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Abstract: The majority of tunable liquid crystal devices are driven by electric fields. The performance
of such devices can be altered by the presence of small amounts of ions in liquid crystals.
Therefore, the understanding of possible sources of ions in liquid crystal materials is very critical to
a broad range of existing and future applications employing liquid crystals. Recently, nanomaterials
in liquid crystals have emerged as a hot research topic, promising for its implementation in the
design of wearable and tunable liquid crystal devices. An analysis of published results revealed that
nanodopants in liquid crystals can act as either ion-capturing agents or ion-generating objects. In this
paper, a recently developed model of contaminated nanomaterials in liquid crystals is analyzed.
Nanoparticle-enabled ion capturing and ion generation regimes in liquid crystals are discussed
within the framework of the proposed model. This model is in very good agreement with existing
experimental results. Practical implications and future research directions are also discussed.

Keywords: liquid crystals; ions; nanomaterials; contaminated nanoparticles; ionic contamination;
ion generation; ion trapping; adsorption/desorption

1. Introduction

A great variety of existing liquid crystal devices relies on reorientation effects when applied
electric fields change the orientation of mesogenic molecules [1]. These devices include liquid crystal
displays (LCD) [2], tunable optical elements, such as filters [3], retarders [3], waveplates [4], lenses [5],
and optical switches [6], to name a few. The performance of the aforementioned devices can be altered
by mobile ions, typically present in liquid crystals, through the screening effect [2,7,8]. In the case of
liquid crystal displays, this screening effect can result in an image sticking, image flickering, reduced
voltage holding ration, and overall slow response of the display [2,8]. That is why it is of a paramount
importance to understand possible sources of ion generation in liquid crystals [7–9].

Sources of ions in liquid crystals can be of different origin [7–10]. Ionic species can be
deliberately added to liquid crystals [10–12]. Such ionic dopants (for example, tetrabutylammonium
tetraphenylboride) in liquid crystals were extensively studied back in the 1970s [11,12]. Small traces of
ions (metal ions and inorganic anions) in liquid crystals can originate during chemical synthesis [13,14].
Alignment layers and glue used to seal liquid crystal cells are also important sources of ions in
liquid crystals [15–18]. External factors, such as electric fields [19–22] and ionizing radiation [23,24],
can enrich liquid crystals with ions. Electrochemical reactions taking place in the near-electrode areas
can also generate ions in liquid crystals [25–27].

Recently, nanomaterials in liquid crystals became a hot research topic with a rapidly increasing
number of publications (more details can be found in numerous review papers [28–38], and collective
monographs [39,40]). Accumulated research data reviewed in paper [41] indicate that nanomaterials
in liquid crystals can alter the behavior of ions in liquid crystals. It was reported by different
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research groups that carbon-based nano-objects [41–44], metal [41,45–48], dielectric [41,49–52],
semiconductor [41,53,54], ferroelectric [41,55–60], and other nanomaterials [41], can change the
concentration of ions in liquid crystals. In many reported cases, nano-objects in liquid crystals can
behave as ion-capturing objects, thus decreasing the concentration of mobile ions in liquid crystals [41].
Interestingly, in many other cases, nanodopants in liquid crystals act as a source of ions, increasing the
concentration of mobile ions [41].

In an attempt to explain different, even seemingly contradictory reported results, a concept
of contaminated nanomaterials was introduced [61]. In short, nanoparticles were considered
contaminated with ions in liquid crystals prior to dispersing them in liquid crystals [61]. This simple
approach, applied to a variety of existing experimental results, shows very good agreement between the
modelled and experimental data [61,62]. By dispersing contaminated nanodopants in liquid crystals,
three different regimes, namely, the ion capturing regime (nanoparticles decrease the concentration of
mobile ions in liquid crystals), the ion-releasing or ion-generation regime (nanomaterials increase the
concentration of mobile ions in liquid crystals), and no change regime, can be achieved [61]. The model
of contaminated nanomaterials was extended to account for several types of dominant ions in liquid
crystals [63,64], for possible temperature-induced effects [65,66], for weakly-ionized ionic species [67],
and for the presence of substrates [68]. In addition, the kinetics of ion-capturing/ion-releasing
processes in liquid crystals doped with nanomaterials [69], and ion-trapping coefficients of
nanodopants [70] were also discussed.

All these results indicate that, generally, we have to consider nanomaterials as a very important
source of ions or ion traps in liquid crystals [71]. The goal of this review paper is to summarize the
most important features of the model of contaminated nanomaterials in liquid crystals [61–72] in the
form of a brief tutorial accessible to a broad scientific audience.

2. Results and Discussion

2.1. Model

Consider nanoparticles in a liquid crystal host. In the most general case, these nanoparticles
can be contaminated with ions prior to dispersing them in liquid crystals. To account for this ionic
contamination of nanoparticles, a contamination factor vPN is introduced [61]. It equals a ratio of
the number of surface sites of nanoparticle occupied by ionic contaminants to the total number of all
surface sites of nanoparticle [61]. Typically, the number of surface sites can be characterized by their
surface density σNP

S . Once contaminated nanoparticles are dispersed in liquid crystals, some fraction of
ions can be released from their surface, whereas some fraction of ions present in liquid crystals can be
captured by nanoparticles. To simplify the discussion, consider the case of fully ionized ionic species
characterized by their volume concentration, n = n+ = n−. In this case, the competition between
ion-capturing and ion-releasing processes will result in the change of the concentration of mobile ions
in liquid crystals doped with nanoparticles. In many practical cases, the ion-releasing process can be
associated with desorption of ions from nanoparticles, and the ion-capturing process can be described
as adsorption of ions onto the surface of nanoparticles. As a result, the following rate Equation (1) can
be applied [69]:

dn
dt

= −kNP
a nNP ANPσNP

S n(1−ΘNP) + kNP
d nNP ANPσNP

S ΘNP (1)

In this equation, n is the concentration of mobile ions in liquid crystals doped with nanoparticles;
t denotes time; nNP is the volume concentration of nanoparticles in liquid crystals; σNP

S is the
aforementioned surface density of all adsorption sites of a single nanoparticle; ANP is its surface
area (for simplicity, spherical nanoparticles of a radius RNP are assumed); ΘNP is the fractional surface
coverage of nanoparticles; kNP

a is the adsorption rate constant; and kNP
d is the desorption rate constant.

In the majority of the reported experimental studies, weight concentration of nanoparticles ωNP is used



Crystals 2018, 8, 264 3 of 14

instead of their volume concentration nNP. They are related as nNP ≈ ωNP
ρLC
ρNP

1
VNP

, where ρLC(ρNP) is
the density of liquid crystals (nanoparticles) and VNP is the volume of a single nanoparticle.

The first term of Equation (1) accounts for the ion-capturing process, whereas the second term
originates from the ion-releasing phenomenon. This equation should be solved considering the
conservation law of the total number of ions (Equation (2)):

n0 + nNP ANPσNP
S vNP = n + nNP ANPσNP

S ΘNP (2)

In Equation (2), n0 is the initial concentration of mobile ions in liquid crystals (prior to doping
them with nanomaterials); and vNP is the aforementioned contamination factor of nanoparticles.
It accounts for possible contamination of nanodopants with ions [61].

It should be stressed that Equation (1) is an approximation which can be applied to liquid crystals
doped with nanoparticles with certain restrictions discussed in recent papers [64,67,72]. In a general
case, a more rigorous approach based on Boltzmann–Poisson equation should be considered [73–76].

Equations (1) and (2) can also be generalized to account for several types of dominant ions
in liquid crystals [63,64]. In the simplest case of two dominant types of fully ionized ionic species
characterized by their volume concentrations, n1 = n1

+ = n1
− and n2 = n2

+ = n2
−, the system of

Equations (3) and (4) can be used (j = 1, 2; the meaning of physical quantities entering these equations
are similar to that of Equations (1) and (2) [61,63,64]):

dnj

dt
= −kNP

aj njnNP ANPσNP
Sj (1−ΘNP1 −ΘNP2) + kNP

dj nNP ANPσNP
Sj ΘNPj (3)

n0j + nNPσNP
Sj ANPvNPj = nj + nNPσNP

Sj ANPΘNPj (4)

2.2. Kinetics of Ion-Capturing and Ion-Releasing Processes

The kinetics of ion-capturing and ion-releasing processes in liquid crystals doped with
nanoparticles was analyzed in a recent paper [69]. This analysis was based on Equations (1) and (2),
and the results are shown in Figure 1 [69].

According to Figure 1a, depending on the level of ionic contamination of nanoparticles,
three different regimes can be achieved: the ion releasing regime, dn/dt > 0 (dashed–dotted–dotted,
short-dashed, and short-dotted curves); ion capturing regime, dn/dt < 0 (dotted, dashed,
and dashed–dotted curves); and no change regime, dn/dt ≡ 0 (solid curve). The ionic contamination of
nanoparticles quantified by the contamination factor vNP governs the switching between these regimes.
The ion releasing regime is observed if vNP > vC

NP
, the ion capturing regime holds true if vNP < vC

NP
,

and no change regime is reached if vNP = vC
NP

, where vC
NP

is the critical contamination factor
of nanoparticles. It is defined as vC

NP
= n0KNP

1+n0KNP
where KNP = kNP

a /kNP
d [69]. Figure 1a also indicates that

both ion-capturing and ion-releasing regimes depend on the concentration of nanoparticles: they are
more pronounced if higher concentrations are used.
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short-dashed, and short-dotted curves); ion capturing regime, 0dn
dt
  (dotted, dashed, and 

Figure 1. (a) The volume concentration of mobile ions n versus time calculated using different values
of the weight concentration of nanoparticles ωNP and their contamination factor vNP (vNP = 10−4

(dotted, dashed, and dotted–dashed curves); vNP = 3 × 10−4 (solid curve); vNP = 5 × 10−4

(dashed–dotted–dotted, short-dashed, and short-dotted curves). The radius of nanoparticles RNP is 5 nm.
(b) The time constant τNP as a function of the weight concentration of nanoparticles ωNP calculated at
different values of the nanoparticle radius RNP (RNP = 5 nm (dashed–dotted curve); RNP = 10 nm
(dashed curve); RNP = 25 nm (dotted curve); RNP = 50 nm (solid curve)). Other parameters used
in simulations: KNP = 10−23 m3, kNP

d = 10−3 s−1, σNP
S = 0.8 × 1018 m−2, n0 = 3 × 1019 m−3,

ρNP/ρLC = 3.9. Reproduced from [69], under the Creative Commons Attribution License.

The time constant τNP characterizing the kinetics of ion-capturing/ion-releasing process shown
in Figure 1a can be defined through Equation (5):

n(τNP)− n0 = (1− 1/e)(n∞ − n0) (5)

where n0 = n(t = 0) and n∞ = n(t→ ∞) . In the regime of low surface coverage (ΘNP � 1) this time
constant is given by Equation (6):

τNP = 1/kNP
d (KNPnNP ANPσNP

S + 1) (6)

In the case of spherical nanoparticles of radius RNP, the dependence of the time constant
on the weight concentration of nanodopants is shown in Figure 1b. As can be seen, by using
smaller nanoparticles and their higher concentrations, one can decrease the time needed to achieve
the steady-state. However, it should be noted that this decrease is diffusion-limited. In other words,
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Equation (6) is correct as long as τNP � τD. The characteristic time τD can be estimated by means
of Equation (7):

τD =
l2
D

6D
≈ 1

6D 3√n2
(7)

where lD is the average distance between mobile ions in liquid crystals, and D is the diffusion coefficient
of ions. By using typical values (n ≈ 1020 m−3 and D = 10

−12
m2/s [13]), this time can be estimated as

τD ≈ 8× 10−3 s. By comparing it to data shown in Figure 1b it can be seen that, indeed, τNP � τD.

2.3. Steady-State Regime

In the majority of the reported experimental studies, steady-state measurements are performed
( dn

dt = 0). In regard to the concentration of mobile ions in liquid crystals doped with nanomaterials,
an analysis of possible regimes achieved in such systems was done in paper [61]. Three regimes,
namely, the ion-capturing regime (solid curve), ion-releasing regime (dashed curve), and no change
regime (dotted curve), are shown in Figure 2, where the concentration of mobile ions in liquid crystals
is plotted as a function of the weight concentration of nanoparticles.
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Figure 2. The volume concentration of mobile ions n in liquid crystals versus the weight concentration of
nanoparticles ωNP calculated at different values of their contamination factor vNP (vNP = 10−4 (solid curve);
vNP = 3× 10−4 (dotted curve); and vNP = 5× 10−4 (dashed curve)). The radius of nanoparticles
RNP is 10 nm. Other parameters used in simulations: KNP = 10−23 m3, σNP

S = 0.8 × 1018 m−2,
n0 = 3 × 1019 m−3, ρNP/ρLC = 3.9. This figure is also posted on Nanowerk Spotlight [77].

In the case of ion capturing regime, the concentration of mobile ions in liquid crystals decreases as
the weight concentration of nanodopants goes up (dn/dωNP < 0). This regime is achieved if νNP < νC

NP.
The ion releasing regime is characterized by the increase in the concentration of mobile ions with
an increase in the weight concentration of nanoparticles (dn/dωNP > 0). It is observed if νNP > νC

NP.
The concentration of mobile ions in liquid crystals doped with nanoparticles does not change if
νNP = νC

NP. Switching between these three different regimes can be achieved by changing the level of
ionic contamination of nanomaterials νNP, the ionic purity of liquid crystals (an initial concentration of
mobile ions n0), and by varying materials used in experiments (constant KNP = kNP

a /kNP
d ) as shown

in Table 1 (this table is created using similar table published in paper [61]).
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Table 1. Ion-capturing, ion-releasing, and no change regimes in liquid crystals doped with
contaminated nanoparticles [61].

Physical Parameters Ion-Capturing
Regime No Change Regime Ion-Releasing Regime

Contamination level of
nanomaterials, νNP

νNP < KNPn0
1+KNPn0

νNP =
KNPn0

1+KNPn0
νNP > KNPn0

1+KNPn0

Initial concentration of
ions in liquid crystals, n0

n0 > 1
KNP

(
1

νNP
−1

) n0 = 1
KNP

(
1

νNP
−1

) n0 < 1
KNP

(
1

νNP
−1

)
Constant, KNP

KNP > 1
n0

(
1

νNP
−1

) KNP = 1
n0

(
1

νNP
−1

) KNP < 1
n0

(
1

νNP
−1

)

2.4. Temperature-Induced Effects

Constants describing ion-capturing (kNP
a ) and ion-releasing (kNP

d ) processes in liquid crystals
doped with nanomaterials are temperature-dependent [65,66]. By approximating this temperature
dependence through Equations (8) and (9), temperature-induced ionic effects in liquid crystals doped
with nanoparticles can be analyzed [65,66].

kNP
a = k0

ae−Ea/kT (8)

kNP
d = k0

de−Ed/kT (9)

where Ea is the adsorption activation energy; Ed is the desorption activation energy; k0
a and k0

d are
pre-exponential factors; k = 1.38× 10−23 J/K; and T is temperature [65,66].

By applying Equations (8) and (9), constant KNP can be written as Expression (10):

KNP =
kNP

a

kNP
d

= KNP
0 e

∆E
kT (10)

In this equation, KNP
0 = k0

a/k0
d is the pre-exponential factor, and ∆E = Ed − Ea [65,66].

Temperature dependence KNP(T) (Equation (10)) can result in temperature-induced release of
ions experimentally observed in liquid crystals doped with nanoparticles [65]. Typical dependence
calculated using Equations (1), (2), (10) is shown in Figure 3.
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Figure 3. The volume concentration of mobile ions n in liquid crystals doped with nanoparticles
plotted as a function of temperature for two cases: (a) 100% pure nanoparticles in liquid crystals;
and (b) contaminated nanoparticles in liquid crystals. Physical parameters used in simulations:
vNP = 0 (a) and vNP = 4 × 10−4 (b); KNP(T = 293K) = 10−23 m3; ∆E = +0.3 eV;
σNP

S = 0.8 × 1018 m−2; n0 = 3 × 1019 m−3; ρNP/ρLC = 3.9. The radius of nanoparticles RNP

is 10 nm. The weight concentration of nanoparticles is 0.01% (dashed curve) and 0.1% (dotted curve).
This figure is also posted on Nanowerk Spotlight [78].

Figure 3a illustrates the so-called temperature-induced release of ions in liquid crystals doped
with nanoparticles. The concentration of mobile ions in liquid crystals doped with nanomaterials
increases as its temperature goes up. In the case of 100% pure nanodopants, this increase saturates
at higher temperatures, approaching an initial concentration of ions in liquid crystals (this means
that at a high enough temperature, nanoparticles lose their ion-capturing properties, see Figure 3a).
It should be stressed that if 100% pure nanoparticles are mixed with liquid crystals, the concentration
of mobile ions in such systems is always less or equal to the initial concentration: n(T) ≤ n0. In other
words, the ion-capturing regime is observed (and it approaches the “no change” regime ( n(T)→ n0 )
at elevated temperatures, Figure 3a). On the contrary, the n(T) dependence of liquid crystals, doped
with contaminated nanomaterials, exhibits some interesting features (Figure 3b). There are two distinct
regions (Figure 3b). At temperatures T < TC, the concentration of mobile ions in liquid crystals
doped with nanomaterials is less than the concentration of ions in pristine (without nanodopants)
liquid crystals (n(T) < n0), which corresponds to the ion-capturing regime. Above this temperature
(T > TC), an opposite inequality holds true n(T) > n0, which corresponds to the ion-releasing regime
(Figure 3b). No change regime corresponds to temperature TC. Temperature TC can be found using
Equation (11) [65]:

n0 =
νNP

KNP(TC)(1− νNP)
(11)

Thus, a temperature-induced switching between ion-capturing and ion-releasing regimes can be
achieved in liquid crystals doped with contaminated nanomaterials [65].
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Temperature-induced release of ions is observed in systems characterized by positive values of
their parameter, ∆E > 0. Interestingly, liquid crystals doped with nanoparticles and characterized
by negative values of this parameter (∆E < 0) should exhibit an opposite effect, namely,
temperature-induced capturing of ions [66]. This unusual effect was analyzed in paper [66].

3. Case Studies: A Brief Survey

The proposed model of contaminated nanoparticles in liquid crystals [61] was successfully applied
to existing experimental data [62,71]. Table 2 provides a summary of the observed experimental effects
and physical parameters used in calculations to achieve a very good agreement between the model
and experiments.

Table 2. Case studies: reported experimental data and physical parameters of the model.

Materials Reported Effects Physical Parameters

Anatase (TiO2) nanoparticles in
nematic liquid crystals (E44) Ion-capturing effect [49]

KNP = 10−23 m3; νNP = 1.5× 10−4;
σNP

S = 0.8× 1018 m−2; RNP = 5 nm;
ρNP/ρLC = 3.9 [62]

Carbon nanotubes (CNT) in nematic
liquid crystals (E7) Ion-capturing effect [42]

KNP = 0.7× 10−23 m3; νNP = 9.5× 10−6;
σNP

S = 1018 m−2; RCNT = 2.5 nm;
LCNT = 500 nm; ρNP/ρLC = 1.6 [62]

Diamond nanoparticles in nematic
liquid crystals (E7) Ion-capturing effect [43]

KNP = 10−22 m3; νNP = 10−2;
σNP

S = 1.25× 1017 m−2; RNP = 5 nm;
ρNP/ρLC = 3.3 [62]

Diamond nanoparticles in nematic
liquid crystals (E7) Ion-releasing effect [43]

KNP = 0.8× 10−25 m3; νNP = 0.25;
σNP

S = 1.25× 1017 m−2; RNP = 5 nm;
ρNP/ρLC = 3.3 [62]

Graphene nano-flakes (GNF) in
nematic liquid crystals (8OCB) Ion-capturing effect [79]

KNP = 0.8× 10−23 m3; νNP = 8.5× 10−6;
σNP

S = 0.33× 1018 m−2; RGNF = 5 nm;
LGNF = 10 nm; ρNP/ρLC = 1.8 [62]

Ferroelectric nanoparticles (LiNbO3)
in liquid crystals Ion-capturing effect [55]

KNP = 7× 10−23 m3; νNP = 0.1075;
σNP

S = 5× 1018 m−2; RNP = 12.5 nm;
ρNP/ρLC = 4.65 [62]

Ferroelectric particles (BaTiO3) in
nematic liquid crystals Ion-capturing effect [57]

KNP = 4× 10−20 m3; νNP = 0.3;
σNP

S = 1019 m−2; RNP = 1000 nm;
ρNP/ρLC = 6.02 [62]

Ferroelectric nanoparticles (BaTiO3)
in nematic liquid crystals (E44) Temperature-induced release of ions [58]

νNP = 0; KNP
0 = 1.93× 10−30 m3; ∆E = 0.4 eV;

σNP
S = 5× 1018 m−2; RNP = 20 nm;

ρNP/ρLC = 6.02 [65]

TiO2 nanoparticles in nematic
liquid crystals (ZhK1282) Ion-releasing effect [51]

νNP = 4.35× 10−4; KNP = 1.6× 10−23 m3;
σNP

S = 0.8 × 1018 m−2; RNP = 25 nm;
ρNP/ρLC = 3.9 [71]

TiO2 nanoparticles in nematic
liquid crystals (ZhK1282) Ion-capturing effect [51]

νNP = 0; KNP = 3.65× 10−24 m3;
σNP

S = 2× 1018 m−2; RNP = 25 nm;
ρNP/ρLC = 3.9 [71]

CdSe/ZnS core/shell nanoparticles in
nematic liquid crystals (ZhK1289) Ion-releasing effect [53]

νNP = 3.379× 10−3; KNP = 10−26 m3;
σNP

S = 1018 m−2; RNP = 3 nm;
ρNP/ρLC = 5.091 [71]

Cu7PS6 nanoparticles in nematic
liquid crystals (6CB) Ion releasing effect [52]

νNP = 0.3075; KNP = 10−23 m3;
σNP

S = 7× 1018 m−2; RNP = 58.5 nm;
ρNP/ρLC = 4.907 [71]

4. Case Study: Non-Monotonous Dependence n(ωNP)

As was already mentioned, the proposed model of contaminated nanomaterials in liquid crystals
can also account for the case of several types of dominant ions, n1 = n+

1 = n−1 and n2 = n+
2 = n−2

(Equations (3) and (4)). In this section, these equations are applied to analyze reported experimental
data for nematic liquid crystals (E7) doped with silica nanoparticles (SN R812) [80]. In paper [80],
the measured ion density exhibited non-monotonous dependence on the concentration of nanoparticles.
Upon increasing the concentration of silica nanoparticles in liquid crystals, the measured ion density
decreased and reached its minimum value. Further increase in the concentration of nanoparticles
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resulted in the increase in the ion density. This non-monotonous behavior can be modeled using
Equations (3) and (4). The results are shown in Figure 4.Crystals 2018, 8, x FOR PEER REVIEW  11 of 17 
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Figure 4. The total ion density of mobile ions in liquid crystals doped with silica nanoparticles
as a function of their weight concentration ωNP: (a) n(ωNP) = n1(ωNP) + n2(ωNP); (b) n1(ωNP)

(solid curve) and n2(ωNP) (dashed curve). Reported experimental data points [80] are represented
by circles. A blue curve shows theoretical fit according to Equations (3) and (4). Fitting parameters:
n01 = 6.4× 1020 m−3; KNP1 = 6.25× 10−25 m3; σNP

S1 = 2.5× 1018 m−2; vNP1 = 0; n02 = 0 m−3;
KNP2 = 10−27 m3; σNP

S2 = 2.5× 1018 m−2; vNP2 = 5.75× 10−5; RNP = 3.5 nm; ρNP/ρLC = 2.4.

A non-monotonous behavior n(ωNP), shown in Figure 4a, can be explained in the following way.
Pristine liquid crystals are characterized by a single type of dominant ions n1. Silica nanoparticles,
prior to dispersing them in liquid crystals, are contaminated with ions n2. Once silica nanoparticles
are dispersed in liquid crystals, ions n1 are adsorbed on the surface of nanoparticles. As a result,
the concentration of ions n1 decreases with the increase in the concentration of nanoparticles
ωNP (Figure 4b, solid curve). At the same time, silica nanoparticles can release ions n2 into the
liquid crystal bulk. As a result, the concentration of these ions in liquid crystals increases as the
concentration of nanoparticles goes up (Figure 4b, dashed curve). The combined result of ion-capturing
effects (n1(ωNP)) and ion-releasing effect (n2(ωNP)) leads to the observed non-monotonous behavior
n(ωNP) = n1(ωNP) + n2(ωNP) (Figure 4a).

Another very interesting result reported in paper [80] is the effect of a high-voltage pulse
treatment on the concentration of ions in liquid crystals doped with silica nanoparticles. The model
discussed in this review cannot model the kinetics of high voltage-induced effects in liquid crystals
doped with nanoparticles. Indeed, in Equations (3) and (4), material-dependent coefficients are
considered constant. However, once the treatment of liquid crystal/nanoparticle system with high
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voltage is completed, Equations (3) and (4) can still be used. It can be reasonably assumed that
the applied high electric field can change some material parameters of liquid crystals doped with
nanoparticles (KNP1 and KNP2). In addition, the applied electric field can change the contamination
factor of nanoparticles vNP2. Additional studies are needed to understand physical and chemical
mechanisms involved in these processes. By applying Equations (3) and (4), a good agreement between
reported experimental data [80] and the proposed model of contaminated nanomaterials can be
achieved (Figure 5).
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Figure 5. The total ion density of mobile ions in liquid crystals doped with silica nanoparticles
as a function of their weight concentration ωNP: (a) n(ωNP) = n1(ωNP) + n2(ωNP); (b) n1(ωNP)

(solid curve) and n2(ωNP) (dashed curve). Reported experimental data points [80] are represented
by circles. A blue curve shows theoretical fit according to Equations (3) and (4). Fitting parameters:
n01 = 5.59× 1020 m−3; KNP1 = 1.1× 10−23 m3; σNP

S1 = 2.5× 1018 m−2; vNP1 = 0; n02 = 0 m−3;
KNP2 = 3× 10−26 m3; σNP

S2 = 2.5× 1018 m−2; vNP2 = 2× 10−6; RNP = 3.5 nm; ρNP/ρLC = 2.4.

5. Conclusions

Existing experimental results (Table 2) unambiguously show that nanomaterials in liquid crystals
can affect the concentration of ions in different ways. The dispersion of nanomaterials in liquid
crystals can result in the ion capturing effect, ion releasing effect, or the combination of them.
Therefore, nanomaterials in liquid crystals should be considered as new sources of ions or as ion
trapping objects. The model of contaminated nanomaterials in liquid crystals reviewed in this paper can
predict both ion capturing and ion releasing (or ion generation) regimes (Figures 1–3). Moreover, it also
predicts a new effect, namely temperature-induced ion-capturing effect [66]. This model is in a very
good agreement with reported experimental data (Table 2).
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So far, the origin of ionic contamination of nanomaterials is poorly understood. In many practical
cases, this contamination can originate from particular chemical procedures utilized during chemical
synthesis of nano-objects. Ionic contaminants can also originate from the contact of nanomaterials
with environment and due to external factors, such as ionizing radiation, high electric fields, excessive
heating, and chemical degradation. The aforementioned possible causes of ionic contamination
of nanomaterials are caused by external factors and, therefore, are extrinsic in nature. This type
of ionic contamination is typically characterized by relatively low values of the contamination
factor. It can be reduced or even eliminated by improving physical/chemical procedures used to
produce, storage, and handle nanomaterials. There is also an intrinsic source of ionic contamination
of nanoparticles. For example, self-dissociating nanomaterials can generate ions because of their
chemical/physical composition. In this case, the contamination factor of nanoparticles is relatively
high, and cannot be reduced by improving the purification procedure. Interestingly, both types of ionic
contamination (intrinsic and extrinsic) can be successfully analyzed by the model reviewed in this paper.
Further studies are needed to understand mechanisms of ionic contamination of nanomaterials and
their impact on the properties of liquid crystals.
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