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Abstract: Ni3Al-based superalloys have excellent mechanical properties which have been widely
used in civilian and military fields. In this study, the mechanical properties of the face-centred cubic
structure Ni3Al were investigated by a first principles study based on density functional theory (DFT),
and the generalized gradient approximation (GGA) was used as the exchange-correlation function.
The bulk modulus, Young’s modulus, shear modulus and Poisson’s ratio of Ni3Al polycrystal were
calculated by Voigt-Reuss approximation method, which are in good agreement with the existing
experimental values. Moreover, directional dependences of bulk modulus, Young’s modulus, shear
modulus and Poisson’s ratio of Ni3Al single crystal were explored. In addition, the thermodynamic
properties (e.g., Debye temperature) of Ni3Al were investigated based on the calculated elastic
constants, indicating an improved accuracy in this study, verified with a small deviation from the
previous experimental value.

Keywords: intermetallic compound; Ni3Al single crystal; first principles; mechanical property;
elastic anisotropy

1. Introduction

Ni-Al alloys, especially Ni-Al single crystal alloys, have been widely applied as structural
materials and functional materials in civilian and military fields, due to their high strength, high
temperature stability, corrosion and oxidation resistances in aggressive environments [1–5]. As the
most promising and valued Ni-Al alloys, L12-ordered Ni3Al-based single crystal alloys are well known
as superalloys because of their excellent mechanical properties at high temperature [6], which have
been extensively used for the hot components of gas turbines [7]. Ni3Al is a kind of intermetallic
compound, and its elastic modulus, bulk modulus, shear modulus have been explored by experimental
methods. It should be noted that, due to the variation of material preparation, processing and
test methods, the mechanical properties of Ni3Al measured by experimental methods are discrete.
For example, the bulk modulus of L12-ordered Ni3Al explored by Pearson et al. is 229.2 GPa [8]
while the value obtained by Yasuda et al. is 171.0 GPa [9]. In order to break through the limitation
derived from experimental methods, in recent years, first principles calculations have been successfully
conducted to calculate the elastic properties of alloys and intermetallics [10–14]. Based on first
principles, Wen et al. [1] calculated the bulk modulus and Young’s modulus of Ni3Al, as well as the
effects of pressure on the mechanical properties. Kim et al. [15] investigated the mechanical parameters
of Ni3Al, such as bulk modulus, Young’s modulus, shear modulus, and the influences of several typical
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doped alloying elements on them. Huang et al. [16] computed various elastic moduli and elastic
constants of Ni3Al via first principles and pointed out these values coincide well with other theoretical
and experimental results. In addition, Wen et al. [2] investigated the behaviour of Ni3Al by calculating
the stress-strain curve and the corresponding mechanical stability. Ni3Al-based alloys have been largely
applied as single crystal materials [17–19], while most of the previous studies based on experiments
and first principles calculations neglect the anisotropic behaviour of Ni3Al single crystal, which has
great influences on the abnormal crystal grains growth, microstructure transformation/formation, and
the microcrack development [20,21]. So, it is of great significance to study the anisotropic mechanical
properties for the reliability evaluation of Ni3Al-based alloys.

Thus far, anisotropic mechanical properties of Ni3Al single crystal alloys is not yet clear due
to difficulties of accurately measuring the anisotropic mechanical properties. In the present study,
the mechanical properties and elastic anisotropies, such as the anisotropy of elastic modulus, bulk
modulus, shear modulus and Poisson’s ratio, were investigated by first principles calculations.

2. Computational Methods and Details

The L12-ordered Ni3Al compound has a face-centred cubic structure with a space group of Pm-3m
with a = b = c = 3.572 Å and α = β = γ = 90◦, wherein the atomic locations of Ni and Al atoms in an
elementary cell are 1a (0.5, 0.5, 0) and 1a (0, 0, 0), respectively, as depicted in Figure 1 [22]. In this study,
the ab initio density functional theory calculation was performed using the Cambridge Sequential
Total Energy Package (CASTEP) program [23]. Meanwhile, the generalized gradient approximation
(GGA) [24] of the revised Perdew-Burke-Ernzerhof formalism [25] and the local density approximation
(LDA) [26] proposed by Ceperley and Alder were operated to calculate the exchange-correlation
potential, respectively. The Vanderbilt ultra-soft pseudopotentials [27] and Broyden Fletcher Goldfarb
Shanno algorithm [28,29] were used to optimise the crystal models. The cutoff energy and k point
were set to be 600 eV and 10 × 10 × 10, respectively. The convergence tolerance of energy was
set at 5.0 × 10−6 eV/atom. Meanwhile, the self-consistent field (SCF) convergence threshold was
5.0 × 10−7 eV/atom with a maximum atomic displacement of 5.0 × 10−4 Å. The maximum ionic
Hellmann-Feynman force and maximum stress were less than 0.01 eV/Å and 0.02 GPa, respectively.
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3. Results and Discussion

3.1. Lattice Constants

The optimised lattice constants and previous experimental results are listed in Table 1 for
comparison. It is conspicuous that the GGA results are in agreement with the experimental values:
the maximum difference of lattice constants is merely around 0.14% and that of volumes is 0.397%,
demonstrating the effectiveness of the proposed simulation model. Generally, the previous and present
calculated data obtained from GGA are similar, and the difference is less than 1%. However, when
using LDA, the calculated lattice volume is about 7% smaller than the experimental data, which is
induced by the difference between GGA and LDA. LDA assumes that the local exchange-correlation
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energy is same in a uniform electron gas with the same density, resulting in the underestimation
of the exchange-correlation in regions of low electron density. Accordingly, LDA induces smaller
lattice constants, larger cohesive energies and bulk modulus. GGA introduces a dependence of
exchange-correlation function on the local gradient of the electron density and typically improves
the underestimation of LDA in predicting lattice constants [30]. The present work and many other
works [31–33] show that, compared to LDA, GGA can get a higher accuracy in predicting lattice
constants and elastic properties, therefore GGA was used in the following calculations. In our research,
elastic constants of Ni3Al were obtained by linear fitting using four strains of ±0.001 and ±0.003 under
nine strain conditions [34].

Table 1. Calculated and experimental lattice parameters of Ni3Al.

Lattice Parameters a(Å) b(Å) c(Å) V(Å3) ∆V/Ve, %

Present work (GGA) 3.577 3.577 3.577 45.757 +0.397
Present work (LDA) 3.486 3.486 3.486 42.377 −7.019

GGA [16] 3.569 3.569 3.569 45.461 −0.252
GGA [35] 3.561 3.561 3.561 45.156 +0.922
LDA [35] 3.486 3.486 3.486 42.363 −7.050

Experiment [22] 3.572 3.572 3.572 45.576 –

3.2. Elastic Properties

The elastic constants are essential parameters that can correlate the microscopic properties of
materials with macroscopic mechanical behaviours and then provide the information of crystal stability
and stiffness. The relationship between stress and strain is directly determined by Hooke’s law
σij = Cijklεij, where Cijkl represents the elastic constants. If Hooke’s law is applied to the lattice
dynamics, combining the lattice symmetry, thus the stress-strain matrix of Ni3Al single crystal can be
written in the following form.

σ1

σ2

σ3

τ1

τ2

τ3


=



C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

Sym. C55 0
C66





ε1

ε2

ε3

γ1

γ2

γ3


where σi, τi, εi, γi are the normal stress, shearing stress, the corresponding normal strain and shearing
strain, respectively. The elastic flexibility matrix Sij can be written as the inverse matrix of the elastic
stiffness matrix Cij, i.e., [Sij] = [Cij]−1. As for cubic crystal, because of lattice symmetry, there are
three independent variables in Cij and Sij, respectively: C11, C12, C44 and S11, S12, S44. In this study,
the elastic constants calculated based on the cubic Ni3Al crystal structure are tabulated in Table 2, and
the calculated values of S11, S12 and S44 in this paper are 0.009, −0.004 and 0.008, respectively.

Table 2. Calculated and experimental elastic constants for Ni3Al single crystal.

Elastic Constant C11 C12 C44

Present work 240.104 160.034 123.831
GGA [6] 225.3 157.6 121.1

GGA [36] 232.7 154.5 123.0
GGA [35] 230.31 162.51 124.79

Experiment [37] 224.3 148.6 125.8
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The calculated outcomes of first principles (C11 = 240.1 GPa, C12 = 160.0 GPa, C44 = 123.8 GPa)
are consistent with previous calculations and experimental values (C11 = 224.3 GPa, C12 = 148.6 GPa,
C44 = 125.8 GPa). The elastic constants calculated for the cubic crystal should satisfy the following
mechanical stability criteria [38]:

C11 − C12 > 0, C11 > 0, C44 > 0, C11 + 2C12 > 0 (1)

By substituting the three calculated elastic constants into the above equation, we found that the
present results match the above criteria obviously, indicating that Ni3Al single crystal is an intrinsically
stable system. Moreover, the bulk modulus, shear modulus and elastic modulus were calculated using
the Voigt-Reuss approximation [39]. The upper limit and lower limit of the actual effective modulus
correspond to Voigt bound and Reuss bound obtained by the average polycrystalline modulus based
on two assumptions: uniform strain and uniform stress throughout a polycrystal, respectively [30].
For cubic lattices, Voigt bulk modulus (BV) and shear modulus (GV) are

BV =
1
3
(C11 + 2C12) (2)

GV =
1
5
(C11 − C12 + 3C44) (3)

and the Reuss bulk modulus (BR) and Reuss shear modulus (GR) are defined as

BR =
1

3S11 + 6S12
(4)

GR =
15

4S11 − 4S12 + 3S44
(5)

Voigt and Reuss equations represent upper and lower limits of the true polycrystalline constants,
and the practical estimate of the bulk and shear moduli can be treated as the arithmetic mean of the
two extremes [40]. The Hill’s average for the shear modulus (G) and bulk modulus (B) is given by

B =
1
2
(BR + BV) (6)

G =
1
2
(GR + GV) (7)

while Young’s modulus (E) and Poisson’s ratio (v) are given by

E =
9BG

3B + G
(8)

ν =
3B− E

6B
(9)

the bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio calculated in this study are
listed in Table 3. The results calculated in this paper are very close to previously calculated values
and experimental values measured by Prikhodko et al. [41], which can effectively verify the reliability
of the calculation results. In addition, either the ductility or the brittleness of metallic material can
affect the mechanical properties directly, and determine the failure mode. Pugh et al. [42] introduced
the ratio of bulk modulus to shear modulus B/G as a reference for the judgments of the ductility of a
material. If the value of B/G is large, it means that the material has a good ductility, otherwise it will be
characterised by prominent brittleness. For a normal material, if its B/G value exceeds 1.75, indicating
it is a ductile material, otherwise it is brittle [30]. According to the data given in Table 3, the B/G value
of Ni3Al alloy is 2.368, which is obviously higher than the critical value 1.75, demonstrating that Ni3Al
is a ductile material which agrees with the experimental result reported in a previous study [43].
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Further, the Vicker’s hardness Hv is another important mechanical property of materials, which
can be predicted by Equation (10) [44].

Hv = 0.92(B/G)1.3137 G0.708 (10)

It is reported that materials with Vickers hardness larger than 40 GPa can be classified as superhard
materials [45]. For the calculated value of Hv of Ni3Al is 54.004 GPa, it is supposed that N3Al and
N3Al-based materials have an excellent ability to resist being scratched or dented.

Table 3. Calculated elastic properties of Ni3Al.

BV, GPa BR, GPa GV, GPa GR, GPa B, GPa G, GPa E, GPa v B/G Hv

Present Work 186.724 186.724 90.313 67.401 186.724 78.857 207.378 0.315 2.368 54.004

GGA [6] – – – – 180.2 72.9 – – – –
GGA [36] – – – – 180.6 77.8 204.0 – – –
GGA [35] – – – – 184.49 73.05 196.65 0.320 – –
Exp. [41] – – – – 173.9 77.8 203.1 0.305 2.235 –

3.3. Elastic Anisotropy

The elastic anisotropy can be described by the universal anisotropic index AU [46] and the percent
anisotropy indexes of compression and shear (AB and AG) [47,48], respectively. The calculation
formulas are expressed as follows

AU = 5
GV

GR
+

BV

BR
− 6 (11)

AB =
BV − BR

BV + BR
(12)

AG =
GV − GR

GV + GR
(13)

for the three indexes, the value of zero indicates elastic isotropy while the variation from zero means
anisotropic elastic properties. After calculation, it is found that the AU value of Ni3Al is 1.670, indicating
that Ni3Al exhibits anisotropic behaviour. The value 0.000 for AB indicates the isotropic compression
of Ni3Al, while the AG value of 0.145 shows that Ni3Al exhibits shear anisotropy. As a measure of the
anisotropy degree for the bondings between atoms in different crystal planes, the shear anisotropic
factors are used. The shear anisotropic factor A1 for {100} planes is written as [48]

A1 =
4C44

C22 + C33 − 2C13
(14)

shear anisotropic factors A2 and A3 for the {010} and {001} planes are given as Equations (15) and (16),
respectively,

A2 =
4C55

C33 + C11 − 2C23
(15)

A3 =
4C66

C11 + C22 − 2C12
(16)

For the case of isotropic crystals, the value of shear anisotropic factor is 1, and the anisotropy is
reflected in the deviation from 1 [30]. In this calculation, the three values are all 3.093 (see Table 4),
indicating that the Ni3Al crystals exhibit shear anisotropy in the {100}, {010} and {001} planes evidently.
In addition, the anisotropic indexes of the bulk modulus along the a axis and c axis with respect to the
b axis can be written as Equations (17) and (18) [48], respectively.

ABa = α (17)
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ABc = β (18)

where

α =
(C11 − C12)(C33 − C13)− (C23 − C13)(C11 − C13)

(C33 − C13)(C22 − C12)− (C13 − C23)(C12 − C23)
(19)

β =
(C22 − C12)(C11 − C13)− (C11 − C12)(C23 − C12)

(C22 − C12)(C33 − C13)− (C12 − C23)(C13 − C23)
(20)

For these parameters, the value of 1 indicates elastic isotropy, and similarly any deviation from 1
corresponds to a degree of elastic anisotropy. From the calculation result of the elastic constant, it can
be observed that the bulk modulus anisotropy index ABa = ABc = 1. Therefore, the calculations show
once again that Ni3Al exhibit isotropic bulk modulus.

Table 4. The calculated anisotropic index of Ni3Al.

Anisotropic Index AU AB AG A1 A2 A3 ABa ABc

Value 1.670 0.000 0.145 3.093 3.093 3.093 1.000 1.000

To further investigate the anisotropic features of Ni3Al crystal, the three-dimensional surface
representation of the elastic anisotropy of the crystal was performed. The direction dependences
of the Bulk modulus and Young’s modulus of cubic crystal system are shown in the following
Equations (21) and (22), respectively [49]

1
B
= (S11 + 2S12)

(
l2
1 + l2

2 + l2
3

)
(21)

1
E
= S11 − 2

(
S11 − S12 −

S44

2

)(
l2
1 l2

2 + l2
2 l2

3 + l2
1 l2

3

)
(22)

where 11, 12, and 13 denote the direction cosines with respect to the a, b, and c directions of the lattice.
As mentioned before, for Ni3Al, the bulk modulus B has no anisotropy and its spatial three-dimensional
(3D) surface representation is spherical, as shown in Figure 2a. For Young’s modulus, its 3D surface
representation is shown in Figure 2b, which exhibits obvious anisotropy.

In order to better understand the anisotropic characteristics, the Young’s modulus of the Ni3Al
single crystal in the normal direction of the three low-index crystal planes {100}, {110} and {111} were
calculated. The formula can be written as follows [50]

1
Ehkl

= S11 − 2S0
(hk)2 + (hl)2 + (lk)2

(h2 + k2 + l2)2 (23)

where
S0 = S11 − S12 −

1
2

S44 (24)

The corresponding calculation results are listed in Table 5. The maximum and minimum values of
Young’s moduli are 304.241 GPa and 112.094 GPa along the normal direction of {111} and {100} planes,
respectively, which are consistent with the results shown in Figure 2b.

In addition, the three-dimensional surface of the shear modulus of Ni3Al can be expressed by
Equation (25) [51]:

1
G

= (S44 + 4S0 J) (25)

where
J = sin2 θ · cos2 θ + 0.125 · sin4 θ(1− cos 4ϕ) (26)
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wherein θ and φ are Euler angles, as shown in Figure 3. Figure 2c shows the shear moduli of Ni3Al
along different orientations. Clearly, shear modulus anisotropy can be deduced, with the maximum
and minimum values are 123.831 GPa along <001> directions and 51.696 GPa along <111> directions,
respectively. Generally, the direction dependence of shear modulus is opposite to that of Young’s
modulus.

Crystals 2018, 8, x FOR PEER REVIEW  7 of 12 

 

In addition, the three-dimensional surface of the shear modulus of Ni3Al can be expressed by 
Equation (25) [51]: 

( )JSS
G 044 41 +=

 
(25) 

where 

( )ϕθθθ cos41sin125.0cossin 422 −⋅+⋅=J  (26) 

wherein θ and ϕ are Euler angles, as shown in Figure 3. Figure 2c shows the shear moduli of Ni3Al 
along different orientations. Clearly, shear modulus anisotropy can be deduced, with the maximum 
and minimum values are 123.831 GPa along <001> directions and 51.696 GPa along <111> directions, 
respectively. Generally, the direction dependence of shear modulus is opposite to that of Young’s 
modulus. 

 
Figure 2. Directional dependence of bulk modulus (a), Young’s modulus (b) and shear modulus (c). 

 
Figure 3. Coordinates system and Eulerian angles. 

Table 5. Values of Young’s moduli along normal directions of planes {100}, {110} and {111}. 

Planes {100} {110} {111} 
Ehkl, GPa 112.094 212.973 304.241 

Further, anisotropies of Poisson’s ratios were also investigated by calculating the values along 
three lower-index planes. As for cubic crystal, the Poisson’s ratio ν along arbitrary directions in (hkl) 
planes can be expressed as [50]. 

Figure 2. Directional dependence of bulk modulus (a), Young’s modulus (b) and shear modulus (c).

Crystals 2018, 8, x FOR PEER REVIEW  7 of 12 

 

In addition, the three-dimensional surface of the shear modulus of Ni3Al can be expressed by 
Equation (25) [51]: 

( )JSS
G 044 41 +=

 
(25) 

where 

( )ϕθθθ cos41sin125.0cossin 422 −⋅+⋅=J  (26) 

wherein θ and ϕ are Euler angles, as shown in Figure 3. Figure 2c shows the shear moduli of Ni3Al 
along different orientations. Clearly, shear modulus anisotropy can be deduced, with the maximum 
and minimum values are 123.831 GPa along <001> directions and 51.696 GPa along <111> directions, 
respectively. Generally, the direction dependence of shear modulus is opposite to that of Young’s 
modulus. 

 
Figure 2. Directional dependence of bulk modulus (a), Young’s modulus (b) and shear modulus (c). 

 
Figure 3. Coordinates system and Eulerian angles. 

Table 5. Values of Young’s moduli along normal directions of planes {100}, {110} and {111}. 

Planes {100} {110} {111} 
Ehkl, GPa 112.094 212.973 304.241 

Further, anisotropies of Poisson’s ratios were also investigated by calculating the values along 
three lower-index planes. As for cubic crystal, the Poisson’s ratio ν along arbitrary directions in (hkl) 
planes can be expressed as [50]. 

Figure 3. Coordinates system and Eulerian angles.

Table 5. Values of Young’s moduli along normal directions of planes {100}, {110} and {111}.

Planes {100} {110} {111}

Ehkl, GPa 112.094 212.973 304.241

Further, anisotropies of Poisson’s ratios were also investigated by calculating the values along
three lower-index planes. As for cubic crystal, the Poisson’s ratio ν along arbitrary directions in (hkl)
planes can be expressed as [50].

ν(hkl, θ) =
{

S12 +
S0

h2+k2+l2

[(
h2l√

h2+k2
√

h2+k2+l2 cos θ − hk√
h2+k2 sin θ

) 2
+(

k2l√
h2+k2

√
h2+k2+l2 × cos θ + hk√

h2+k2 sin θ
)2

+
(

l
√

h2+k2√
h2+k2+l2 cos θ

)2
]}

/
[
−S11 + 2S0

(hk)2+(hl)2+(lk)2

(h2+k2+l2)
2

] (27)

Variations of Poisson’s ratios in two low index planes, (100) and (111) are shown in Figure 4a,b,
where Poisson’s ratios are 0.400 and 0.228 correspondently, with no direction dependences. However,
ν in (110) plane exhibits conspicuous anisotropic behaviour, see Figure 4c, where the maximum value
0.76 appears along [001] and [001] directions, while the minimum value is −0.14 along the orientations
of [110] and [110]. Poisson’s ratios along two orthogonal symmetric directions in three low index
planes of Ni3Al are listed in Table 6.
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Table 6. Poisson’s ratios along two orthogonal symmetric directions in three low index planes of Ni3Al.

Plane (100) (110) (111)

Direction [010] [001] [110] [001] [110] [112]
Poisson’s ratio 0.400 0.400 −0.140 0.760 0.228 0.228

3.4. Thermodynamic Properties

As a fundamental parameter, the Debye temperature (θD) correlates with many physical properties
of solids, such as specific heat, elastic constant and melting temperature [48]. One of the standard
methods to calculate the Debye temperature can be estimated from the averaged sound velocity (vm)
by Equation (28) [52]

θD =
}
kB

(
3nNAρ

4πM

)1/3
vm (28)

where è is Planck’s constant, kB is Boltzmann’s constant, NA is Avogadro’s number, ρ is the density,
M is the molecular weight and n is the number of atoms in a molecule. The average wave velocity vm

is approximately given by [52]

vm =

[
1
3

(
1
v3

l
+

2
v3

t

)]−1/3

(29)

vl =

(
3B + 4G

3ρ

)1/2
(30)

vt =

(
G
ρ

)1/2
(31)

among them, vl and vt are the longitudinal and transverse elastic wave velocities of the polycrystalline
material that are determined by bulk modulus (B) and shear modulus (G). Based on the calculated
elastic properties, the results are listed in Table 7 accordingly. It can be pointed out that the calculated
Debye temperature is 475.734 K, which is similar to the experimental value 460 K [53], approving the
accuracy of the calculation results in this study.

Table 7. The calculated thermodynamic properties of Ni3Al at zero pressure.

Property ρ, g/cm3 vt, m/s vl, m/s vm, m/s θD, K

Value 7.371 3270.809 6292.559 3660.396 475.734
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4. Conclusions

First principles density functional calculations were applied to extensively explore the mechanical
properties and elastic anisotropies of cubic Ni3Al single crystal. The calculated lattice constants are
found to be in good agreement with experimental data, revealing the effectiveness of the proposed
theoretical models. The calculated bulk modulus, Young’s modulus, shear modulus and Poisson’s
ratio of polycrystalline Ni3Al are 186.724 GPa, 207.378 GPa, 78.857 GPa and 0.315 respectively, which
are consistent with experimental values. The calculated B/G ratio implies that Ni3Al single crystal is a
ductile material. Anisotropies of mechanical properties were studied by computing varied anisotropic
indices and directional dependences of bulk modulus, Young’s modulus, shear modulus and Poisson’s
ratio of monocrystalline Ni3Al. There is no anisotropy for bulk modulus of Ni3Al, while the Young’s
modulus exhibits evident anisotropy, with the largest value 304.241 GPa along the normals of {111}
planes and the minimum value 112.094 GPa along the {100} planes nomals. In addition, the direction
dependence of shear modulus is opposite to that of Young’s modulus, and the shear modulus takes
the maximum value of 123.831 GPa in the <100> directions while the minimum value 51.696 GPa
is assigned along the <111> directions. Poisson’s ratio shows isotropy on the (100) and (111) planes
respectively. In (110) plane, however, Poisson’s ratio depends strongly on the direction, with the
minimum value of only 0.140, while the maximum value is 0.760. Furthermore, the calculated Debye
temperature based on the calculated elastic constants is 475.734 K, which is close to the experimental
value 460K; thus the accuracy of the calculation results is further approved.

Author Contributions: H.Q. and F.L. conceived and designed the research; H.Q., X.L., F.L. and Q.L. performed
the first principles calculation; X.L. wrote the manuscript; Y.Y. and Z.D. reviewed and edited the manuscript. All
authors read and approved the final manuscript.

Funding: This research was funded by the GDAS’ Project of Science and Technology Development
(No. 2018GDASCX-1005), Key Program for International Cooperation of Science and Technology
(No. 2015DFR50310), National Natural Science Foundation of China (No. 51505095) and Science and Technology
Plan Project Public Welfare Fund and Ability Construction Project of Guangdong province (No. 2017A070701026).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wen, Z.; Zhao, Y.; Hou, H.; Tian, J.; Han, P. First-principles study of Ni-Al intermetallic compounds under
various temperature and pressure. Superlattices Microstruct. 2017, 103, 9–18. [CrossRef]

2. Wen, M.; Wang, C.Y. Transition-metal alloying of γ′−Ni3Al: Effects on the ideal uniaxial compressive
strength from first-principles calculations. Phys. Rev. B 2018, 97, 024101. [CrossRef]

3. Goiri, J.G.; Ven, A.V.D. Phase and structural stability in Ni-Al systems from first principles. Phys. Rev. B
2016, 94, 094111. [CrossRef]

4. Jiang, L.; Li, S.; Han, Y. Rotating bending fatigue property of the Ni3Al-based single crystal superalloyIC6SX
at 900 ◦C. Mater. Sci. Eng. 2017, 182, 012058.

5. Jozwik, P.; Polkowski, W.; Bojar, Z. Applications of Ni3Al based intermetallic alloys γ current stage and
potential perceptivities. Materials 2015, 8, 2537–2568. [CrossRef]

6. Hou, H.; Wen, Z.; Zhao, Y.; Fu, L.; Wang, N.; Han, P. First-principles investigations on structural, elastic,
thermodynamic and electronic properties of Ni3X (X=Al, Ga and Ge) under pressure. Intermetallics 2014, 44,
110–115. [CrossRef]

7. Chen, D.; Luo, F.; Lou, X.; Qing, Y.; Zhou, W.; Zhu, D. Comparison of thermal insulation capability between
conventional and nanostructured plasma sprayed ysz coating on Ni3Al substrates. Ceram. Int. 2016, 43,
4324–4329. [CrossRef]

8. Pearson, W.B.; Raynor, G.V. A Handbook of Lattice Spacings and Structures of Metals and Alloys; Elsevier:
Amsterdam, The Netherlands, 2013.

9. Yasuda, H.; Takasugi, T.; Koiwa, M. Elasticity of Ni-based L12-type intermetallic compounds. Acta Metall.
1992, 40, 381–387. [CrossRef]

10. Qin, H.; Luan, X.; Feng, C. Mechanical, thermodynamic and electronic properties of wurtzite and zinc-blende
gan crystals. Materials 2017, 10, 1419. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.spmi.2017.01.010
http://dx.doi.org/10.1103/PhysRevB.97.024101
http://dx.doi.org/10.1103/PhysRevB.94.094111
http://dx.doi.org/10.3390/ma8052537
http://dx.doi.org/10.1016/j.intermet.2013.09.003
http://dx.doi.org/10.1016/j.ceramint.2016.12.076
http://dx.doi.org/10.1016/0956-7151(92)90312-3
http://dx.doi.org/10.3390/ma10121419
http://www.ncbi.nlm.nih.gov/pubmed/29231902


Crystals 2018, 8, 307 10 of 11

11. Liu, D.; Zhu, X.; Qin, J.; Wang, A.; Duan, J.; Gu, T. First-principles study of chemical and topological
short-range orders in the Mg–Si liquid alloys. Metals 2016, 6, 78. [CrossRef]

12. Huang, H.; Zhang, C.; Liu, J.; Li, Y.; Fang, X.; Li, J.; Han, P. First-principles study on the structural stability
and segregation behavior of γ-Fe/Cr2N interface with alloying additives M (M = Mn, V, Ti, Mo, and Ni).
Metals 2016, 6, 156. [CrossRef]

13. Li, X.; Xia, C.; Wang, M.; Wu, Y.; Chen, D. First-principles investigation of structural, electronic and elastic
properties of HFX (X = Os, Ir and Pt) compounds. Metals 2017, 7, 317. [CrossRef]

14. Liu, Y.; Huang, Y.; Xiao, Z.; Reng, X. Study of adsorption of hydrogen on Al, Cu, Mg, Ti surfaces in al alloy
melt via first principles calculation. Metals 2017, 7, 21. [CrossRef]

15. Kim, D.E.; Shang, S.L.; Liu, Z.K. Effects of alloying elements on elastic properties of NiAl by first-principles
calculations. Intermetallics 2010, 18, 1163–1171. [CrossRef]

16. Huang, M.L. First-principles studies of effects of interstitial boron and carbon on the structural, elastic, and
electronic properties of Ni solution and Ni3Al intermetallics. Chin. Phys. B 2016, 25, 107104. [CrossRef]

17. Ai, C.; Li, S.; Zhao, X.; Zhou, J.; Guo, Y.; Sun, Z.; Song, X.; Gong, S. Influence of solidification history on
precipitation behavior of TCP phase in a completely heat-treated Ni3Al based single crystal superalloy
during thermal exposure. J. Alloy Compd. 2017, 722, 740–745. [CrossRef]

18. Jiang, L.; Li, S.; Han, Y. Research on the creep mechanism of a Ni3Al-based single crystal superalloyIC6SX
under 980 ◦C/205MPa. Mater. Sci. Eng. 2017, 182, 012059.

19. Jiang, L.W.; Wu, M.L.; Li, S.S.; Han, Y.F. Rotating bending fatigue behaviour of a Ni3Al-based single crystal
alloy IC6SX at 760 ◦C. Mater. Res. Innov. 2015, 19, S163–S169. [CrossRef]

20. Zhang, J.M.; Zhang, Y.; Xu, K.W. Dependence of stresses and strain energies on grain orientations in FCC
metal films. J. Cryst. Growth 2005, 285, 427–435. [CrossRef]

21. Choi, J.H.; Kang, S.Y.; Dong, N.L. Relationship between deposition and recrystallization textures of copper
and chromium electrodeposits. J. Mater. Sci. 2000, 35, 4055–4066. [CrossRef]

22. Mohan Rao, P.V.; Suryanarayana, S.V.; Satyanarayana Murthy, K.; Nagender Naidu, S.V. The high-
temperature thermal expansion of Ni3Al measured by X-ray diffraction and dilation methods. J. Phys.
Condens. Matter 1989, 1, 5357.

23. Lindan, P.J.D.; Probert, M.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.; Clark, S.J.; Payne, M.C. First-principles
simulation. J. Phys. Condens. Matter 2002, 14, 2717–2744.

24. Monkhorst, H.J. Special points for brillouin-zone integrations. Phys. Rev. B Condens. Matter 1976, 16, 1748–1749.
[CrossRef]

25. Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.
1996, 77, 3865. [CrossRef] [PubMed]

26. Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965,
140, A1133–A1138. [CrossRef]

27. Martin, R.; Nagathil, A. Stability investigation and thermal behavior of a hypothetical silicon nanotube.
J. Mol. Struct. Theochem. 2001, 539, 101–106.

28. Hammer, B. Improved adsorption energetics within density-functional theory using revised Perdew-
Burke-Ernzerh of functionals. Phys. Rev. B 1999, 59, 7413–7421. [CrossRef]

29. Francis, G.P.; Payne, M.C. Finite basis set corrections to total energy pseudopotential calculations. J. Phys.
Condens. Matter 1999, 2, 4395. [CrossRef]

30. Kumar, S.; Jung, J.P. Mechanical and electronic properties of Ag3Sn intermetallic compound in lead free
solders using ab initio atomistic calculation. Mater. Sci. Eng. B 2013, 178, 10–21. [CrossRef]

31. Lee, N.T.S.; Tan, V.B.C.; Lim, K.M. Structural and mechanical properties of Sn-based intermetallics from ab
initio calculations. Appl. Phys. Lett. 2006, 89, 353–489. [CrossRef]

32. Chen, J.; Lai, Y.S. Towards elastic anisotropy and strain-induced void formation in Cu-Sn crystalline phases.
Microelectron. Reliab. 2009, 49, 264–268. [CrossRef]

33. Nguyen-Manh, D.; Pettifor, D.G. Electronic structure, phase stability and elastic moduli of ab transition
metal aluminides. Intermetallics 1999, 7, 1095–1106. [CrossRef]

34. Chen, W.H.; Yu, C.F.; Cheng, H.C.; Lu, S.T. Crystal size and direction dependence of the elastic properties of
Cu3Sn through molecular dynamics simulation and nanoindentation testing. Microelectron. Reliab. 2012, 52,
1699–1710. [CrossRef]

http://dx.doi.org/10.3390/met6040078
http://dx.doi.org/10.3390/met6070156
http://dx.doi.org/10.3390/met7080317
http://dx.doi.org/10.3390/met7010021
http://dx.doi.org/10.1016/j.intermet.2010.02.024
http://dx.doi.org/10.1088/1674-1056/25/10/107104
http://dx.doi.org/10.1016/j.jallcom.2017.06.168
http://dx.doi.org/10.1179/1432891715Z.0000000001566
http://dx.doi.org/10.1016/j.jcrysgro.2005.08.037
http://dx.doi.org/10.1023/A:1004834204320
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://www.ncbi.nlm.nih.gov/pubmed/10062328
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRevB.59.7413
http://dx.doi.org/10.1088/0953-8984/2/19/007
http://dx.doi.org/10.1016/j.mseb.2012.10.003
http://dx.doi.org/10.1063/1.2358832
http://dx.doi.org/10.1016/j.microrel.2008.10.018
http://dx.doi.org/10.1016/S0966-9795(99)00040-0
http://dx.doi.org/10.1016/j.microrel.2012.03.009


Crystals 2018, 8, 307 11 of 11

35. Fatmi, M.; Ghebouli, M.A.; Ghebouli, B.; Chihi, T.; Boucetta, S.; Heiba, Z.K. Study of structural, elastic,
electronic, optical and thermal properties of Ni3Al. Rom. J. Phys. 2011, 56, 935–951.

36. Zhao, W.; Sun, Z.; Gong, S. Synergistic effect of co-alloying elements on site preferences and elastic properties
of Ni3Al: A first-principles study. Intermetallics 2015, 65, 75–80. [CrossRef]

37. Kayser, F.X.; Stassis, C. The elastic constants of Ni3Al at 0 and 23.5 ◦C. Phys. Status Solidi 2010, 64, 335–342.
[CrossRef]

38. Nye, J.F.; Lindsay, R.B. Physical Properties of Crystals: Their Representation by Tensors and Matrices; Oxford
University Press: Oxford, UK, 1984.

39. Verma, J.K.D.; Nag, B.D. On the elastic moduli of a crystal and voigt and reuss relations. J. Phys. Soc. Jpn.
2007, 20, 635–636. [CrossRef]

40. Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. 2002, 65, 349–354. [CrossRef]
41. Prikhodko, S.V.; Yang, H.; Ardell, A.J.; Carnes, J.D. Temperature and composition dependence of the elastic

constants of Ni3Al. Metall. Mater. Trans. A 1999, 30, 2403–2408. [CrossRef]
42. Pugh, S.F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure

metals. Philos. Mag. 2009, 45, 823–843. [CrossRef]
43. Aoki, K.; Izumi, O. On the ductility of the intermetallic compound Ni3Al. Mater. Trans. 2007, 19, 203–210.
44. Liu, Z.T.Y.; Gall, D.; Khare, S.V. Electronic and bonding analysis of hardness in pyrite-type transition-metal

pernitrides. Phys. Rev. B 2014, 90, 134102. [CrossRef]
45. Tian, Y.; Xu, B.; Zhao, Z. Microscopic theory of hardness and design of novel superhard crystals. Int. J.

Refract. Met. Hard Mater. 2012, 33, 93–106. [CrossRef]
46. Ranganathan, S.I.; Ostoja-Starzewski, M. Universal elastic anisotropy index. Phys. Rev. Lett. 2008, 101,

055504. [CrossRef] [PubMed]
47. Vahldiek, F.W.; Mersol, S.A. Anisotropy in Single-Crystal Refractory Compounds; Springer: New York, NY, USA,

1968.
48. Ravindran, P.; Fast, L.; Korzhavyi, P.A.; Johansson, B.; Wills, J.; Eriksson, O. Density functional theory

for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys. 1998, 84,
4891–4904. [CrossRef]

49. Huang, B.; Duan, Y.H.; Hu, W.C.; Sun, Y.; Chen, S. Structural, anisotropic elastic and thermal properties of
Mb (M=Ti, Zr and Hf) monoborides. Ceram. Int. 2015, 41, 6831–6843. [CrossRef]

50. Zhang, J.M.; Zhang, Y.; Xu, K.W.; Ji, V. Young’s modulus surface and poisson’s ratio curve forcubic metals.
J. Phys. Chem. Solids 2007, 68, 503–510. [CrossRef]

51. Wu, Q.; Li, S. Alloying element additions to Ni3Al: Site preferences and effects on elastic properties from
first-principles calculations. Comput. Mater. Sci. 2012, 53, 436–443. [CrossRef]

52. Anderson, O.L. A simplified method for calculating the debye temperature from elastic constants. J. Phys.
Chem. Solids 1963, 24, 909–917. [CrossRef]

53. Ho, J.C.; Liang, R.C.; Dandekar, D.P. Low temperature heat capacities of Ni3Al. J. Appl. Phys. 1986, 59,
1397–1398. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.intermet.2015.06.006
http://dx.doi.org/10.1002/pssa.2210640136
http://dx.doi.org/10.1143/JPSJ.20.635
http://dx.doi.org/10.1088/0370-1298/65/5/307
http://dx.doi.org/10.1007/s11661-999-0248-9
http://dx.doi.org/10.1080/14786440808520496
http://dx.doi.org/10.1103/PhysRevB.90.134102
http://dx.doi.org/10.1016/j.ijrmhm.2012.02.021
http://dx.doi.org/10.1103/PhysRevLett.101.055504
http://www.ncbi.nlm.nih.gov/pubmed/18764407
http://dx.doi.org/10.1063/1.368733
http://dx.doi.org/10.1016/j.ceramint.2015.01.132
http://dx.doi.org/10.1016/j.jpcs.2007.01.025
http://dx.doi.org/10.1016/j.commatsci.2011.09.016
http://dx.doi.org/10.1016/0022-3697(63)90067-2
http://dx.doi.org/10.1063/1.336488
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Computational Methods and Details 
	Results and Discussion 
	Lattice Constants 
	Elastic Properties 
	Elastic Anisotropy 
	Thermodynamic Properties 

	Conclusions 
	References

