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Abstract: Ordered graphene ribbons were grown on the surface of 4◦ off-axis 4H-SiC wafers by
sublimation epitaxy, and characterized by using scanning electron microscopy (SEM), atomic force
microscopy (AFM) and micro-Raman spectroscopy (µ-Raman). SEM showed that there were gray
and dark ribbons on the substrate surface, and AFM further revealed that these ordered graphene
ribbons had clear stepped morphologies due to surface step-bunching. It was shown by µ-Raman
that the numbers of graphene layers of these two types of regions were different. The gray region was
composed of mono- or bilayer ordered graphene ribbon, while the dark region was of tri- or few-layer
ribbon. Meanwhile, ribbons were all homogeneous and had a width up to 40 µm and a length up to
1000 µm, without micro defects such as grain boundaries, ridges, or mono- and few-layer graphene
mixtures. The results of this study are useful for optimized growth of high-quality graphene film on
silicon carbide crystal.
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1. Introduction

Due to its unique properties, such as the unusual half-integer quantum Hall effect [1,2] and
mass-less Dirac fermion behavior [3,4], graphene has many potential applications in the fields of
novel physics, chemistry, optics, and mechanics [5,6], and as realistic technology transfer in the
fields of membrane technology [7], energy [8], photodetection [9], and plasmonics [10]. Since the
successful preparation of the first stable graphene flake at room temperature by peeling highly oriented
pyrolytic graphite (HOPG) [11], people have developed many methods to prepare graphene, including
monolayer [12,13], bilayer [14,15], and few-layer graphene [16,17], in the form of powder [18], flake [19],
and film [20]. Although intrinsic monolayer graphene is a semimetal without a bandgap, we can
open a specific bandgap by patterning graphene into nano-ribbons or coupling graphene with certain
substrates [21,22]; bilayer graphene can be operated to have a high on/off ratio, and a bandgap up to
hundreds of millielectronvolts controlled by an electronic field, which paves the way for its applications
in high performance electronics [23].

In order to increase output and be compatible with microelectronics processes, large scale
graphene films are needed. Today, growth of graphene on metal foils such as Cu foils by using
chemical vapor deposition (CVD) has been proven to be a good preparation method, and has been
adopted throughout the world [24–27]. Since large volume metal foils are commercially available,
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theoretically people can grow arbitrarily large areas of graphene films, and indeed roll-to-roll growth
of large scale graphene films on Cu foils has been demonstrated [28]. Meanwhile, there are drawbacks
of this preparation of graphene films. For example, since the Cu foils are of polycrystalline structure,
graphene grown on Cu foils is also of polycrystalline structure, which greatly degrades the performance
of the graphene. The good news is that it is feasible to develop single crystal graphene with areas up
to square centimeters on Cu foil [29].

Besides, growth of large scale graphene films on single crystal silicon carbide wafers such as
4H-SiC has been proven to be a great potential method [30–34]. 4H-SiC Wafers are commercially
available with a diameter up to 6 inches, and it is convenient to fabricate graphene devices on 4H-SiC
with compatible processes of silicon. As for graphene preparation, 4H-SiC has several intrinsic
advantages. First, 4H-SiC is made of silicon and carbon, which makes it possible to form graphene on
the surface of the wafer by sublimating the silicon element. This is realizable since the vapor pressure
of Si is greater than that of carbon, and indeed graphene has been prepared by this method [35].
Second, large scale semi-insulating 4H-SiC wafers (SI-SiC) are commercially available and can be used
for graphene preparation. This makes graphene devices able to be fabricated directly on SI-SiC wafers
without a transfer of graphene to the foreign substrate, which overcomes the drawback of graphene
grown on metal foil [36,37]. Third, and we think the most important point, fine graphene with elegant
structures can be prepared on mis-cut 4H-SiC wafers through direct growth without complicated
processes. There are nano-steps on the surface of a mis-cut 4H-SiC wafer (typically 4◦ off-axis), which
act as templates for the preparation of exquisite graphene, such as nano-ribbons [38]. In the surface of
4◦ off-axis 4H-SiC wafers, the height of the step is several nanometers, and the width of the terrace
is several tens of nanometers. Nano-ribbons formed on the steps and terraces are demonstrated [39],
with similar lateral sizes to the templates, and monolayer and few-layer (2–5 layers) graphene is also
prepared on these templates. In addition, the lateral sizes of the nano-steps of 4◦ off-axis 4H-SiC wafer
can be enlarged by heat treatment or homoepitaxial growth [40,41] through step-bunching [42–44].
In doing so, it is possible to obtain as-grown graphene ribbons with a lateral size up to several tens
of micrometers.

In this paper, we investigated the process of growth of high-quality graphene ribbons. We used
4◦ off-axis 4H-SiC wafers as a substrate, and we grew ordered and homogeneous graphene ribbons
across the whole surface of the wafer, with a width up to 40 µm and a length up to 1000 µm. It is worth
noting that the ordered ribbons grown along the templates did not have any micro defects such as
grain boundaries, ridges, or mono- and few-layer graphene mixtures, compared to graphene grown
on on-axis 4H-SiC wafer whose surface is nearly step-free [45,46]. Our results shed light on the growth
of high-quality graphene film on silicon carbide crystal.

2. Materials and Methods

2.1. Materials

N-type 4◦ off-axis 4H-SiC(0001) Si-face wafers were used as the target and source wafers. Wafers
were cleaned in (1) boiling H2SO4, and hot solutions of (2) NH3 + H2O2 + H2O (1:1:5 vol%) and
(3) HCl + H2O2 + H2O (1:1:6 vol%) in sequence. After each cleaning process, wafers were rinsed in
distilled water. Finally, wafers were blown dry with hot nitrogen gas and immediately loaded into the
growth chamber.

2.2. Apparatus

The graphene growth process was conducted in a home-made sublimation epitaxy reactor.
The reactor has a vertical hot-wall chamber. Figure 1a shows the schematic illustration of the chamber.
Its main parts include radio frequency (RF) coils for heating graphite parts, a gas inlet and gas outlet
for gas injecting and exhaustion, a pyrometer for temperature monitoring, and a graphite susceptor for
holding the wafer container. Figure 1b shows the wafer container with wafers loaded. The graphite
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container can be heated by RF coils to a temperature of about 1850 ◦C. The source wafer was placed on
the bottom of the container, and the target wafer was hung at the top of the container. They can be
heated to 1800 ◦C and 1750 ◦C, respectively, monitored by the pyrometer. Since the target wafer did
not touch graphite parts (except for wafer edge) and there was a 5 mm spacer between the target wafer
and the source wafer, the temperature of the target wafer was lower than that of the source wafer by
about 50 ◦C.

2.3. Methods

The temperature gradient between the source wafer and the target wafer was used to perform
the sublimation process. Molecules containing Si-C components sublimate from source wafer on the
bottom of the container, and condense and crystallize on the surface of the target wafer at the top of
the container.

Figure 1. Schematic illustration of (a) sublimation epitaxy chamber and (b) wafer container with source
wafer and target wafer loaded; (c) growth process.

Figure 1c shows the growth process. Three protocols were used in our experiments: A) Target
wafer was directly heated to 1750 ◦C under high vacuum; B) Target wafer was subjected to a heat
treatment at 1500 ◦C for 30 min, and then heated to 1750 ◦C for growth under high vacuum; C) based
on B, a gas mixture of 1 slm H2 and 2 slm Ar with a pressure of 5 kPa or 10 kPa was used. The growth
time (t) varied from 30 min to 60 min. For convenience, samples obtained from protocols A, B, and C
are labelled as Wafer A, Wafer B, and Wafer C, respectively. Wafer C can be labelled as Wafer C1 and
C2, due to the used pressure of 5 kPa and 10 kPa, respectively.

After growth, the samples were examined by means of scanning electron microscope (SEM) (2011,
Hitachi Inc., Tokyo, Japan), optical microscope (OM) (2009, Olympus Inc., Tokyo, Japan), atomic force
microscope (AFM) (2007, Vecco Inc., Plainview, NY, USA) and Raman spectrometer (µ-Raman) (2008,
Horiba Jobin Yvon Inc., Montpellier, France). The Raman has an Ar laser operated at 532 nm, and the
focused laser spot was of about 1 µm in diameter.

3. Results and Discussion

3.1. Effect of Heat Treatment

Figure 2 shows SEM images of the surfaces of Wafer A and Wafer B. The dark domains in the
images are graphene regions. It can be seen from Figure 2a that there were graphene flakes grown on
the surface of Wafer A. The flakes distributed randomly on the surface, and most of them took on a
strip profile. The lateral size of a typical largest flake can be measured to be 42 µm × 14 µm (Figure S1a).
Figure 2b is a magnified view of Figure 2a, from which more details of the relationship between the
graphene flakes and the surface of 4H-SiC can be observed. There are irregular terrace-steps on the
surface, and the flakes are on top of the terraces. Some large graphene strips cover several terrace-steps
continuously. The above results indicate that graphene can be grown on the surface of target 4H-SiC
wafer by sublimation epitaxy through protocol A. However, the obtained graphene is in flakelets,
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which means we cannot grow graphene ribbon through protocol A. On the other hand, the result also
implies that the terrace-step structures may be used to guide the growth of graphene ribbon, since the
graphene flakes will grow along with the terraces. If regular and long terraces could be prepared on
the wafer surface, it would favor the growth of ordered graphene ribbons.

It has been reported that terrace-step structures will form on the surface of off-axis 4H-SiC wafer
after a heat treatment [47,48]. In protocol B, we performed a 30-min heat treatment at 1500 ◦C for 30 min
before sublimation growth of graphene. It can be seen from Figure 2c,d that in general, the graphene
strips distributed in parallel on the surface, and the shape of graphene changed from flake to strip,
compared in Figure 2, with a typical lateral size of about 100 µm × 10 µm (Figure 2d). We observed
that terrace-step structures indeed appeared on the surface of target wafer after a heat treatment in
protocol B (Figure S1b), and the structures still survived on the surface after the sublimation growth of
graphene (Figure 2). This indicates that heat treatment is useful for the growth of ordered graphene
strips. However, in protocol B we only obtained ordered strips, not ordered ribbons. The duration of
the sublimation growth for Figure 2d was double that of Figure 2c, about 60 min. Although graphene
strips became wider and longer, they still did not merge into ordered ribbons.

Figure 2. Scanning electron microscope (SEM) images of the surfaces of target wafers: (a) surface of
Wafer A; (b) magnified view of (a); (c,d) surface of Wafer B.
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3.2. Role of Gas Mixture

In protocol C, we used a gas mixture of H2 and Ar during the whole process. Figure 3 shows
SEM images and an optical image of the surface morphologies of Wafer C. The morphologies are quite
different compared with those of Figure 2. Here, the obtained graphene is in ordered graphene ribbons.
In Figure 3a, the ribbons are long and straight, covering most of the areas of the surface, with less
space bared for raw surface (i.e., the gray regions), and most ribbons almost merge together in the
width direction. However, in a magnified view of the graphene ribbons (Figure 3b), the ribbons are not
totally free of raw surface of 4H-SiC substrate. There are meshed residues of raw surface existing in the
ribbons. This indicates that the quality of the obtained graphene ribbons should be further improved.

Figure 3. Surface morphology of Wafer C: (a,b) SEM images of surface of Wafer C1; (c) optical image
and (d) SEM image of Wafer C2.

It can also be observed from Figure 3b that the graphene ribbons (dark regions) and the raw
surface (gray regions) were neatly parallel to each other. This gave us a hint that protocol C was a
suitable scheme for preparation of ordered graphene ribbons, and what needed to be done was to
optimize the process conditions. To this end, we changed the growth pressure. We grew graphene in
high vacuum conditions in protocol A and protocol B, and under a low pressure of 5 kPa in protocol C1.
The results shown in Figures 2 and 3,b reveal that a proper growth pressure will be good for graphene
preparation. In protocol C2, we set the growth pressure to be 10 kPa. The surface morphologies of
Wafer C2 are shown in Figure 3c,d. It can be seen that ordered graphene ribbons were obtained on the
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surface of Wafer C2. Note that the gray ribbons and the dark ones of Wafer C2 were all of graphene,
identified by Raman measurements (see Subsection 3.3). The gray and the dark ribbons occupied the
surface evenly, in a side-by-side pattern, with a length up to 1000 µm, which is totally different to
the results of Wafer A and Wafer B. The ribbons were of whole graphene, without any residue of raw
surface, which was far better than those of Wafer C1. This indicates that ordered graphene ribbons can
be obtained through protocol C2.

Next, we examined the finer structure of the graphene ribbons by using AFM. We chose three
square regions on Wafer C2: I. Gray ribbon on the surface; II. Dark ribbon; III. Cross region between
the gray and the dark ribbon. The white open squares in Figure 3c show these regions, and the AFM
images are shown in Figure 4a–c. It obviously shows that there were terrace-step structures in each
region, and that the structures were made up of many small steps and one to several large steps.
Figure 4a has the highest density of small steps, and Figure 4b has the second highest. This indicates
that the terraces on the surface of Wafer C2 became wider after graphene growth, compared with the
terraces on the original surface of the 4◦ off-axis 4H-SiC(0001) wafer. Figure 4d shows line section
analyses of the AFM images, from which we can see the dimensions of each terrace and each step for
the three regions. The scale of the small step for three regions was almost the same, while the large step
varied, and was at its largest in region III. The largest step means that there was a huge step between a
gray graphene ribbon and a dark one on the surface.

Figure 4. Atomic force microscope (AFM) analysis of surface of Wafer C2: (a) region I; (b) region II; (c)
region III marked in Figure 3c; (d) section analysis for corresponding regions in (a–c).
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3.3. Graphene Characterization

Raman measurements were used to identify and characterize graphene grown on the surface
of Wafer C2. Micro-Raman spectroscopy is a powerful but non-invasive technique for graphene
characterization [49]. Figure 5 shows Raman spectra in range of 1200–2800 cm−1, collected from the
points of the surface of Wafer C2 marked in Figure 3d with white open circles. In this wavelength
range, the characteristic peaks of graphene, namely D peak, G peak, and 2D peak, will appear [50].
The D peak, located at about 1350 cm−1, is the characteristic peak for graphene defects such as grain
boundaries and edges. The G peak at about 1580 cm−1 originates from in-plane vibration of sp2 carbon
atoms, and the 2D peak at about 2700 cm−1, which is associated with the phonon resonance near the
K points in the Brillouin zone [51], is the fingerprint peak of graphene. It should be noted that the
second-order Raman spectrum of 4H-SiC is in the range of 1400–1800 cm−1 [52], and it will disturb the
identification of D peak and G peak of graphene. It is better to subtract the 4H-SiC Raman signals at
this wavelength range from graphene Raman spectra.

Figure 5. Raman spectra collected from points of surface of Wafer C2, marked in Figure 3d.

Although we did not find graphene signals on the gray regions of the surfaces of Wafer A (and
Wafer B), we found clear graphene signals on the counterpart of Wafer C2 (Figure 5a). In the Raman
spectrum of point 1 (red spectrum in Figure 5a), for example, the D peak does not appear, which
indicates that the graphene ribbon was defect-free. The 2D peak is symmetrical, and can be fitted
perfectly by a Lorentz peak (insert in Figure 5a). The number of graphene layers, and the crystalline
quality, can be characterized by means of the ratio of the intensity of the 2D peak to the intensity of the
G peak (I2D/IG), combined with the full width at half maxima (FWHM) of the 2D peak. Graphene
is monolayer when I2D/IG > 2 and FWHM < 33 cm−1 [27], and is bilayer when 1 < I2D/IG < 2 [23].
When I2D/IG < 1, the number of layers can be 3–5, which can be further identified by FWHM of the 2D
peak and the contrast of the SEM image. In Figures 5a and 3d, it is revealed that the gray graphene
ribbon was monolayer or bilayer, and its width varied from several micrometers to several tens of
micrometers. Since the ribbon grew on top of the terrace and the terraces were parallel to each other,
the ribbons were neat and ordered.

Figure 5b shows Raman spectra of the dark region of the surface of Wafer C2. The I2D/IG of each
spectrum is less than 1, which means that the dark region was multiple-layer. Judging from Figures 3
and 5, we can further identify the number of graphene layers of the dark region. Since point 5 and
point 6 of the gray region (the black and the green spectrum in Figure 5a) are bilayer, and the contrast
of the SEM image in point 2 (the pink spectrum in Figure 5b) is darker than in point 5, combined with
judgments of I2D/IG (close to 1) and FWHM of 2D peak (49 cm−1), it is reasonable to deduce that point
2 of the dark region was trilayer. For the same reasons, point 3 and point 4 of the dark region may have
been 4-layer and 5-layer, respectively (the Lorentz fitting and the FWHM of 2D peak can be found in
Figure S4). Again, the trilayer or multiple-layer graphene ribbons of the dark region were neat and
ordered, just as the ribbons of the gray region were.
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Finally, we give an explanation of the reason why the growth conditions for Wafer C2 were suitable
to synthesize neat and ordered graphene ribbons. There are evenly-distributed nano-steps on the
surface of 4◦ off-axis 4H-SiC(0001) Si-face wafers. After the wafers were subjected to a high-temperature
heat treatment, the nano-steps kept in order and the terraces of the nano-steps became wider, due
to step kinetics or thermodynamic faceting of the inherent characteristics of 4H-SiC [42,43]. Then,
sublimation epitaxy of 4H-SiC via step-control mode [43], together with graphene growth, started at a
proper growth condition. Among the parameters of the growth condition, the growth pressure played
an important role on the terrace-steps on the wafer surface, since it affected the carbon-to-silicon
atomic ratio (C/Si ratio) in the process of sublimation [53,54]. An excessive C/Si ratio will cause the
appearance of giant steps with wider terraces [42]. This is the reason of why huge steps appear in
Figure 4c. On the other hand, during the 4H-SiC homoepitaxy, graphene grew on the 4H-SiC epitaxial
layers by sublimation of the Si component at high temperature. The topmost Si-C bilayers of 4H-SiC
on the terraces tended to form a monolayer of graphene. Thereafter, as the growth progressed, new
Si-C bilayers covered parts of these terraces and converted to another monolayer of graphene on top
of the older ones, which formed bilayer of graphene. Repeating this growth-convert process, trilayer
and multiple-layer of graphenes also formed on the terraces. Since the ribboned terraces were neat
and ordered, so was the graphene. In short, the growth conditions, i.e., 4◦ off-axis 4H-SiC(0001) Si-face
wafer, high-temperature heat treatment, and a growth pressure, were key parameters in synthesis of
neat and ordered graphene ribbons.

4. Conclusions

In summary, ordered graphene ribbons were grown on 4◦ off-axis 4H-SiC wafers, with growth
conditions of a heat treatment at 1500 ◦C for 30 min, and sublimation epitaxy at 1750 ◦C under a
pressure of 10 kPa in a gas mixture of 1 slm H2 and 2 slm Ar, and the feature sizes of the as-grown
ribbons were up to 40 µm in width and 1000 µm in length. These ribbons were homogeneous and
defect-free, without micro-defects such as grain boundaries, ridges, or mono- and few-layer graphene
mixtures. This is attributed to the enlarged macro-steps which acted as growth templates during
sublimation epitaxy.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/8/12/449/s1.
Figure S1: SEM images of (a) surface of Wafer A; (b) surface of target wafer after a heat treatment. Figure S2: SEM
images of surface of (a) Wafer C1 and (b) Wafer C2; optical images of surface of (c,d) Wafer C2. Figure S3: A 5 µm
× 5 µm AFM analysis of dark ribbon on the surface of Wafer C2. Figure S4: Lorentz fitting and the FWHM of 2D
peak of Raman spectrum of (a) point 3 and (b) point 3.
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