purge gas. The thermogravimetric (TGA) analysis of the samples was performed
on PerkinElmer TGA 4000 equipment (PerkinElmer, Shanghai, China) with a heating rate of 10 ◦C/min
under a nitrogen gas purge. The X-ray powder diffraction (PXRD) patterns were performed on a
German Bruker corporation D8 ADVANCE powder diffractometer (Beijing, China), using a Cu Kα

radiation tube (λ = 1.5418 Å, V = 40 kV and I = 40 mA) and the samples were scanned in the 3–60◦ range.
The diffraction data for VOT-23BA-H2O, VOT-24BA-TOL, and VOT-25BA salts were collected on
an Oxford Xcalibur Gemini Ultra diffractometer (Rigaku Oxford Diffraction, Oxford, England) with
an Atlas detector operating at 40 kV and 40 mA using Cu Kα radiation (λ = 1.54178 Å), while the
other diffraction data for VOT-26BA were performed on a Bruker Apex II CCD diffractometer
operating (Bruker, NASDAQ, Germany) at 50 kV and 30 mA using Mo Kα radiation (λ = 0.71073 Å).
The corresponding crystal structure was solved by direct methods using the SHELXS program
(University of Gottingen, SHELXS-97, Gottingen, Germany) and refined with the SHELXL program
(University of Gottingen, SHELXS-97, Gottingen, Germany) [28,29]. Crystallographic parameters and
hydrogen bonds are listed in Tables 1 and 2.

2.2. Preparation of Vortioxetine Salts with Dihydroxybenzoic Acids

To prepare VOT-23BA-H2O (1:1:0.5) salt, vortioxetine (20 mg) (Shanghai Neosun Pharmaceutical
Technology Co., Ltd., Shanghai, China) and 23BA (10 mg) (Aladdin, Shanghai, China) were dissolved
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in 5 mL of ethanol/water (4:1, v/v) (Aladdin, Shanghai, China), and stirred at room temperature for 1 h.
The resulting solution was then left at room temperature to slowly evaporate. The fine block crystals
for single crystal X-ray diffraction were found after 15 days.

To prepare VOT-24BA-TOL (1:1:0.5) salt, vortioxetine (20 mg) and 24BA (10 mg) (Aladdin,
Shanghai, China) were dissolved in 5 mL of toluene/ethanol (4:1, v/v) (Aladdin, Shanghai, China),
and stirred at room temperature for 2 h. The resulting solution was then left at room temperature to
slowly evaporate. The fine block crystals for single crystal X-ray diffraction were found after 15 days.

To prepare VOT-25BA (1:1) salt, vortioxetine (20 mg) and 25BA (10 mg) were dissolved in 5 mL of
acetone/water (1:1, v/v), and stirred at room temperature for 0.5 h. The resulting solution was then left
at room temperature to slowly evaporate. The fine block crystals for single crystal X-ray diffraction
were found after seven days.

To prepare VOT-26BA (1:1) salt, vortioxetine (20 mg) and 26BA (10 mg) were dissolved in 6 mL of
acetone/water (2:1, v/v), and stirred at room temperature for 2 h. The resulting solution was then left at
room temperature to slowly evaporate. The fine needle crystals for single crystal X-ray diffraction
were found after seven days.

2.3. Solubility Measurement

The solubility experiments were carried out on a round bottomed flask with a rotation speed
of 500 rpm at 37 ± 0.5 ◦C in aqueous medium. After 24 h, the supernatant was filtered through
0.22 µm nylon filter, and then diluted within the scope of the standard curve with aqueous medium.
The concentration of VOT was determined using an Agilent 1290 HPLC system (Agilent, Agilent 1290,
Shanghai, China), with a C18 HPLC column (Thermo Accucore aQ 100 × 2.1 mm) (Thermo Fisher,
Shanghai, China) and a UV detection wavelength of 226 nm. The column temperature was set at 40 ◦C,
and the mobile phase containing 0.01 mol/L potassium phosphate: acetonitrile (v/v, 60:40) was run at
0.4 mL/min. All of the resulting solution was filtered with 0.22 µm nylon filter and analyzed by the
corresponding calibration curve.

Table 1. Crystallographic parameters of vortioxetine and its dihydroxybenzoic acid salts.

VOT-23BA-H2O VOT-24BA-TOL VOT-25BA VOT-26BA

chemical formula 2C18H23N2S,
2C7H5O4,H2O

2C18H23N2S,
2C7H5O4,C7H8

C18H23N2S,
C7H5O4

C18H23N2S,
C7H5O4

formula sum C50H58N4O9S2 C57H64N4O8S2 C25H28N2O4S C25H28N2O4S
formula weight 923.12 997.24 452.55 452.55
crystal system monoclinic triclinic triclinic monoclinic
space group C2/c P-1 P-1 P21/c

a (Å) 26.5624(5) 12.3577(8) 9.9394(8) 17.0666(8)
b (Å) 8.10730(10) 12.9526(6) 10.1982(6) 6.3133(2)
c (Å) 23.0375(5) 17.4064(11) 12.1724(9) 22.2716(10)
A (◦) 90 82.219(5) 89.628(6) 90
B (◦) 92.162(2) 80.757(6) 76.453(7) 107.112(5)
γ (◦) 90 87.213(4) 85.399(6) 90

Z 4 2 2 4
V (Å3) 4957.58(16) 2723.6(3) 1195.55(15) 2293.46(17)

Dcalc (g cm−3) 1.237 1.216 1.257 1.311
M (mm−1) 1.444 1.339 1.472 0.175

reflns. collected 4385 9612 4573 3075
observed reflns. 3509 3889 2187 2592

R1 (I > 2σ (I)) 0.0438 0.0677 0.0632 0.0409
wR2 (all data, F2) 0.1246 0.1703 0.1704 0.0995

GOF 1.054 1.036 1.042 1.013
largest diff. peak
and hole (e·Å-3)

0.775/–0.168 0.341/–0.356 0.271/–0.468 0.184/–0.240

CCDC 1,937,936 1,937,937 1,937,938 1,937,939
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Table 2. Hydrogen bond distances (Å) and angles (◦) of vortioxetine and its dihydroxybenzoic acid salts.

H-Bond d(D−H) d(H···A) d(D···A) ∠(DHA) Symmetry Code

VOT-23BA-H2O
N1+
−H1B···O3 0.88 1.99 2.856(2) 166 x, y, z

N1+
−H1A···O5 0.93 1.86 2.783(2) 174 x, y, z

O3−H3···O2 1.01 1.51 2.471(2) 156 x, y, z
O4−H4···O1 0.88 1.71 2.585(2) 177 x, y+1, z
O5−H5A···O2 0.90 1.77 2.658(2) 172 x, y+1, z
VOT-24BA-TOL
N1+
−H1C···O1 0.80 2.02 2.804(4) 165 -x+1, -y+1, -z

N1+
−H1D···O2 1.04 1.70 2.722(4) 167 x, y+1, z

N3+
−H3C···O6 0.86 1.88 2.738(4) 168 x-1, y, z

N3+
−H3D···O5 0.93 1.82 2.743(4) 170 -x+1, -y+1, -z

O3−H3···O2 0.92 1.67 2.542(4) 155 x, y, z
O4−H4···O5 0.70 2.04 2.726(4) 169 x, y, z
O7−H7A···O6 0.76 1.81 2.526(4) 155 x, y, z
O8−H8A···O1 0.93 1.79 2.714(4) 171 x, y+1, z
VOT-25BA
N1+
−H1C···O2 0.97 1.86 2.810(3) 168 x, y+1, z

N1+
−H1D···O1 1.01 1.72 2.723(3) 173 -x, -y+1, -z

O3−H3···O1 0.96 1.68 2.555(3) 150 x, y, z
O4−H4···O2 0.89 1.84 2.685(3) 157 -x+1, -y, -z
VOT-26BA
N1+
−H1A···O2 0.91 1.91 2.814(3) 173 -x+1, y-1/2, -z+3/2

N1+
−H1B···O1 0.95 1.85 2.753(3) 158 x, -y-1/2, z-1/2

O3−H3···O2 0.82 1.82 2.548(3) 147 x, y, z
O4−H4···O1 0.82 1.85 2.573(3) 147 x, y, z

3. Results and Discussion

3.1. Crystal Structure Analysis

3.1.1. Crystal Structure of VOT-23BA-H2O (1:1:0.5) Salt

The VOT-23BA-H2O salt crystallized in the monoclinic space group C2/c with one VOT cation,
one 23BA anion, and one half water molecule in the asymmetric unit. In the VOT-23BA-H2O salt,
each water molecule interacted with two 23BA anions to form a two-dimensional plane structure along
the crystallographic ab plane through O4−H4···O1 and O5−H5A···O2 hydrogen bonds (Figure 1a).
The aforementioned plane structures and VOT cations were arranged in a sandwich 3D structure via
N1+
−H1B···O3 and N1+

−H1A···O5 hydrogen bonds (Figure 1b).

3.1.2. Crystal Structure of VOT-24BA-TOL (1:1:0.5) Salt

The VOT-24BA-TOL salt crystallized in the triclinic space group P-1 with two VOT cations,
two 24BA anions, and one toluence molecule in the asymmetric unit. In the VOT-24BA-TOL salt,
two different 24BA anions interacted with each other to form a one-dimensional chain structure
through O4−H4···O5 and O8−H8A···O1 hydrogen bonds (Figure 2a). The aforementioned chain
structures and VOT cations were arranged in a complex three-dimensional structure via N1+

−H1C···O1,
N1+
−H1D···O2, N3+

−H3C···O6, and N3+
−H3D···O5 hydrogen bonds (Figure 2b). In addition, the

toluene molecules existed in the cavity of VOT-24BA-TOL salt along the crystallographic a-axis
(Figure 2c).
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3.1.3. Crystal Structure of VOT-25BA (1:1) Salt

The VOT-25BA salt crystallized in the triclinic space group P-1 with one VOT cation and one 25BA
anion in the asymmetric unit. In the VOT-25BA salt, two 25BA molecules interacted with each other to
form an R2

2 (14) synthon through O4−H4···O2 hydrogen bonds (Figure 3a). The aforementioned R2
2

(14) synthons and VOT cations were arranged in a sandwich R4
4 (12) structure via N1+

−H1C···O2 and
N1+
−H1D···O1 hydrogen bonds (Figure 3b).

3.1.4. VOT-26BA (1:1) Salt

The VOT-26BA salt crystallized in the monoclinic space group P21/c with one VOT cation and
one 26BA anion in the asymmetric unit. In the VOT-26BA salt, two VOT cations and two 26BA
anions formed a [2+2] tetrameric R4

4 (12) synthon via N1+
−H1A···O2 and N1+

−H1B···O1 hydrogen
bonds (Figure 4).Crystals 2019, x, x FOR PEER REVIEW  7 of 13 

 

 

Figure 3. (a) Two 25BA anions formed an R
2 

2 (14) synthon through O4−H4···O2 hydrogen bonds. (b) The sandwich 

3D structure of the VOT-25BA salt. 

 

Figure 4. The [2+2] tetrameric structure in the VOT-26BA salt. 

3.1.5. Structural Comparison 

The spatial variation of similar structures is important for the study of packing similarities. As 

shown in Scheme 2, there is no classical hydrogen bonding in pure VOT. VOT-24BA-TOL, VOT-25BA, 

and VOT-26BA shared similar [2+2] tetrameric R
4 

4 (12) hydrogen bonds. However, because the 

locations of the two hydroxyl groups changed, they showed the different space-stacked structures 

after salting (Figure S1). Specifically, the VOT molecules of the VOT-23BA-H2O salt were linked by 

Figure 3. (a) Two 25BA anions formed an R2
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3.1.5. Structural Comparison

The spatial variation of similar structures is important for the study of packing similarities.
As shown in Scheme 2, there is no classical hydrogen bonding in pure VOT. VOT-24BA-TOL,
VOT-25BA, and VOT-26BA shared similar [2+2] tetrameric R4

4 (12) hydrogen bonds. However, because
the locations of the two hydroxyl groups changed, they showed the different space-stacked structures
after salting (Figure S1). Specifically, the VOT molecules of the VOT-23BA-H2O salt were linked by
protonated piperazine-hydroxyl N-H···O hydrogen bonds, not protonated piperazine-deprotonated
carboxylic acid N-H···O hydrogen bonds, involving the hydroxyl groups.
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3.2. Powder X-ray Diffraction Analyses

Powder X-ray diffraction (PXRD) is one of the important tools to differentiate phase transition.
The PXRD patterns for VOT, VOT-23BA-H2O, VOT-24BA-TOL, VOT-25BA, and VOT-26BA salts are
shown in Figure 5 and Figures S2–S5 (Supporting Information). VOT showed major characteristic peaks
at 2θ = 11.6◦, 12.34◦, 12.80◦, 14.32◦, 15.12◦, 16.84◦, 17.40◦, 18.62◦, 19.06◦, 20.48◦, 21.50◦, 22.48◦, 22.96◦,
24.38◦, 25.66◦, and 26.18◦. However, the VOT-23BA-H2O, VOT-24BA-TOL, VOT-25BA, and VOT-26BA
salts exhibited different characteristic peaks, which indicate the formation of new solid forms (Table S1).Crystals 2019, x, x FOR PEER REVIEW  9 of 13 
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3.3. Thermal Analyses

Vortioxetine and its salts were investigated by DSC and TGA, and the corresponding profiles are
shown in Figure 6. The DSC thermogram of vortioxetine exhibited a single melting endothermic peak
at 117 ◦C, which was attributed to the melting process, and its TGA curve showed that vortioxetine
had no weight loss before decomposition at 226 ◦C (Figure 6a).

The DSC thermogram of VOT-23BA-H2O showed an endothermic peak at 163 ◦C, accompanied by
a mass loss of 2.28% in the TGA curve at 140–173 ◦C, which indicates that VOT-23BA-H2O released half
a water molecule per VOT-23BA-H2O (theoretical value: 1.95%), followed by a melting endothermic
peak at 198 ◦C. Then, a broad endothermic peak at 232 ◦C was observed in the DSC curve, which is
attributable to decomposition behavior (Figure 6b), and the TGA curve also revealed a uniform
degradation process at 200 ◦C.

The DSC thermogram of VOT-24BA-TOL showed a broad endothermic peak at 158 ◦C, and the
TGA curve of VOT-24BA-TOL began to decompose at 115 ◦C (the onset temperature of the degradation
curve), indicating a process of simultaneous melting and decomposition; these data suggest poor
thermodynamic stability of VOT-24BA-TOL in environmental conditions. Furthermore, the DSC and
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TGA analyses of VOT-24BA-TOL showed that the simultaneous melting and decomposition process
was non-reversible, which means that desolvation experiments were difficult to carry out through
either simple heat or vacuum drying.
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The DSC thermogram of VOT-25BA exhibited a sharp endothermic peak at 224 ◦C, and the
TGA curve of VOT-25BA began to decompose at 206 ◦C, indicating that the melting process was
accompanied by the decomposition process.

The DSC thermogram of VOT-26BA exhibited a sharp endothermic peak at 197 ◦C, and the TGA
curve of VOT-26BA began to decompose at 184 ◦C, indicating that it was also a process of simultaneous
melting and decomposition. The results of the DSC curves indicate that all the salts showed higher
physical stability than the pure VOT.

3.4. Aqueous Solubility and Stability study

Aqueous solubility is an important property for drug oral activity as well as for pharmaceutical
preparation [30]. The solubility study of vortioxetine and its dihydroxybenzoic salts were determined
in water at 37 ◦C. The powder samples of the undissolved residue were also analyzed via PXRD,
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and the results showed that VOT-23BA-H2O, VOT-25BA, and VOT-26BA remained stable in water after
24-h solubility experiments (Figures S6–S10), while the VOT-24BA-TOL salt was unstable in aqueous
solution. Furthermore, a simple comparison of the residual materials after solubility experiments with
the patterns of former compounds (VOT and 24BA) is shown in Figure S11 and Table S2, the results
showed a significant difference among the residual material, VOT and 24BA. This implies that the
VOT-24BA-TOL was not resolved into VOT and 24BA, but rather an irreversible process. The solubility
of dihydroxybenzoic salts followed the order of VOT-25BA > VOT-26BA > VOT-23BA-H2O (Table 3).
In aqueous medium, the VOT-23BA-H2O, VOT-25BA, and VOT-26BA salts were found to more soluble
than pure VOT.

Table 3. Solubility of vortioxetine and its dihydroxybenzoic acid salts in water at 37 ◦C.

Compound Equilibrium Solubility of VOT in Water (mg/mL) Coformer Solubility in Water(a) (mg/mL)

VOT 0.04 -
VOT-23BA-H2O 0.09 26.10
VOT-24BA-TOL - 5.78

VOT-25BA 0.35 5.00
VOT-26BA 0.20 9.56

(a) Data source: ChemIDplus Advanced (http://www.chem.sis.nlm.nih.gov/chemidplus/).

4. Conclusions

In summary, four dihydroxybenzoic acid salts of the antidepressant drug vortioxetine were
synthesized by slow solvent evaporation crystallization. VOT-24BA-TOL, VOT-25BA, and VOT-26BA
showed similar [2+2] tetrameric R4

4 (12) hydrogen bonds by acid-piperazine heterosynthon, whereas
in the VOT-23BA-H2O salt, the VOT cation and 23BA anion interacted through protonated
piperazine-hydroxyl N-H···O hydrogen bonds, not protonated piperazine-deprotonated carboxylic
acid N-H···O hydrogen bonds. The DSC results indicate that all the salts showed higher physical
stability than the pure VOT. The solubility study revealed that the VOT-23BA-H2O, VOT-25BA,
and VOT-26BA salts exhibited an increased solubility in water compared to pure VOT. Furthermore,
25BA is considered a GRAS molecule and the solubility data indicate that the VOT-25BA salt may be a
promising drug candidate.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/9/10/536/s1,
Figure S1: The different space stacked structure of VOT, VOT-23BA-H2O, VOT-24BA-TOL, VOT-25BA and
VOT-26BA salts; Figure S2: Experimental (red) and simulated (black) PXRD patterns for VOT-23BA-H2O salt;
Figure S3: Experimental (red) and simulated (black) PXRD patterns for VOT-24BA-TOL salt; Figure S4: Experimental
(red) and simulated (black) PXRD patterns for VOT-25BA salt; Figure S5: Experimental (red) and simulated
(black) PXRD patterns for VOT-26BA salt; Figure S6: PXRD analysis of the residual materials of VOT after 24h
solubility in aqueous medium; Figure S7: PXRD analysis of the residual materials of VOT-23BA-H2O after 24h
solubility in aqueous medium; Figure S8: PXRD analysis of the residual materials of VOT-24BA-TOL after 24h
solubility in aqueous medium; Figure S9: PXRD analysis of the residual materials of VOT-25BA after 24h solubility
in aqueous medium; Figure S10: PXRD analysis of the residual materials of VOT-26BA after 24h solubility in
aqueous medium; Figure S11: The comparison diagram of the residual materials of VOT-24BA-TOL after 24h
solubility with the patterns of former compounds (VOT and 24BA); Table S1: The major PXRD peaks (2θ) for VOT,
VOT-23BA-H2O, VOT-24BA-TOL, VOT-25BA and VOT-26BA salts; Table S2: The major PXRD peaks (2θ) for the
residual materials of VOT-24BA-TOL, VOT and 24BA.
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