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Abstract: A homotrinuclear ZnII bis(salamo) coordination compound, [LZn3(OAc)2(H2O)] of a
new bis(salamo)-like ligand, has been synthesized and structurally characterized using elemental
analyses, IR, UV-Vis and fluorescent spectra, and Hirshfeld surface analysis. Hirshfeld surface
analyses and X-ray crystallography revealed that complexation between ZnII acetate dihydrate
and the ligand H4L afforded a 3:1 (ZnII:L) type coordination compound. Moreover, the X-ray
crystal structure analysis demonstrated that two µ2-acetate anions bridge three ZnII atoms in a
µ2-fashion forming a homo-trinuclear structure. There were two kinds of ZnII atoms coordination
geometries (strongly distorted square pyramidal (Zn1) and distorted trigonal bipyramidal (Zn2
and Zn3)) in the ZnII coordination compound. In addition, a 3D supra-molecular structure was
constructed by intermolecular C-H···π and π···π interactions in the ZnII coordination compound.
Most importantly, the fluorescent and antimicrobial properties of H4L and its ZnII coordination
compound were investigated.

Keywords: ZnII coordination compound; crystal structure; supra-molecular interaction; fluorescence
property; antimicrobial activity

1. Introduction

In recent years, a great number of 3D metal coordination compounds with salen-like N2O2 ligands
have been widely investigated [1–8]. More recently, salamo-like N2O2 chelating ligands and their
analogues, using an O-alkyloxime (–CH=N–O–(CH2)n–O–N=CH–), have been explored [9–15]. Compared
to salen-like coordination compounds, salamo-type coordination compounds are significantly more
stable. The latter, salamo-like ligands, are more attractive candidates for metal-binding sites to be
involved into metallohosts. Salamo-like ligands could coordinate to different transition metal ions in a
tetradentate N2O2-type fashion to form stable metal coordination compounds, some of which are often
as organic reaction catalysts [16], metal enzyme reaction center models [17,18], nonlinear optical and
magnetic molecular materials [19–27], supramolecular architectures and host-guest chemistries [28–34],
electrochemistries [35–37] and so on.

To utilize salamo units to control guest recognition, a better strategy distinguished from the
macrocyclization has been proposed [38,39]. Thus, we designed and prepared a new C-shaped
bis(salamo)-like chelating ligand that contained a O4 site besides the two N2O2 sites, to control
guest binding via using the coordination-triggered conformational changes. When the ligand is
metalated, our O4 oxygen atoms are located in an acyclic, C-shaped arrangement. Moreover, the guest
binding could be more effective owing to the negatively charged phenolates of the metal coordination
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compounds having higher coordination ability to other metals than their phenol form. Interestingly,
some studies have been devoted to research mono-, multi-, homo- or heteromultinuclear metal
coordination compounds bearing salamo-type ligands or their derivatives [40,41].

Herein, on the basis of our previous studies [42–46], we have studied cooperative formation of
a trinuclear ZnII bis(salamo)-like coordination compound, instead of the dinuclear bis(salamo)-like
coordination compound reported before [47], via the metalation of bis(salamo)-like ligand H4L. IR,
UV-Vis titration and X-ray crystallography clearly exhibited that complexation between ZnII acetate
dihydrate and H4L can form a 3:1 [Zn3L]2+ coordination compound. Meanwhile, the fluorescent and
antibacterial properties of H4L and its ZnII coordination compound were also studied.

2. Experimental Section

2.1. Materials and Methods

2-Hydroxy-4-methoxybenzaldehyde (99%), 1,2-dibromopropane, 1,2-dimethoxybenzene,
TMEDA, n-butyllithium, boron tribromide were bought from Alfa Aesar and used without further
purification. Other solvents and reagents (DMF: N,N-dimethylformamide) were analytical grade
reagents from Tianjin Chemical Reagent Factory.

C, H and N analyses were gained using a GmbH VariuoEL V3.00 automatic elemental analysis
instrument (Elementar, Berlin, Germany). Elemental analysis for ZnII was measured with an IRIS
ER/S-WP–1 ICP atomic emission spectrometer (Elementar, Berlin, Germany). Melting points were
obtained by the use of a microscopic melting point apparatus made by Beijing Taike Instrument
Company Limited and were uncorrected. IR spectra (400–4000 cm−1) were recorded on a Vertex 70
FT-IR spectrophotometer (Bruker, Billerica, MA, USA), with samples prepared as KBr pellets. UV-Vis
absorption spectra were recorded on a Shimadzu UV-3900 spectrometer (Shimadzu, Tokyo, Japan).
1H NMR spectra were determined by German Bruker AVANCE DRX-400/600 spectroscopy. Single
crystal X-ray structure diffraction for the ZnII coordination compound was carried out a Bruker Smart
Apex CCD diffractometer. Fluorescent spectra were recorded on a F-7000 FL spectrophotometer.

2.2. Synthesis of the Ligand H4L

A synthetic route to the new ligand H4L is depicted in Scheme 1. Preparations of 2,3-
dihydroxybenzene-1,4-dicarbaldehyde (1) and 2-[O-(1-ethyloxyamide)] oxime-5-methoxyphenol
(2) were in accordance with the literature [48–52]. A ethanol solution (15 mL) of
2-[O-(1-ethyloxyamide)]oxime-5-methoxyphenol (452.46 mg, 2 mmol) was added dropwise to
a ethanol solution (20 mL) of 2,3-dihydroxybenzene-1,4-dicarbaldehyde (166.13 mg, 1 mmol) under
55 ◦C, the mixture was heated to reflux and kept refluxing for 6 h, and then faint yellow solid of
the bis(salamo)-like tetraoxime ligand (H4L) was obtained. After the solution was allowed to stand
overnight at room temperature, precipitates were collected on a suction filter to afford H4L. Yield:
346.20 mg (65.5%). m.p. 148–149 ◦C. Anal. calcd. for C28H30N4O10 (%): C, 57.73; H, 5.19; N, 9.62.
Found (%): C, 58.92; H, 5.44; N, 9.47. 1H NMR (500 MHz, CDCl) δ 9.91 (s, 2H, OH), 9.66 (s, 2H, OH),
8.23 (s, 2H, CH=N), 8.18 (s, 2H, CH=N), 7.06 (s, 2H, ArH), 6.77 (s, 2H, ArH), 6.49 (s, 2H, ArH), 6.47 (dd,
J = 8.5, 2.6 Hz, 2H, ArH), 4.50 (s, 4H, CH2), 4.45 (s, 4H, CH2), 3.81 (s, 6H, CH3).

2.3. Synthesis of the ZnII Coordination Compound

A solution of ZnII acetate dihydrate (6.58 mg, 0.03 mmol) in methanol (1 mL) was added dropwise
to a solution of H4L (5.88 mg, 0.01 mmol) in dichloromethane (3 mL), the color of the mixture turned
to yellow immediately, the proper solvent ratio (methanol:dichloromethane = 1:3) was of utmost
importance. After 0.5 h of stirring, the resulting yellow solution was filtered, and then left undisturbed.
When the solution was partially evaporated, several yellow block-like single crystals suitable for X-ray
crystallography were gained. Yield: 54% (4.92 mg). Anal. calcd. for C32H34Zn3N4O15 (%): C, 42.20; H,
3.76; N, 6.15; Zn, 21.54. Found (%): C, 42.41; H, 3.85; N, 6.02; Zn, 21.84.
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Scheme 1. Synthesis route of H4L.

2.4. X-ray Crystallography

The single crystal of the ZnII coordination compound, with approximate dimensions of
0.38× 0.40× 0.48 mm was mounted on goniometer head of Bruker Smart 1000 diffractometer equipped
with Apex CCD area detector. The diffraction data were collected using a graphite mono-chromated
Mo Kα radiation (λ = 0.71073 Å) at 298(2) K. The structure was solved by using the program SHELXS-97
and Fourier difference techniques, and refined by full-matrix least-squares method on F2 using
SHELXL-2017. The structure contained large void, and the solvent and the positive or negative
ions located in the void couldn’t be identified because it was highly disordered and had so small
residual peak. Therefore, SQUEEZE in PLATON program was performed to remove the highly
disordered solvent and ions. (Solvent Accessible Volume = 1762.9, Electrons Found in S.A.V. = 104.2).
The nonhydrogen atoms were refined anisotropically. Hydrogen atoms were added in geometrical
positions. Details of the data collection and refinements of the ZnII coordination compound are given
in Table 1.

Table 1. Crystallographic data and collection parameters for the ZnII coordination compound.

Empirical Formula C32H34Zn3N4O15

Formula weight 910.74
Temperature, K 298(2)
Wavelength, Å 0.71073
Crystal system Monoclinic

Space group C 2/c
Cell dimensions, (Å, deg) a = 26.702(2) b = 21.6859(19), c = 14.8470(13), β = 101.253(2)

Volume, Å3 8432.0(13)
Z 8

Density (calculated), mg/m3 1.435
Absorption coefficient, mm−1 1.759

F(000) 3712.0
Index ranges −28≤ h≤ 31, −22 ≤ k ≤25, −17≤ l ≤16

Reflections collected 20,924/7426 [R(int) = 0.0496]
Independent reflections 5335

Data/restraints/parameters 7426/36/514
Goodness of fit indicator 0.944

R [I > 2σ(I)] R1 = 0.0366, wR2 = 0.0903
Largest diff. peak and hole, e·Å−3 0.357 and −0.382

R1 = Σ‖Fo| − |Fc‖/Σ|Fo|; wR2 = [Σw(Fo
2 − Fc

2)2/Σw(Fo
2)2]1/2, w = [σ2(Fo

2) + (0.0784P)2 + 1.3233P]−1,
where P = (Fo

2 + 2Fc
2)/3; GOF = [Σw(Fo

2 − Fc
2)2/nobs-nparam)]1/2.

Supplementary crystallographic data have been deposited at Cambridge Crystallographic Data
Centre (CCDC: 890890). Copies of the data could be gained free of charge on application to CCDC,
12 Union Road, Cambridge CB21EZ, UK (Telephone: +44-01223-762910; Fax: +44-1223-336033; E-mail:
deposit@ccdc.cam.ac.uk). The data could be also gained free of charge at www.ccdc.cam.ac.uk/conts/
retrieving.html.

www.ccdc.cam.ac.uk/conts/retrieving.html
www.ccdc.cam.ac.uk/conts/retrieving.html
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3. Results and Discussion

3.1. IR Spectra

As depicted in Figure 1, the IR spectra of H4L and its ZnII coordination compound exhibited
different bands in the 4000–500 cm−1 region. A typical C=N stretching band of H4L appeared at
1626 cm−1, however that of the ZnII coordination compound was observed at 1597 cm−1, indicating
that the oxime nitrogen atoms are coordinated to the ZnII atoms [53–57].
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Figure 1. IR spectra of the ligand H4L and its ZnII coordination compound.

Meanwhile, the free ligand H4L displayed a typical Ar–O stretching frequency at 1265 cm−1,
while the Ar–O stretching frequency of the ZnII coordination compound was observed at 1258 cm−1.
This frequency was shifted to high frequency, which can be an evidence of formation of the ZnII–O
bonds between the ZnII atoms and the phenolic oxygen atoms [58–60].

3.2. UV-Vis Absorption Spectra

UV-Vis absorption spectra of the ligand H4L and its ZnII coordination compound were measured
in 5 × 10−5 mol/L DMF solution (Figure 2).

In the UV-Vis titration experiment of the ZnII coordination compound, the spectroscopic titration
clearly showed the reaction stoichiometry ratio to be 3:1. Absorption spectra of the ZnII coordination
compound were clearly different from that of H4L upon complexation. The absorption maxima at
ca. 278 and 313 nm were shifted bathochromically upon coordination to the ZnII atoms, and a new
absorption maxima at ca. 444 nm was absent in the spectrum of the ZnII coordination compound,
which should be assigned to LMCT [61–65].
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Figure 2. Absorption spectra of H4L in DMF with the increase of ZnII. Inset: the absorbance at 444 nm
varied as a function of [Zn2+]/[H4L]. [H4L] = 5 × 10−5 mol/L.

3.3. Crystal Structure Description

From a 3:1 mixture of ZnII acetate dihydrate and the ligand H4L, a yellow crystalline coordination
compound was obtained. X-ray crystallography obviously displayed that the ZnII coordination
compound included one completely deprotonated ligand (L)4− unit, three ZnII atoms, two µ2-acetate
ligands, and one coordinated water molecule (Figure 3).

Two of the three ZnII (Zn2 and Zn3) atoms sat in the salamo N2O2 moieties, while Zn1 was located
in the central O4 site. Two oxygen (O1 and O2) atoms bridged Zn1-Zn2 and Zn1-Zn3, respectively.
In addition, two µ2-acetato ligands linked Zn1 to Zn2 and Zn1 to Zn3 stabilizing the homotrinuclear
structure. The central ZnII (Zn1) atom was found to have an aqua molecule. Thus, two of the three ZnII

(Zn2 and Zn3) atoms possess pentacoordinate distorted trigonal bipyramidal geometries (τ = 0.8038)
in which the axial positions were held by N2-O1 and N4-O2, respectively. Besides, Zn1 atom possesses
a strongly distorted square pyramidal (τ = 0.3128) coordination environment where the axial position
was held by the O15 atom of the aqua molecule [17,23]. Selected bond distances and angles are listed in
Table 2. It can be seen from the data that the different positions of the substituents can lead to slightly
different changes in the structure [11].

Table 2. Selected bond lengths (Å) and angles (◦) for the ZnII coordination compound.

Bond Lengths Bond Lengths Bond Lengths

Zn1-O11 1.975(3) Zn1-O13 1.998(3) Zn1-O15 2.021(3)
Zn1-O2 2.042(2) Zn1-O1 2.079(2) Zn2-O5 1.962(2)

Zn2-O12 1.985(3) Zn2-O1 2.052(2) Zn2-N1 2.091(3)
Zn2-N2 2.135(3) Zn3-O9 1.959(3) Zn3-O14 1.971(3)
Zn3-O2 2.057(2) Zn3-N4 2.104(3) Zn3-N3 2.150(3)

Bond Angles Bond Angles Bond Angles

O11-Zn1-O13 89.62(13) O11-Zn1-O15 114.09(13) O13-Zn1-O15 99.82(11)
O11-Zn1-O2 145.43(15) O13-Zn1-O2 93.15(10) O15-Zn1-O2 99.38(9)
O11-Zn1-O1 88.93(11) O13-Zn1-O1 164.20(13) O15-Zn1-O1 95.13(10)
O2-Zn1-O1 79.31(9) O5-Zn2-O12 114.15(11) O5-Zn2-O1 92.43(9)
O12-Zn2-O1 90.61(10) O5-Zn2-N1 126.79(11) O12-Zn2-N1 118.97(11)
O1-Zn2-N1 84.29(10) O5-Zn2-N2 87.16(10) O12-Zn2-N2 94.10(11)
O1-Zn2-N2 175.02(10) N1-Zn2-N2 91.98(11) O9-Zn3-O14 112.13(11)
O9-Zn3-O2 93.72(10) O14-Zn3-O2 95.00(10) O9-Zn3-N4 88.47(11)

O14-Zn3-N4 96.81(11) O9-Zn3-N3 121.50(11) O2-Zn3-N3 81.51(10)
O2-Zn3-N4 166.17(11) O14-Zn3-N3 126.37(11) N4-Zn3-N3 85.70(12)
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polyhedra of Zn1 and Zn2 centers.

3.4. Supra-Molecular Interaction

As illustrated in Table 3 and Figure 4, there were four pairs of intra-molecular O15-H15B···O9,
O15-H15B···O5, C10-H10A···O12 and C20-H20B···O14 hydrogen bond interactions and a pair of
C-H···π inter-molecular hydrogen bonds in the ZnII coordination compound. The ZnII coordination
compound molecules were inter-linked effectively via C-H···π hydrogen bonds (C19-H19B···Cg1)
into a 1D supermolecular structure. Furthermore, one molecule could link four adjacent molecules
into an infinite 3D net-like supramolecular structure by two pairs of intermolecular Cg1···Cg1 and
Cg3···Cg3 interactions [66–72]. The weak hydrogen bonds existing in the ZnII coordination compound
have been described in graph sets (Figure 5) [73]. Additionally, the hydrogen bonding scheme of the
ZnII coordination compound is defective due to suppression of the electron density originating from
solvent molecules (used SQUEEZE) and subsequent exclusion of these solvent molecules from the
refinement model.Crystals 2018, 8, x FOR PEER REVIEW  7 of 15 
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Figure 4. (a) Intra-molecular hydrogen bondings of the ZnII coordination compound unit (hydrogen
atoms, except those forming hydrogen bonds, are omitted for clarity); (b) One-dimensional
supra-molecular structure of the ZnII coordination compound, mediated by inter-molecular C-H···π
(pink) interactions; (c) 3-D supramolecular structure of the ZnII coordination compound, mediated by
intermolecular C-H···π and π···π interactions.
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Table 3. Hydrogen bonding and π···π stacking interactions [Å, ◦] for the ZnII coordination compound.

D–H···A d(D–H) d(H–A) d(D–A) ∠∠∠D–X–A Symmetry Code

O15–H15B···O9 0.85 1.84 2.675(4) 168
O15–H15C···O5 0.85 1.80 2.625(4) 162
C10–H10A···O12 0.97 2.49 3.367(5) 150
C20–H20B···O14 0.97 2.42 3.296(6) 150
C19-H19B···Cg1 0.97 2.84 3.601(5) 136 1/2 − X, 1/2 + Y, 1/2 − Z

Cg1···Cg1 4.372 1/2 − X, 1/2 − Y, 1 − Z
Cg3···Cg3 4.541 1/2 − X, 1/2 − Y, −Z

Note: Cg1 is the centroids for benzene ring C12–C17, Cg3 is the centroids for benzene ring C22–C27.

3.5. Hirshfeld Surfaces

The Hirshfeld surfaces of the ZnII coordination compound are depicted in Figure 6, exhibiting
surfaces that have been mapped over dnorm and di [74,75]. The interactions between hydroxyl oxygen
in the ZnII coordination compound can be seen as bright red areas in the Hirshfeld surface in Figure 7.
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The light red spots are owing to C–H···O interactions, and other visible spots correspond to C···H and
H···H contacts on the surface. Figure 7 shows the 2D plots generated [76–78] which correspond to the
C···H, O···H and H···H interactions from the Hirshfeld surface of the ZnII coordination compound. To
provide context, the overview of the full fingerprint is depicted in grey and the blue area showing the
separate contact. The proportions of O···H/H···O, C···H/H···C and H···H interactions are composed
of 22.3, 12.1 and 49.7% of the all Hirshfed surfaces for each ZnII coordination compound molecule,
respectively. It is because of the existence of these hydrogen bondings that the ZnII coordination
compound can be stable.
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3.6. Fluorescent Spectra

The fluorescence titration experiment of the ZnII coordination compound with H4L was studied.
Figure 8 shows gradual changes in the fluorescence spectra of H4L upon addition of ZnII ions.
The ligand exhibited an intense emission at ca. 525 nm upon excitation at 380 nm based on global
maximum determined from three-dimensional fluorescence spectra, which could be attributed to



Crystals 2018, 8, 259 9 of 15

intra-lignd π–π* transition [79–81]. Figure 8 obviously indicates that fluorescence emission of the ligand
H4L was very weak, probably owing to isomerization of C=N double bond, intramolecular hydrogen
bond between azomethine and hydroxyl moieties of the aromatic group. Upon incremental addition
of ZnII ions to the solution of H4L, fluorescence emission intensity at 523 nm gradually increased,
and this peak remained relatively constant after the addition of 3 equiv.
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Figure 8. (a) Fluorescence spectrum changes of the H4L solution (c = 5 × 10−5 mol/L) upon addition
of different amounts of ZnII ions (0–3.0 equiv) in dilute dichloromethane:methanol (v:v = 1:1) solutions
at room temperature; (b) The linear relationship between fluorescence intensity and the concentrations
of ZnII ions. (λex = 380 nm, λem = 523 nm).

The ZnII coordination compound showed a strong and broad luminescence with maximum emission
at ca. 523 nm upon excitation at 380 nm, which is moved bathochromically to that of H4L. Compared
with the emission spectrum of H4L, enhanced fluorescent intensity of the ZnII coordination compound
was observed, displaying that intra-ligand transition has been affected owing to the introduction of
the ZnII atoms [82,83]. No emissions coming from ligand-to-metal/metal-to-ligand charge-transfer or
metal-centered excited states are expected for the ZnII coordination compound, since ZnII is a d10 ion.
Therefore, the emission of the ZnII coordination compound observed is tentatively assigned to the
intra-ligand π–π* fluorescence. From the emission intensity by following the modified Benesi–Hidebrand
equation, the association constant of compound was calculated as 1.59 × 104 M−1 [31–34].

3.7. Antimicobial Activities

The antimicrobial properties of H4L and its ZnII coordination compound were detected against
Escherichia coli as Staphylococcus aureus and Gram-negative bacteria as Gram-positive bacteria via a
punch method. The bacterial suspension was mixed in sterile LB (lysogeny broth agar) plates (2%
agar), then made four holes with a hole punch, last added DMF, Zn2+, H4L, and the ZnII coordination
compound into every holes. After 7 h of incubation at 37 ◦C, the growth-inhibitory effect was monitored
and diameters of the inhibition zones were measured. The discs measuring 5 mm in diameter were
dissolved in DMF. The diameters of inhibition zones of H4L and its ZnII coordination compound are
given in Figure 9, the ZnII coordination compound proved more enhanced antimicrobial activities than
the bis(salamo)-like tetraoxime H4L under the same concentrations.
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As shown in Figure 9, the inhibitory effect of the ZnII coordination compound at different
concentrations was studied, the results showed that the antibacterial effect of the ZnII coordination
compound increased with increasing concentrations. The increase in the antibacterial activity of the
ZnII coordination compound with increase in concentration can be explained according to the chelation
theory. Chelation reduces the polarity of the metal atom mainly owing to partial sharing of positive
charge of ZnII atom with donor groups and possible delocalization of π-electron within the whole
chelate ring. Further, it enhances the lipophilic character of the central atom. These results are similar
to earlier reports of biological activities of similar salamo-like CoII coordination compounds [84].

4. Conclusions

A newly designed symmetric bis(salamo)-like chelating tetraoxime ligand H4L, possessing a
C-shaped O4 site besides the two N2O2 sites, has been synthesized, and its ZnII coordination compound
[LZn3(OAc)2(H2O)] has been determined by X-ray crystallography. The UV-Vis titration experiment
clearly showed the reaction stoichiometry ratio to be 3:1. In the ZnII coordination compound, Zn1 is
pentacoordinate with a strongly distorted square pyramidal geometry, while Zn2 and Zn3 possess
pentacoordinates with distorted trigonal bipyramidal geometries. Furthermore, the Hirshfeld surface
analysis indicated that the ZnII coordination compound could be stable due to intramolecular hydrogen
bonds and some weaker interactions. Fluorescence behaviors of H4L and its ZnII coordination
compound were investigated, compared with the ligand H4L, the emission intensity of the ZnII

coordination compound increased obviously, which indicated that the ZnII ions possess a quality of
fluorescent enhancement. Antimicrobial experiments showed that the ZnII coordination compound
demonstrated more enhanced antimicrobial activities than H4L under the same conditions.
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