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Abstract: Photonic crystal (PC) thin films that are self-assembled from different-sized silica
microspheres were prepared for studying mechanical properties via nanoindentation at the submicron
scale. We found that the silica photonic crystals (PCs) possessed a face-centered cubic (FCC)
microstructure and their elastic modulus and hardness were in the range of ~1.81–4.92 GPa and
0.008–0.033 GPa, respectively. The calculated results proved that there were size-dependent properties
in the silica PCs, in that the elastic modulus and hardness increased as the diameter decreased from
538 nm to 326 nm. After studying the total work and plastic work in the progressive deformation
of silica PCs during the nanoindentation tests, we developed a two-stage deformation model to
explain how the microsphere size affects the mechanical properties of PC thin films. The phenomenon
of “smaller is stronger” is mainly due to the energy consumption, which combines the effects of
microstructure collapse, microsphere slide, and reduced porosity during the whole loading and
unloading process. In addition, the results of numerical simulation matched the experimental data
and reflected the energy change rules of PCs during the indentation process. Furthermore, the study
affords useful guidance for constructing high-performance films with proper design and potential
application in next-generation PC materials.

Keywords: nanoindentation; size-dependent; photonic crystals; deformation mechanism

1. Introduction

In recent decades, photonic crystal (PC) thin films have been investigated extensively because of
their potential application in the fields of photonics [1–3], thermotics [4,5], electronics [6], and energy
conversion [7], as well as sensing technology [8]. The materials for preparing photonic crystals (PCs)
can have varied forms, and so is the range of synthetic methods. Up to the present, metals [9],
semiconductors [10], polymers [11], and metal oxides [12] with various photonic nanostructures
have been reported. PCs can be manufactured typically by top-down or bottom-up techniques.
The defect of the top-down method is that it is gradually slower and costlier to produce periodically
arranged structures over large areas with increasingly high precision. By comparison, the self-assembly
bottom-up technique is widely used in research because of its easy operation and low cost [13].
The self-assembly methods include vertical lifting [14], vertical deposition [15], spin coating [16],
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and electric and magnetic field induction [17], which are classified systematically based on the driving
force. One of the most common and straightforward nanostructures of PCs is an opal structure [18],
which has become an essential branch in this field. More complex structures, such as inverse opals [19]
and core-shell structure [20], can be constructed to expand the range of applications.

To fabricate functional devices from these materials and take full advantage of their optical,
electrical, chemical, and magnetic properties, PCs require suitable mechanical properties. Consequently,
an accurate study of the mechanical parameters is essential. However, up till now, mechanical testing
of PCs has not been well-established and very little is known about their mechanical properties and
governing factors. Furthermore, PCs are brittle, and they cannot yet be produced in a large area
with uniform geometry required for uniaxial compression tests [21]. Recently, nanoindentation as
an efficient and accurate method, has been widely used for characterizing mechanical properties of
materials at the micro/nanoscale [22]. The mechanics of PCs based on nanoindentation have been
used; however, the primary application in the existing literature is for assessing the elastic modulus
and hardness simply for various synthetic or self-assembly techniques. Nanoindentation has been
progressively used for testing some materials that have similar microstructure to PCs, including
capped nanocrystals [23], three-dimensional ordered mcriostrucutre (3-DOM) materials [24], ordered
silica foam [25], and so on [26,27]. Liu [28,29] studied the size effects via both nanoindentation tests
and atomic force microscopy (AFM) indentation tests; he analyzed the stress condition of one single
microsphere to explain the size effects but neglected the overall stress condition. To the best of our
knowledge, the deformation mechanism of PCs under nanoindentation tests by the energy method
has not been studied.

Monodispersed silica microspheres have acquired supremacy over other materials because
they are chemically inert and thermally stable. The typical silica PC is a well-knit sphere arranged
according to a face-centered cubic (FCC) structure, which is commonly seen in polycrystalline
metallic materials [30]. In this study, silica PCs with different microsphere sizes were prepared, the
size-dependent phenomenon in representative silica PCs with FCC structure was studied, and the
deformation mechanism of silica PCs was explored by a two-stage energy consumption mechanism.

2. Experimental

Monodispersed silica microspheres with diameters of about 326 nm, 348 nm, 437 nm, 470 nm,
and 538 nm were synthesized via a modified procedure [31]. First, ammonium solution (25%) was
dispersed in an ethanol/water mixture (ratio 7:1) in a reactor under stirring for 30 min at 40 ◦C,
then a mixture of tetraethyl orthosilicate (TEOS,)/ethanol (32 wt%) was added into the reactor.
All the reagents were purchased from Sinopharm chemical reagent co. LTD (Beijing, China) without
further purification. Different sized silica microspheres were obtained by adjusting the reaction time.
Subsequently, the glass slides underwent hydrophilic treatment and were positioned vertically in a
vial containing the monodispersed silica suspension, which was carried out in an oven at a constant
temperature of 60 ◦C for 12 h. These silica microspheres were assembly-grown onto the glass substrates
to form opal PC thin films by a vertical deposition method [32].

The size and structural features of microspheres were measured by scanning electron microscopy
(SEM; FEI Quanta (Hillsborough, OR, USA) 200FEG) at an accelerating voltage of 8 KV. The optical
properties of the samples were taken with a fiber spectrometer (Ocean Optics Maya2000 (Dunedin, FL,
USA)). Nanoindentation tests were carried out at room temperature with a nanoindenter (Keysight
G200 (Santa Clara, CA, USA)) equipped with a Berkovich diamond tip. For each sample, at least five
tests were conducted to calculate the average value of the mechanical parameters.
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3. Results and Discussion

3.1. Structure Features of Silica Photonic Crystals (PCs)

In order to accurately investigate the mechanical properties of silica PC thin films under
nanoindentation, high-quality samples were prepared. Note that the PC thin films prepared by
flow-induced deposition usually yield a surprisingly strong preference for FCC crystal structure.
Characterization of structural features of the PC thin films was conducted to measure the size of
microspheres and check a variety of defects of the samples, such as holes, cracks, and pores, which
inevitably exist during the preparation process, as shown in Figure 1a–e. Each PC thin film was
composed of quite uniformly sized microspheres with size deviation of less than 5%; the diameters of
measured microspheres are listed in Table 1. From Figure 1a–e, we can see that the silica microspheres
are well-organized in a close-packed arrangement with long-range order.
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Figure 1. Scanning electron microscopy images (SEM) of silica photonic crystal (PC) thin films assembled
from microspheres with sizes of (a) 326 nm, (b) 348 nm, (c) 437 nm, (d) 470 nm, and (e) 538 nm.

The optical reflectance spectra of silica PCs are shown in Figure 2. It is obvious that the reflecting
peaks of the PCs were located at 712.6 nm, 757.0 nm, 941.2 nm, 1011.1 nm, and 1163.8 nm. According to
the results, the reflecting peak showed a redshift from 712.6 nm to 1163.8 nm as the diameter increased
from 326.0 nm to 538.0 nm. The reflectance peak values of five PC thin films were all above 85%.
This reflectance spectrum suggests the characteristic properties of the photonic band gap, which shows
that the fabricated silica PCs are in the ordered arrangement. Theoretically, the position of the photonic
band gap in the FCC PCs can be expressed by the Bragg diffraction equation [33]:

kλ = 2d
√

n2
e f f − sin2 θ (1)

where λ is the center wavelength of the photonic band gap; k is the order of the Bragg diffraction; d is
the (111) plane distance (d =

√
2/3D with D being microsphere diameter); θ is the deviated angle

from the normal of the (111) planes (θ = 0◦ for this study); and ne f f is the average refractive index. In
the ideal FCC structure, the ne f f of silica is taken to be 1.33 [34].
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Figure 2. Reflectance spectra of five sizes of photonic crystals assembled from silica microspheres.

The theoretical value of the diameter of the microspheres can be calculated by the Bragg diffraction
equation, as shown in Table 1. The experimental values coincide with theoretical values, which indicates
that they conform to the FCC structure, also proving the high order of arrangement for PCs. Based on
the SEM images, reflection spectra, and theoretical results, it is concluded that the controllable silica
PC thin films were well-prepared and appropriate for the mechanical property tests.

Table 1. Comparison of microsphere diameters obtained by theoretical calculation and experimental measurement.

Sample Theoretical Value (nm) Experimental Value (nm) Error Rate (%)

1 328 326 0.6
2 349 348 0.2
3 433 437 0.8
4 466 469 0.8
5 536 538 0.4

3.2. Size-Dependent Mechanical Properties of Silica PCs

To avoid the substrate effect, the indentation depth should not exceed 10% of the thickness of the
samples [33]. In our study, the film thickness was about 10 um and the maximum indentation depth in
the tests was set to 550 nm. Thus, the influence of glass substrate on the load-depth curves of the PC
thin films was negligible. Figure 3 shows the load-depth curves of five sizes of PC thin films under a
maximum indentation depth of 550 nm. Obviously, the loading tracks exhibit a pop-in phenomenon in
each curve [35]. Comparing the shape of each curve, there is no pop-in event in the unloading part.
It is interesting to find that the curves show a very noticeable size dependence in Figure 4. At the same
maximum indentation depth, the load increased significantly as the microsphere size of the PC thin
films decreased. Based on the load-depth curves, hardness and Young’s modulus were calculated by
applying the Oliver and Pharr method [36]:

H = Pmax/A (2)

A = 24.56h2
c (3)

1
Er

=
1− υ2

E
+

1− υ2
i

Ei
(4)

where H is the hardness; Pmax is the peak load; hc is the contact depth; A is the contact area; Er is
the reduced modulus, Er = S

√
π/(2β

√
A); β is a constant related to indenter shape, β = 1.034 when

using a Berkovich diamond tip; S is the curvature of the unloading curve; E and υ are the elastic
modulus and Poisson ratio of the samples, υ = 0.3; and Ei and υi are the elastic modulus and Poisson
ratio of the diamond indenter, υi = 0.07, Ei = 1141 GPa.
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Figure 5 shows the measured Young’s modulus for different PC thin films. The Young’s modulus
decreased when the size of the constitutive microspheres increased. The calculated results prove
unambiguously that the elastic modulus of PCs is strong and dependent on size, increasing from
1.81 GPa to 4.92 GPa as the diameter decreased from 538 nm to 326 nm. Likewise, hardness
demonstrated a similar size-dependent tendency, increasing from 0.008 GPa to 0.033 GPa as the
diameter decreased, as shown in Figure 6. The relation between the yield stress and the grain size in
the PCs is known as the Hall–Petch relation [37,38]. The empirical Hall–Petch formula states that yield
strength increases monotonically with decreased average grain size according to

σy = σo + k/d1/2 (5)

where σo is the friction stress and k is a material constant.
In light of the scaling approach to conical indentations in elastic–plastic solids by Cheng-Cheng [38],

the relationship between hardness and yield stress is given by

H = aσy (6)

where a is a constant from 1 to 3, conditional on the ratio of σy/E.
Based on this linear correlation, using Equations (5) and (6), we obtain

H = aσo + ak/d1/2 = B + C/d1/2 (7)

where B and C are constants dependent on materials.
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We fit the constant values B and C by the relationship between hardness and microsphere size.
From Figure 6, we can see that the relationship between microsphere size and hardness is similar to
the Hall-Petch formula. Our investigation revealed that the trend “smaller is stronger” occurred in
silica PCs, similar to the result of Liu [28], which had been extensively reported for crystalline metallic
materials [39,40].

3.3. Deformation Mechanisms

As presented in the previous sections, mechanical properties, including load–depth curves,
Young’s modulus, and hardness, were equally size-independent. The mechanical properties of this
“granular” material depend on the contacts and adhesion between the particles at nanoscale. However,
the silica PCs at submicron level contain specific microstructures, and their mechanical properties
are affected by both microsphere size and microstructures. Furthermore, the synthesis of these silica
PCs has the same porosities intended to be kept as constant (0.26) because of the FCC structure [41],
which indicates that the mechanical properties of silica PCs are mainly affected by the variations of
particle size and the intrinsic mechanical parameters of microspheres. However, the deformation under
the tip is a complex nonlinear process, including elastic and multiple plastic deformations. In order to
explore its mechanism, we studied the total work and plastic work in the progressive failure of silica
PCs. The area under the loading curve gives the total work Wt, as shown in Figure 7; the reversible
elastic work We can be deduced from the area under the unloading curve [42]. The energy absorbed by
plastic deformation is the difference between these: Wp = Wt −We
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Wt =
∫ hm

0
Ploadingdh (8)

Wε =
∫ hm

hr
Punloadingdh (9)

where hm is the maximum depth, hr is the final depth at which the force on the indenter first becomes
zero during unloading, Ploading is the loading function, and Punloading is the unloading function.

In Figure 8, it is found that the elastic work of the material accounts for a lower proportion
than that of plastic work during the entire indentation process. It is worth noting that the elastic
work of the microspheres is almost the same. However, the total work and plastic work decrease
gradually with increased particle size, indicating that the deformation resistance under the indenter is
weakened. Furthermore, we propose a two-stage deformation model under the tip in the progress
of nanoindentation. The first stage is achieving the yield strength of the silica microspheres, and the
second stage is disruption of the PC microstructure. Silica microspheres are brittle, and the material
will soon reach yield state with the increase in external stress, then the microspheres begin to break,
and slight cracks occur, accompanied by the dissipation of energy. In this way, the deformation
in the first stage is completed rapidly, and the elastic work occupies the leading part in this stage.
Subsequently, the microstructure collapses and the microspheres break up into numerous small
pieces with the deepening of the indenter, resulting in increased film density and reduced porosity.
Furthermore, relative sliding and rotation occur among the small pieces, and friction continuously
consumes energy; the film shrinks in volume as a whole, and its resistance to deformation increases
continuously. In the second stage, the plastic work occupies the central part, and the influence of
elastic work can be ignored. When the microsphere diameter is larger, the microsphere also suffers
elastic–plastic deformation and goes through crack development. Energy consumption is consistent
in the first stage; this conjecture can be proved by the value of elastic work in Figure 8. However,
in the second stage of destruction, the film density also increases after crushing, with relatively small
amplification. Thus, energy consumption in the second stage is lower and material resistance to
deformation decreases, resulting in a reduction of its hardness and modulus. This energy consumption
principle is similar to the Hall–Petch strengthening theory, which is usually used for polycrystalline
metallic materials; smaller microspheres have more particle boundaries and more density after
crushing. Destruction in the second stage goes on along with the first stage by deepening of the
indenter because of extrusion between the microspheres, leading to the pop-in phenomenon, that is,
several jumps during each loading curve, as shown in Figure 3.
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The energy value of Figure 8 is calculated based on the experimental results at the maximum
indentation depth, so it cannot reflect the energy change rules of PCs during the entire indentation
process. Therefore, in the plastic work and total work, the finite element method (FEM) simulation
of PCs is presented to investigate the relations between and among the elastic work (Supplementary
Materials). We selected four indentation depths to simulate the indentation process and then calculated
the work of each part according to the simulation curves. As shown in Figure 9, total work gradually
increased with increased indentation depth in all cases; however, with rising microsphere size,
whole work decreased in the same indentation depth. This illustrates that under the same depth of
penetration, the energy of resistance to deformation decreased with the increased particle size, resulting
in less hardness and smaller elastic modulus. It obviously shows that at a depth of 200 nm the total
energy of these five microspheres was below 10 × 10–12 J, between 1.938 × 10–12 J and 5.762 × 10–12 J.
However, the work value of the different microsphere sizes began to change significantly with the
increase in depth, and this was because the second-stage deformation became the primary factor.
From Figure 10, it can be concluded that the proportion of elastic work gradually decreased with the
increase of indentation depth, and the ratio was down to less than 10% at the maximum indentation
displacement. This indicates that the plastic proportion is more significant due to the second-stage
deformation. With the decrease of microsphere size, the proportion of elastic work decreased, so the
plasticity ratio increased. Although the areas under the indenter at the same penetration depth
were equal, the void ratio changed after the microsphere was broken. The smaller the particle size,
the higher the density, with a lower proportion of elastic work. These trends coincide with the
two-stage deformation model and the experimental results. Therefore, the simulation results prove the
effectiveness of the two-stage deformation model.
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4. Conclusions

In conclusion, silica PC thin films with periodic FCC structure were prepared from microspheres
with five different sizes. The relationship between the size of the microspheres and the mechanical
properties of the PCs was explored by nanoindentation. The results show that silica PCs with smaller
microspheres possess enhanced hardness and modulus, suggesting a noticeable size-dependent
mechanical performance. The two-stage deformation assumption of silica PCs under the indenter is
presented to explain the size-dependent property due to the trend of energy change. The phenomenon
may mainly result from energy consumption, which includes microstructure collapse, microsphere
slide, and reduced film porosity during the whole loading and unloading process. FEM results prove
this deformation tendency. This study also indicates that the mechanical properties of PCs with the
proper design of microsphere size could be further tuned to suit the application of advanced devices.
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