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Abstract: Cu-Ni-Si alloy with a different Co content was prepared by inductive melting and hot
rolling. The alloy was solution treated at 950 ◦C for 1.5 h and aged at 450 ◦C, 500 ◦C, and 550 ◦C
for different times. The phase diagram calculation and transmission electron microscopy was used
to investigate the effect of Co addition on the aging precipitation behavior of the Cu-Ni-Si alloy.
The phase transformation kinetics equation was calculated as well. The results show that, with
the increase of aging temperature, the two-phase region of Fcc + Ni2Si in the Cu-Ni-Si ternary
diagram would get wider. Some NixSiy phases would also form in the Cu-rich isothermal section.
The addition of Co would replace part of Ni to form the (Ni, Co)2Si phase, which inhibits the
spinodal decomposition process of the Cu-Ni-Si alloy during the aging process. The precipitated
phase of the Cu-Ni-Si alloy with a high content of the Co element is more likely to grow with the
extension of aging time. The phase transformation kinetic equations of the Cu-Ni-Si alloy at 450 ◦C
and 500 ◦C showed good agreement with the experimental results. Furthermore, it can be seen
from the precipitation kinetic curve the addition of the Co element accelerates precipitation in the
aging process.

Keywords: Cu-Ni-Co-Si alloy; phase diagram calculation; phase transformation kinetics equation;
aging; spinodal decomposition

1. Introduction

The Cu-Ni-Si alloy is a typical high-strength and age-hardening alloy that has been successfully
applied to various industries. It has been widely used and developed since Dr. Corson had found that
it has a precipitation strengthening effect at the beginning of the 20th century [1–5]. The development
of alloys such as C64710, C64730, C70250, and C70350 has further promoted the development of
Cu-Ni-Si alloy in recent years [6–8]. This series of alloys has attracted much attention due to its high
strength, good electrical conductivity, and stress relaxation resistance. Some of these alloys have even
been investigated to replace beryllium copper [9–11].

The strengthening mechanism of Cu-Ni-Si alloys includes solid solution strengthening, aging
strengthening, and work hardening [12–15]. Since the strengthening power of this alloy is mainly due
to the fine, dispersed Ni2Si that precipitated during the aging treatment, the strength and electrical
conductivity are closely related to the distribution, number, and size of the precipitated phases.
Deformation can further increase the strength of the alloy, but, at the same time, it can also slightly
decrease electrical conductivity. So far, the research on Cu-Ni-Si alloys is limited to the ternary
alloy system. In other words, there are few research studies focused on the influence of the fourth
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trace alloying element addition [16–18]. Lei Jingguo et al. [19–21] studied the effect of Cr addition
on mechanical properties and electrical properties of Cu-Ni-Si alloy and showed that the addition
of a trace amount of Cr can produce a dual alloy aging strengthening effect, which can increase the
hardness and strength of the Cu-Ni-Si alloy while ensuring that the conductivity is not greatly affected.
Wang Li et al. [22,23] added 0.03% P to the Cu-3Ni-0.6Si alloy for comparison. It was found that the
strength property was improved while the conductivity was sacrificed significantly. In this paper,
a small amount of Co is added to the Cu-Ni-Si alloy to study its influence on the early precipitation
phase during the aging treatment. The objective is to distinguish the phase transformation in the
Cu-Ni-Co-Si alloy during aging at a wide aging temperature range.

2. Experimental

High-purity electrolytic copper, nickel ingots, cobalt ingots, and silicon ingots were melted in
a 50 kg medium frequency induction furnace and cast at 1100 ◦C to 1200 ◦C. The four-component
alloys shown in Table 1 were obtained. The alloy ingot obtained after casting was hot-rolled in
multiple passes into a plate with a thickness of 4 mm. Then, the SX2-18-16T box resistance furnace
produced by Shanghai Shiyan Electric Furnace Co., Ltd. was used for solution and aging treatment.
The solid solution was taken into the temperatures of 950 ◦C for 1.5 hours, which was followed by water
quenching at room temperature. The aging temperatures were 450 ◦C, 500 ◦C, and 550 ◦C. The different
isothermal cross-section phase diagrams have been optimized via the CALPHAD approach using
Pandat software and the version of the software is CT-1067. Electrical conductivity was carried out
on a 7501 eddy current conductivity meter. A transmission electron microscope (TEM) observation
of the aged samples was carried out by a JEM-2000 transmission electron microscopy (200 kV) and
selected area electron diffraction analysis was carried out to determine the type and structure of the
precipitated phase and the orientation relationship between the precipitated phase and the matrix.
The transmission sample was mechanically ground to 100 µm, then punched into a small piece of Φ3
mm, and then thinned to about 50 µm. Lastly, a thin zone was obtained by double-spray electrolytic
thinning and the electrolyte ratio was 25% HNO3 + 75% CH3OH. The electropolishing temperature
was −30 ◦C and the voltage was 15~ 20 V.

Table 1. Composition for the experimental alloy (Wt.%).

Sample Cu Ni Co Si Ni/Co

S1 Bal. 2.8 0.0 0.6 0.00
S2 Bal. 1.8 0.8 0.6 3.00
S3 Bal. 1.4 1.2 0.6 1.17
S4 Bal. 1.2 1.4 0.6 0.86

3. Results and Discussions

3.1. Phase Diagram Calculation

Figure 1 shows the calculation results of different isothermal cross-section phase diagrams
in the copper-rich region of the Cu-Ni-Si ternary alloy. With the increased temperatures,
the Fcc + Ni2Si phase region gradually get wider. There are Fcc + NiSi, Fcc + Ni3Si2, Fcc + Ni2Si,
Fcc + Ni3Si, and Fcc + Ni5Si2 two-phase regions and three-phase regions such as Fcc + Ni3Si + NiSi,
Fcc + Ni2Si + Ni3Si2, Fcc + Ni2Si + Ni5Si2, Fcc + Ni3Si2+NiSi in the copper-rich section of the Cu-Ni-Si
ternary alloy aging at 450 ◦C, 500 ◦C, and 550 ◦C. Therefore, it can be inferred that the Cu-Ni-Si alloy
with these components in these regions may have NiSi, Ni2Si, Ni3Si, Ni3Si2, and Ni5Si phases as the
composition and aging temperature of the alloy change, which explains the reason for the formation of
so many types of precipitation during the aging treatment of Cu-Ni-Si alloys.



Crystals 2018, 8, 435 3 of 10

Crystals 2018, 8, x FOR PEER REVIEW  3 of 10 

   
Figure 1. Cu-rich isothermal section of the Cu-Ni-Si ternary alloy (a) 450 °C. (b) 500 °C. (c) 550 °C. 

Figure 2 shows the calculated Cu-Ni-Co-Si quaternion phase diagram with the variation of Ni 
and Co contents when the Si content is fixed at 0.6wt.%. It can be seen that, when the content of Ni 
and Co is less than 5 wt.%, the precipitated phase mainly includes CoSi, Co2Si, Ni2Si, and Ni5Si2. 

   

Figure 2. The equilibrium phase of the Co-Ni-Co-Si alloy with Ni, Co contents (a) 400 °C. (b) 450 °C. 
(c) 500 °C. 

Figure 3 shows the influence of the temperature on the mass fraction of the equilibrium phases. 
The isothermal sections of the alloy at 450 °C, 500 °C, and 550 °C are located between the two phase 
regions of Fcc + Ni2Si and Fcc + Co2Si. The theoretical calculations indicate that the Ni2Si and Co2Si 
are the main precipitates and, as the Co content increases, the proportion of the Co2Si phase also 
increases. The above suggests that the addition of Co would combine with some Si atoms to form 
the Co2Si phase. 

 

 
Figure 3. Relationship between the mass fraction of the equilibrium precipitation phase and the 
temperature of the test alloy (a) S1. (b) S2. (c) S3. (d) S4. 

Figure 1. Cu-rich isothermal section of the Cu-Ni-Si ternary alloy (a) 450 ◦C. (b) 500 ◦C. (c) 550 ◦C.

Figure 2 shows the calculated Cu-Ni-Co-Si quaternion phase diagram with the variation of Ni
and Co contents when the Si content is fixed at 0.6 wt.%. It can be seen that, when the content of Ni
and Co is less than 5 wt.%, the precipitated phase mainly includes CoSi, Co2Si, Ni2Si, and Ni5Si2.
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Figure 2. The equilibrium phase of the Co-Ni-Co-Si alloy with Ni, Co contents (a) 400 ◦C. (b) 450 ◦C.
(c) 500 ◦C.

Figure 3 shows the influence of the temperature on the mass fraction of the equilibrium phases.
The isothermal sections of the alloy at 450 ◦C, 500 ◦C, and 550 ◦C are located between the two phase
regions of Fcc + Ni2Si and Fcc + Co2Si. The theoretical calculations indicate that the Ni2Si and Co2Si are
the main precipitates and, as the Co content increases, the proportion of the Co2Si phase also increases.
The above suggests that the addition of Co would combine with some Si atoms to form the Co2Si phase.
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3.2. Aging Precipitation Evolution

Figure 4 is the TEM bright field images and selected area electron diffraction pattern (SADP) of
the S1 alloy after aging at 500 ◦C for 1 hour. The spots have a modulated structure, which produced
satellite reflections. Aged for 1 hour, since spinodal decomposition happened in the supersaturated solid
solution, in the following process of aging, the affinity of Ni to Si was greater. Therefore, the process of
the ordering was stronger and the super-lattice diffraction peak appeared. The super-lattice diffraction
spots are between (000)m and (220)m in Figure 4c (at the position of (1

210)m), which means that the ordering
occurred at the early stage of the aging process. From Figure 4c, it can be distinguished that the type of the
ordering is DO22 ordering because the typical (1

210)m is unique to DO22 ordering [24]. A small amount
of secondary precipitated particles with a size of approximately 5 nm can also be observed in the matrix.
From the SADP in Figure 4b, the crystal structure of the precipitates was orthorhombic and consists of the
δ-Ni2Si phase. From the analysis in Figure 4b,c, the crystal orientations between the copper based matrix
and precipitates was determined as: [001]m//[110]p, (010)m//(001)p.
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TEM images and the electron diffraction patterns of selected areas and the calibration results of
the S2, S3, and S4 alloy aged at 500 ◦C for 1 hour are shown in Figure 5. We can see that, compared
with the traditional ternary Cu-Ni-Si alloy, more precipitates are formed in the early stage of the aging
process in the Cu-Ni-Co-Si alloy part of the Ni atoms of which are replaced by Co addition. There are
many dispersed precipitates in the matrix that are about 10 nm in size and are slightly larger than the
precipitates of the S1 alloy. These phases are completely coherent with the matrix, which indicates
that the movement of dislocations would be hindered by this type of precipitate. However, no satellite
spots or ordered spots were found in the electron diffraction spots in the selected area at this stage.
Therefore, we can speculate that the addition of Co may delay the formation of spinodal decomposition
while the Ni element slightly accelerates the spinodal decomposition. According to the literature,
this is because Co has a small solid solubility in Cu and easily combines with vacancies, which inhibits
the movement of vacancies required for the formation of spinodal decomposition. The binding energy
of Co and Si to form the second phase is larger than the binding energy of Ni and Si. In the early stage
of aging of the Cu-Ni-Co-Si alloy, no microstructure was generated due to spinodal decomposition.
Its corresponding satellite spots were found.
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Figure 6 shows the transmission electron micrographs and select-area diffraction patterns of the
S1 alloy after aging at 500 ◦C for 4 hours. Many precipitates can be observed in Figure 6a. From the
diffraction pattern in Figure 6b, the modulated structure, which caused satellite reflections with
the beam direction paralleling to [001]Cu, can be seen. A computer simulation (Figure 6c) of the
diffraction pattern produced by δ-Ni2Si in a beam direction paralleling to [001]Cu was to help to index
the diffraction pattern of Figure 6b. Based on the analysis, the satellite spots are due to spinodal
decomposition and the spots is due to the precipitate of δ-Ni2Si. The relationship between the matrix
and δ-Ni2Si can be expressed as [001]m//[110]p, (010)m//(001)p.
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TEM images and the SADP of selected areas and their calibration results of the S2, S3, and S4
alloy specimens aged at 500 ◦C for 4 hours are shown in Figure 7. After increasing the holding time,
more second phase particles within the matrix were observed. The precipitates average diameters are
about 20 nm. According to the analysis of SADP in Figure 7b,d,f, the precipitate can be determined as
(Ni,Co)2Si. The relationship between the matrix and (Ni,Co)2Si is [001]m//[110]p, (010)m//(001)p.
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3.3. Phase Transformation Kinetics Equation

The electrical conductivity of the alloy in aging mainly depends on the purity of the copper matrix.
Because of the sensitivity of electrical conductivity to the precipitation behavior, the kinetics of
precipitated phase can be studied by measuring the change of the conductivity and the phase
transformation kinetics can be calculated. During aging, the solute atoms precipitate from the solid
solution to form the precipitates. Since the solute atoms such as Ni and Si cannot be completely
extracted out of the copper matrix, the volume fraction of the precipitated can be expressed as [25]:

f = V/Vf (1)

Vf is the equilibrium volume of the new phase in a unit volume of the matrix when precipitation is
over and V is the volume of the new phase formed in a unit volume of the matrix during aging for
a certain time t. Clearly, before phase transformation, V = 0 and f = 0. The initial state of electrical
conductivity is σ0. After a long aging time, the phase transformation process ended and the electrical
conductivity hardly increases and reaches the maximum σmax. So V = Vf and f = 1.

According to Matthissen’s rule, the electrical conductivity and volume fraction of precipitates has
a linear relationship, which can be expressed as Equation (2) below [26].

σ = σ0 + Af (2)

On the hypothesis of linearity, when transformation is finished, σ = σmax, A = σmax − σ0, and σ

can be expressed by the equation below.

σ = σ0 + (σmax − σ0) f (3)

The kinetics Avrami equation of phase transformation can be expressed by Equation (4) [27].

f = 1 − exp (−btn) (4)
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In this scenario, f is the volume fraction of precipitates, t is the aging time, and b and n are
constants. According to Equations (2) and (4), the electrical conductivity equation can be expressed by
the formula below.

σ = σ0 + (σmax − σ0) [1 − exp (−btn)] (5)

Taking logarithms of both side of Equation (5), the following is calculated.

ln (ln (1/(1 − f))) = lnb + nlnt (6)

With the date of Tables 2 and 3, the relationship of ln (ln (1/(1 − f))) and lnt is shown in Figure 8.
We can observe that the curve fitting diagram of ln (ln (1/(1 − f))) − lnt shows an approximately
straight line. The n is the slope coefficient of the line and the lnt is the intercept.

Table 2. The electrical conductivity and new phase volume transformation ratio of precipitate for alloys
aged at 450 ◦C for multiple periods of time.

t/min
S1 S2 S3 S4

σ/IACS% f/% σ/IACS% f/% σ/IACS% f/% σ/IACS% f/%

0 17.6 0.00 15.2 0.00 14.5 0.00 19.6 0.00
30 24 41.67 28.6 56.78 35.8 68.39 44.7 68.39
60 27.4 50.38 29.6 61.02 44.4 72.75 46.3 72.75
120 29.6 62.50 33 75.42 47 79.56 48.8 79.56
240 31.6 74.24 34.8 83.05 50 89.10 52.3 89.10
480 34.3 87.12 36.4 89.83 51.1 92.37 53.5 92.37
960 35.6 100.00 38.8 100.00 51.7 100.00 56.3 100.00

Table 3. The electrical conductivity and new phase volume transformation ratio of precipitate for alloys
aged at 500 ◦C for multiple periods of time.

t/min
S1 S2 S3 S4

σ/IACS% f/% σ/IACS% f/% σ/IACS% f/% σ/IACS% f/%

0 17.6 0.00 15.2 0.00 14.5 0.00 19.6 0.00
30 33.3 52.51 32 64.86 44.3 74.69 45 67.55
60 36.4 62.88 34 72.59 45 76.44 49.4 79.26
120 39.8 74.25 36.3 81.47 48.8 85.96 50.7 82.71
240 42.7 83.95 38.6 90.35 50.8 90.98 53.8 90.96
480 44.7 90.64 39.6 94.21 52 93.98 54.3 92.29
960 47.5 100.00 41.1 100.00 54.4 100.00 57.2 100.00
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Therefore, the phase transformation kinetics equation of the Cu-Ni-Co-Si alloy solid solution aged
at 450 ◦C and 500 ◦C can be expressed as seen in Table 4.

Table 4. The Avrami-equation of phase transformation of alloys.

Alloy 450 ◦C 500 ◦C

S1 f = 1 − exp (−0.1007t0.4807) f = 1 − exp (−0.1776t0.4223)
S2 f = 1 − exp (−0.2184t0.3806) f = 1 − exp (−0.2870t0.3744)
S3 f = 1 − exp (−0.1488t0.5481) f = 1 − exp (−0.5035t0.28)
S4 f = 1 − exp (−0.3839t0.3089) f = 1 − exp (−0.4322t0.2985)

The phase transformation kinetics curves are shown in Figure 9 and are based on Table 4. It can
be seen that the experimentally obtained values agreed with the theoretical analysis.
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4. Conclusions

(1) There are various combinations of NixSiy phases in the Cu-rich isothermal section of the Cu-Ni-Si
ternary alloy. With the increase of temperature, the Ni2Si two-phase region is widened. After the
addition of the Co element, a part of the Ni atom is replaced to form a Co2Si phase, which increases
as the content of the Co element increases.

(2) The addition of the Co element will delay the formation of spinodal decomposition during the
aging of the Cu-Ni-Si alloy. After adding the Co element to the Cu-Ni-Si alloy to form the δ-Ni2Si
phase, which has the [001]m//[110]p, (010)m//(001)p orientation relationship with the matrix
and will precipitate the (Ni,Co)2Si phase, the relationship between the matrix and (Ni,Co)2Si
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can be expressed as [001]m//[110]p, (010)m//(001)p. In addition, with the aging time prolonged,
the precipitates of the Cu-Ni-Si alloy with a high content of the Co element is more likely to grow.

(3) The precipitation kinetics of the Cu-Ni-Si alloy at 450 ◦C and 500 ◦C was calculated. The kinetic
equation agrees with the experimental values and it can be seen from the precipitation kinetic
curves that the addition of Co can promote the precipitation rate of the precipitated phase.
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