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Abstract: A hetero-hexanuclear Zn(II)-La(III) coordination compound, [{(ZnL)2La}2(bdc)2](NO3)2

(H2bdc = terephthalic acid) has been synthesized with a symmetric Salamo-like bisoxime,
and characterized by elemental analyses, IR, UV-Vis, fluorescent spectroscopy, and single-crystal
X-ray diffraction analysis. All of the Zn(II) ions are pentacoordinated by N2O2 donator atoms
from the (L)2− unit and one oxygen atom from one terephthalate anion. The Zn(II) ions adopt
trigonal bipyramidal geometries (τZn1 = 0.61, τZn2 = 0.56). The La(III) ions are decacoordinated in the
Zn(II)-La(III) coordination compound and has a distorted bicapped square antiprism geometry.
Meanwhile, the photophysical property of the Zn(II)-La(III) coordination compound was also
measured and discussed.

Keywords: Salamo-like bisoxime; Zn(II)-La(III) coordination compound; crystal structure;
photophysical property

1. Introduction

Salen-like (N,N-bis(salicylidene)ethylenediamine) N2O2 compounds are a class of the most
versatile multidentate chelating ligands and could form stable mono- or multi-nuclear metal
coordination compounds with alkaline earth, rare earth, and d-block transition metal ions [1–9].
Salen-like ligands and their corresponding metal coordination compounds have been proverbially
studied in recent decades [10–16], these metal coordination compounds are used as precursors
to obtain a great deal of oligometallic coordination compounds own to the high coordination
abilities [17–21]. In recent years, our research mostly concentrated on the syntheses, crystal structures
and properties of Salamo-like (1,2-bis(salicylideneaminooxy)ethane) derivatives and their metal
coordination compounds. Salamo-like derivatives are at least 104 times more stable than Salen-like
ligands due to the unique structures of Salamo-like derivatives [22–24]. When 3-alkoxy groups
are introduced of salicylidene moieties, the whole ligand molecule will have an O4 coordination
site besides the N2O2 site. The O4 site of 3-alkoxy Salamo-like derivatives is suitable for alkali
metals, alkaline earth metals and rare earth metal ions to obtain heteromulti-nuclear coordination
compounds [25–28]. These hetero-metallic Salamo-like coordination compounds have been studied
for their catalytic activities [29,30], biological activities [31], and fluorescence properties [32–34].
Meanwhile, supra-molecular chemistry has become increasingly prominent in the coordination

Crystals 2018, 8, 414; doi:10.3390/cryst8110414 www.mdpi.com/journal/crystals

http://www.mdpi.com/journal/crystals
http://www.mdpi.com
https://orcid.org/0000-0003-1249-5808
http://www.mdpi.com/2073-4352/8/11/414?type=check_update&version=1
http://dx.doi.org/10.3390/cryst8110414
http://www.mdpi.com/journal/crystals


Crystals 2018, 8, 414 2 of 12

chemistry, for Salamo-like derivatives, supra-molecular structures are formed mainly with the help of
hydrogen bonding interactions [35–38]. In our previous studies, a number of Salamo-type derivatives
and their hetero-nuclear coordination compounds have been synthesized [39–42]. However, 3d-4f
hetero-nuclear Salamo-like coordination compounds containting auxiliary ligands have rarely been
reported [43–45].

In order to explore the structures and optical properties of 3d-4f hetero-nuclear metal
coordination compounds contained auxiliary ligands, herein the terephtalic acid was selected
as a simple multidentate linker owing to its availability and application in the building of
Salamo-like Zn(II)-Ln(III) coordination compound. we have successfully designed and synthesized a
symmetric Salamo-like derivative H2L and its corresponding Zn(II)-La(III) coordination compound
([{(ZnL)2La}2(bdc)2](NO3)2). Furthermore, the supra-molecular features and photophysical properties
of the Zn(II)-La(III) coordination compound are discussed in detail.

2. Experimental

2.1. Materials and Instrumentation

All chemical reagents were analytical pure reagents, which have not been purified before used.
Carbon, nitrogen and hydrogen analyses were obtained using a GmbH VarioEL V3.00 automatic
elemental analyzer (Berlin, Germany). Elemental analyses for ZnII and LaIII were detected by an IRIS
ER/S-WP-1 ICP atomic emission spectrometer (Berlin, Germany). Melting points were measured via
a microscopic melting point apparatus (Beijing Taike Instrument Limited Company, Beijing, China).
1H and 13C NMR spectra were recorded in deuterated DMSO solution by German Bruker AVANCE
DRX-400 spectroscopy (Bruker AVANCE, Billerica, MA, USA). Infrared spectra were measured with
a VERTEX-70 FT-IR spectrophotometer (Bruker, Billerica, MA, USA), with samples prepared as KBr
(400–4000 cm−1). UV-Vis absorption and fluorescence spectra were recorded on a Shimadzu UV-2550
(Shimadzu, Japan) and Hitachi F-7000 (Hitachi, Tokyo, Japan) spectrometers, respectively. Quantum
yields in solid state were measured using an absolute method by integrating sphere on FLS920 of
Edinburgh Instrument. X-ray single crystal structure determination was carried out on a Bruker Smart
Apex CCD diffractometer (Bruker AVANCE, Billerica, MA, USA).

2.2. Preparation of Ligand H2L

Preparation of 1,2-bis(aminooxy)ethane was in accordance with the literature [46,47]. Yield: 71.5%.
Anal. Calcd for C2H8N2O2 (%): C, 26.08; H, 8.76; N, 30.42. Found: C, 25.87; H, 8.68; N, 30.51. 1H NMR
(400 MHz, CDCl3) δ 3.79 (s, 4H), 5.52 (s, 4H).

The ligand H2L was synthesized according to the procedure reported early [43]. Reaction
of 1,2-bis(aminooxy)ethane with two equivalents of 3-methoxysalicylaldehyde in ethanol afforded
the desired ligand H2L. The synthesis routes of the Salamo-like bisoxime derivative (H2L) and its
Zn(II)-La(III) coordination compound are shown in Scheme 1. Yield: 81.6%. Mp: 132–134 ◦C. 1H NMR
(400 MHz, CDCl3) δ 3.87 (s, 6H), 4.46 (s, 4H), 6.81 (dd, J = 7.9, 1.9 Hz, 2H), 6.86 (t, J = 7.9 Hz, 2H), 6.95
(dd, J = 7.9, 1.9 Hz, 2H), 8.23 (s, 2H), 9.70 (s, 2H). 13C NMR (100 MHz, CDCl3) δ 57.4 (CH3), 72.8 (CH2),
115.3 (CH), 119.2 (C), 119.6 (CH), 124.1 (CH), 149.5 (C), 150.2 (C), 152.7 (CH=N). IR (KBr, cm−1): 3137
(m) [ν(O–H)], 1601 (m) [ν(C=N)], 1255 (m) [ν(Ar–O)]. Anal. Calcd for C18H20N2O6 (%): C, 59.99; H,
5.59; N, 7.77. Found: C, 60.07; H, 5.73; N, 7.61%.
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the mixture immediately turns pale yellow and then allowed to mixing with terephthalic acid (0.01 
mmol) in CH3OH (1 mL) and continues stirring for about 30 min at room temperature. After the 
mixed solution was filtered by absorbent cotton, leaves the filtrate at room temperature for about two 
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solvent. Yield: 60.5%. IR (KBr, cm−1): 1557 (m) [ν(C=N)], 1220 (m) [ν(Ar–O)], 449 (m) [ν(Zn–N)], 529 
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methods and refined anisotropically using full-matrix least-squares methods on F2 with the SHELX-
2018 program package. The hydrogen atoms were positioned geometrically and refined isotropically 
using the ‘riding’ model (SHELXL-2018). In addition, DELU and AFIX were applied in the structure 
refinement. The structure contained large in the void couldn’t be identified because it was highly 
disordered and had so small residual peak. Therefore, SQUEEZE in PLATON program was 
performed to remove the highly disordered solvent. (Solvent Accessible Volume = 914, Electrons 
Found in S.A.V. = 484). The nonhydrogen atoms were refined anisotropically. Crystal data and 
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Supplementary crystallographic data for this paper have been deposited at Cambridge 
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Scheme 1. Synthesis routes of the Salamo-like derivative H2L and its Zn(II)-La(III) coordination compound.

2.3. Preparation of the Zn(II)-La(III) Coordination Compound

Synthesis route of the Zn(II)-La(III) coordination compound is shown in Scheme 1. To stirring
colorless transparent solution of H2L (15.8 mg, 0.02 mmol) in CHCl3 (3 mL) was added Zn(OAc)2·2H2O
(4.38 mg, 0.02 mmol) and La(NO3)3·6H2O (0.02 mmol) in CH3OH (2 mL). The color of the mixture
immediately turns pale yellow and then allowed to mixing with terephthalic acid (0.01 mmol) in
CH3OH (1 mL) and continues stirring for about 30 min at room temperature. After the mixed solution
was filtered by absorbent cotton, leaves the filtrate at room temperature for about two weeks. Finally,
light-yellow and block-shaped crystals were obtained with the volatilization of solvent. Yield: 60.5%.
IR (KBr, cm−1): 1557 (m) [ν(C=N)], 1220 (m) [ν(Ar–O)], 449 (m) [ν(Zn–N)], 529 (m) [ν(Zn–O)]. Anal.
Calcd for C88H80Zn4La2N10O38 (%): C, 43.59; H, 3.33; N, 5.78; Zn, 10.78; La, 11.46. Found: C, 43.71; H,
2.98; N, 5.46; Zn, 10.84; La, 11.39.

2.4. Structure Description of the Zn(II)-La(III) Coordination Compound

Crystal data of the Zn(II)-La(III) coordination compound were collected on a Bruker Smart
Apex CCD diffractometer at 173(2) K (Mo-Kα radiation (λ = 0.71073 Å)). The LP factor and
Semi-empirical absorption corrections were applied to the intensity data. The structure was solved
by the direct methods and refined anisotropically using full-matrix least-squares methods on F2 with
the SHELX-2018 program package. The hydrogen atoms were positioned geometrically and refined
isotropically using the ‘riding’ model (SHELXL-2018). In addition, DELU and AFIX were applied in
the structure refinement. The structure contained large in the void couldn’t be identified because it
was highly disordered and had so small residual peak. Therefore, SQUEEZE in PLATON program
was performed to remove the highly disordered solvent. (Solvent Accessible Volume = 914, Electrons
Found in S.A.V. = 484). The nonhydrogen atoms were refined anisotropically. Crystal data and
structure parameters for the Zn(II)-La(III) coordination compound are given in Table 1. Supplementary
crystallographic data for this paper have been deposited at Cambridge Crystallographic Data Centre
(1434632) and can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html.

Table 1. Crystal data and structure parameters for the Zn(II)-La(III) coordination compound.

Coordination Compound Zn(II)-La(III)

Empirical formula C88H80Zn4La2N10O38
Molecular weight, g·mol−1 2424.92

Color Yellow
Crystal size, mm3 0.15 × 0.12 × 0.06

Habit Block-shaped
Crystal system Triclinic

Space group P − 1

www.ccdc.cam.ac.uk/conts/retrieving.html
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Table 1. Cont.

Coordination Compound Zn(II)-La(III)

Unit cell dimension
a (Å) 12.5918(11)
b (Å) 15.9312(15)
c (Å) 16.1881(17)
α (◦) 68.980(12)
β (◦) 84.083(8)
γ (◦) 86.619(9)

V (Å3) 3014.3(6)
Z 1
Z’ 0.5

Dc (g·cm−3) 1.336
µ (mm−1) 1.550

F(000) 1216
θ Range (◦) 1.353–26.022

Index ranges −15 ≤ h ≤ 15, −18 ≤ k ≤ 19, 0 ≤ l ≤ 19
Reflections collected 11813

Completeness (%) 99.4
Data/restraints/parameters 11812/11/644

Final R1/wR2 [I > 2σ(I)] R1 = 0.0397, wR2 = 0.1053
Final R1/wR2 (all data) R1 = 0.0521, wR2 = 0.1092

∆ρmax/min (e·Å−3) 0.715 and −0.626

3. Results and Discussion

3.1. Infrared Spectra

The infrared spectra of H2L and its Zn(II)-La(III) coordination compound exhibited various
bands in the 400–4000 cm−1 range (Figure 1). The free ligand H2L exhibited an obvious characteristic
band at 3137 cm−1 and can be attributed to the characteristic bands of the OH group. This band
was dispeared in the infrared spectrum of the Zn(II)-La(III) coordination compound, indicating
the interaction between the OH group and the Zn(II) ion leads to hydroxyl deprotonation [34].
In addition, the free ligand H2L showed an individual C=N stretching band at 1601 cm−1, while the
C=N stretching band of the Zn(II)-La(III) coordination compound appeared at 1557 cm−1. For the
ligand H2L, the Ar-O stretching band appeared at 1255 cm−1, which was observed at 1220 cm−1 for the
Zn(II)-La(III) coordination compound. The vibration of NO3

− anion appeared at about 1459 cm−1 in
the spectrum of the Zn(II)-La(III) coordination compound. The C=N and Ar–O stretching frequencies
are shifted, indicating the formation of new chemical bonds (Zn–O and Zn–N) [25]. For the Zn(II)-La(III)
coordination compound, the ν(Zn–O) and ν(Zn–N) frequencies were observed at 449 and 529 cm−1,
respectively. Just as Percy and Thornton suggested [48], the M-O and M-N stretching frequency
assignments are difficult sometimes.
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3.2. UV-Vis Spectra

The UV-Vis spectra of H2L and its Zn(II)-La(III) coordination compound were measured in
1 × 10−5 mol·L−1 CH2Cl2 solution in freshly prepared solution are obtained in the range of 200–450 nm
at room temperature, as shown in Figure 2. As can be seen from the diagram, the absorption peak of
the Zn(II)-La(III) coordination compound is evidently different from the ligand before coordination.
The absorption spectrum of H2L showed that two relatively strong absorption peaks appeared at ca.
266 nm (ε = 1.8 × 104 M−1·cm−1) and 322 nm (ε = 6.1 × 103 M−1·cm−1), which can be attributed to
π-π* transitions of the benzene rings and the C=N bonds [17]. Compared with the free ligand H2L,
the corresponding absorption peak of the Zn(II)-La(III) coordination compound appeared at ca. 278 nm
(ε = 4.1 × 104 M−1·cm−1) was remarkably red shifted upon coordination to metal ions. The absorption
peak at ca. 322 nm is absent in the Zn(II)-La(III) coordination compound. Meanwhile, a new absorption
peak appeared at ca. 349 nm (ε = 1.2× 104 M−1·cm−1) in the Zn(II)-La(III) coordination compound that
might be owing to M→L (MLCT) charge-transfer transition, which is characteristic of the transition
metal coordination compound with N2O2 coordination spheres [27].Crystals 2018, 10, x 6 of 12 
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Figure 2. UV-Vis spectra of H2L and its Zn(II)-La(III) coordination compound.

3.3. Crystal Structure of Zn(II)-La(III) Coordination Compound

Crystal structure of the Zn(II)-La(III) coordination compound exhibited a symmetric hexanuclear
structure, which is different from the common trinuclear bis(salamo)-type coordination compounds
reported earlier [43,46]. The crystal structure of the Zn(II)-La(III) coordination compound and the
coordination polyhedra of metal atoms are shown in Figure 3. Essential bond lengths and angles are
listed in Table 2.

Table 2. Essential bond lengths (Å) and angles (◦) for the Zn(II)-La(III) coordination compound.

Bond Bond Bond

La1–O13 2.459(3) La1–O1 2.720(3) O14–Zn1 1.998(3)
La1–O16 #1 2.497(3) La1–O12 2.781(3) O5–Zn1 2.055(3)

La1–O8 2.506(2) La1–O6 2.813(3) N4–Zn2 1.992(4)
La1–O5 2.519(3) La1–Zn1 3.5369(7) N3–Zn2 2.122(3)
La1–O11 2.523(3) La1–Zn2 3.5491(7) O8–Zn2 1.976(3)
La1–O2 2.536(3) N1–Zn1 2.132(3) O11–Zn2 2.065(3)
La1–O7 2.690(3) N2–Zn1 2.034(4) O15–Zn2 #1 1.984(3)
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Table 2. Cont.

Bond Bond Bond

Angles Angles Angles

O13–La1–O16 #1 75.54(9) O5–La1–O2 62.63(9) O12–La1–O6 161.99(9)
O13–La1–O8 152.43(9) O11–La1–O2 118.54(9) O2–Zn1–O14 113.20(13)

O16 #1–La1–O8 76.91(9) O13–La1–O7 139.64(9) O2–Zn1–N2 126.73(13)
O13–La1–O5 70.42(9) O16 #1–La1–O7 123.92(9) O14–Zn1–N2 119.87(14)

O16 #1–La1–O5 107.80(9) O8–La1–O7 59.53(9) O2–Zn1–O5 81.13(11)
O8–La1–O5 118.12(9) O5–La1–O7 69.87(9) O14–Zn1–O5 99.14(11)

O13–La1–O11 108.48(9) O11–La1–O7 111.38(9) N2–Zn1–O5 86.31(13)
O16 #1–La1–O11 70.54(9) O2–La1–O7 81.02(8) O2–Zn1–N1 86.92(13)

O8–La1–O11 62.21(9) O13–La1–O1 122.61(9) O14–Zn1–N1 96.36(12)
O5–La1–O11 178.28(9) O16 #1–La1–O1 142.29(9) N2–Zn1–N1 91.52(14)
O13–La1–O2 74.77(9) O8–La1–O1 80.96(8) O5–Zn1–N1 163.23(12)

O16 #1–La1–O2 150.28(9) O5–La1–O1 109.50(9) O8–Zn2–O15 #1 112.61(12)
O8–La1–O2 132.80(9) O11–La1–O1 72.20(9) O8–Zn2–N4 130.16(15)
O7–La1–O1 66.05(9) O2–La1–O1 58.53(9) O15 #1–Zn2–N4 116.62(15)

O11–La1–O12 58.19(8) O13–La1–O12 67.16(10) O8–Zn2–O11 79.99(11)
O2–La1–O12 69.32(9) O16 #1–La1–O12 97.93(9) O15 #1–Zn2–O11 97.48(11)
O7–La1–O12 132.07(9) O8–La1–O12 117.95(9) N4–Zn2–O11 86.41(14)
O1–La1–O12 66.44(9) O5–La1–O12 121.99(8) O8–Zn2–N3 87.90(14)
O13–La1–O6 97.96(9) O7–La1–O6 65.84(8) O15 #1–Zn2–N3 97.41(12)

O16 #1–La1–O6 67.47(9) O1–La1–O6 131.57(8) N4–Zn2–N3 93.10(15)
O8–La1–O6 70.46(9) O11–La1–O6 121.87(8) O11–Zn2–N3 163.57(13)
O5–La1–O6 57.34(8) O2–La1–O6 118.01(9)

Symmetry transformations used to generate equivalent atoms: #1 −x + 2, −y + 1, −z.
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The Zn(II)-La(III) coordination compound crystallizes in the triclinic crystal system, space group
P − 1 and the unit cell contains four Zn(II) ions, four (L)2− units, two (bdc)2− ions, two La(III) ions,
and two free NO3

− ions. The Zn(II)-La(III) coordination compound was assembled by two trinuclear
units [(ZnL)2La] and two terephthalic acid, similar to the Zn(II)-Ln(III) coordination compounds
reported [49].

In the crystal structure of the Zn(II)-La(III) coordination compound, each Zn(II) ion is located in
the N2O2 coordination cavity, which have pentacoordinate environments, and the axial position is
occupied by one oxygen atom of terephthalic acid. The four Zn(II) ions assumes a distorted trigonal
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bipyramidal geometries, which were inferred by calculating the value of τZn1 = 0.61, τZn2 = 0.56,
respectively [50]. The La(III) ions have a decacoordinate environment, consisting of eight oxygen
atoms (O1, O2, O5, O6, O7, O8, O11, and O12) come from two deprotonation (L)2− units, two oxygen
atoms (O13 and O16) of two terephthalic acid. Thus, all of the La(III) ions adopt a distorted bicapped
square antiprism geometry.

The hydrogen bonding interactions are listed in Table 3. In the crystal structure of the Zn(II)-La(III)
coordination compound, the molecular structure is stabilized through intramolecular C-H···O
interactions (C9-H9B···O14, C18-H18B···O16, C27-H27B···O15, and C36-H36B···O13) (Figure 4).
Intermolecular interactions, especially classical and non-classical hydrogen bonds, are playing a
crucial role in the formation of crystalline solids and their physiochemical properties [51–59]. There are
two inter-molecular C29-H29···O10# and C31-H31···O18 hydrogen bonding interactions, which can
link each cell unit through inter-molecular hydrogen bondings (Figure 5). Additionally, the hydrogen
bonding scheme of the Zn(II)-La(III) coordination compound is defective owing to suppression of the
electron density originating from solvent molecules (used SQUEEZE) and subsequent exclusion of
these solvent molecules from the refinement model.
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Figure 5. The one-dimensional structure of the Zn(II)-La(III) coordination compound with intermolecular
hydrogen bondings (hydrogen atoms have been omitted except those formation of hydrogen bonds).

Table 3. Putative hydrogen bonding interactions (Å, ◦) for the Zn(II)-La(III) coordination compound.

D-X···A d(D-X) d(X···A) d(D···A) ∠∠∠DXA Symmetry Code

C9-H9B···O14 0.99 2.44 3.322(5) 149
C18-H18B···O16 0.98 2.48 3.098(5) 121
C27-H27B···O15 0.99 2.31 3.239(6) 156
C29-H29···O10 0.95 2.40 3.011(7) 122 1 − x, 2 − y, −z
C31-H31···O18 0.95 1.81 2.748(8) 169 x, 1 + y, −1 + z
C36-H36B···O13 0.98 2.49 3.122(6) 122
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3.4. Fluorescence Properties

The fluorescence properties of H2L and its Zn(II)-La(III) coordination compound were researched
at room temperature (Figure 6).Crystals 2018, 10, x 9 of 12 
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Figure 6. Emission spectra of H2L (c = 1 × 10−5 M, λex = 360 nm) and its Zn(II)-La(III)
coordination compound.

With excitation at 360 nm, the free ligand H2L showed strong emission peak at about 419 nm,
which can be attributed to the intra-ligand π-π* transition. Similarly, the Zn(II)-La(III) coordination
compound also exhibited an intense luminescence with maximum emission at ca. 433 nm and the
emission quantum yield Φ = 0.19% [49]. Compared with the ligand H2L, the fluorescence intensity of
the Zn(II)-La(III) coordination compound showed a marked reduction, indicating that the addition
of metal ions induced the change of fluorescence characteristics of the ligand; it is further explained
that the (Zn/L)-center has absorbed and transferred energy to La(III) ion as a type of metal-organic
antenna [43].

4. Conclusions

We have designed and synthesized a symmetric Salamo-like bioxime ligand H2L, and obtained a
hetero-hexanuclear Zn(II)-La(III) coordination compound [{(ZnL)2La}2(bdc)2](NO3)2. The crystal
structure of the Zn(II)-La(III) coordination compound showed that all of the Zn(II) ions have
pentacoordinate environments and adopt distorted trigonal bipyramidal geometries. The La(III)
ions adopt a distorted bicapped square antiprism geometry. The fluorescence behavior of H2L and its
Zn(II)-La(III) coordination compounds was studied, compared with the ligand H2L, the fluorescence
intensity of the Zn(II)-La(III) coordination compound showed a marked reduction, indicating that the
addition of Zn(II)-La(III) ions induced the change of fluorescence characteristics.
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