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Abstract: One trinuclear Co(II) coordination compound [{CoL1(OAc)(CH3COCH3)}2Co] (1) and
one unprecedented mononuclear Ni(II) coordination compound [Ni(L2)2] (2), constructed from a
Salamo-type ligand H2L1 were synthesized and characterized by elemental analyses, IR, UV-vis
spectra, and single crystal X-ray diffraction analyses. The results show that the Co(II) atoms have no
significant distortion in CoO6 or CoO4N2 octahedrons in coordination compound 1. Interestingly,
in coordination compound 2, the desired tri- or mono-nuclear Salamo-type Ni(II) coordination
compound was not obtained, but an unprecedented Ni(II) coordination compound [Ni(L2)2] was
synthesized, the Ni1 atom having no significant distortion in the NiO2N2 planar quadrilateral
geometry. Furthermore, the antimicrobial activities of coordination compound 1 and previously
reported coordination compound [{CoL1(OAc)(MeOH)}2Co]·2MeOH (3) are discussed.

Keywords: Salamo-type bisoxime; Co(II) and Ni(II) coordination compounds; fluorescence property;
antimicrobial property

1. Introduction

N2O2-type chelating ligands and their metal coordination compounds have achieved considerable
attention in inorganic chemistry over several decades [1–3], especially in the area of their potential
application in catalysts [4,5], biological fields [6–10], electrochemical conducts [11], ion recognitions [12–16],
supramolecular architecture [17–20], as well as magnetic [21–24] and luminescence [25,26] materials.
Recently, a new N2O2-type analogue, the Salamo ligand was developed [27–32]. Interestingly, other
works have contributed to researching mono-, multi-, homo- or heteromultinuclear metal coordination
compounds having Salamo-type ligands or their derivatives [33–35].

Herein, we designed and synthesized two Co(II) and Ni(II) coordination compounds:
[{CoL1(OAc)(CH3COCH3)}2Co] (1) and [Ni(L2)2] (2). Furthermore, a previously reported coordination
compound [{CoL1(OAc)(MeOH)}2Co]·2MeOH (3) was synthesized [36]. Compared with the previously
reported coordination compounds [36–49], coordination compounds 1 and 3 with a similar structure
are both symmetrically trinuclear. The content of these previous works is mainly based on the study
of solvent effect and fluorescence properties. In this paper, not merely the fluorescence properties
were studied but also the most important discovery was to find coordination compounds 1 and 3 have
good antimicrobial activities. This study provides a new idea for the application of such Salamo-type
coordination compounds. Interestingly, catalysis of Ni(II) ions gives rise to unexpected cleavage of two
N–O and two C–C bonds in H2L1 and an unprecedented mono-nuclear Ni(II) coordination compound
has been discovered; this catalytic phenomenon of Ni(II) ions is a first for the previously reported
Salamo Ni(II) coordination compounds.
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2. Experimental

2.1. Materials and Methods

5-Chlorosalicylaldehyde (98%) was purchased from Alfa Aesar (New York, NY, USA) and was
used without further purification. 1,3-Dibromoprophane, other reagents and solvents were analytical
grade reagents from Tianjin Chemical Reagent Factory.

Carbon, hydrogen, and nitrogen analyses were obtained using a GmbH VariuoEL V3.00 automatic
elemental analysis instrument (Berlin, Germany). Elemental analyses for Co(II) or Ni(II) were detected
with an IRIS ER/S-WP-1 ICP atomic emission spectrometer (Berlin, Germany). Melting points were
obtained by the use of a microscopic melting point apparatus made by Beijing Taike Instrument
Company Limited (Beijing, China) and were uncorrected. IR spectra (400–4000 cm−1) were recorded
on a Vertex 70 FT-IR spectrophotometer (Bruker, Billerica, MA, USA), with samples prepared as KBr
pellets. UV-vis absorption spectra were recorded on a Shimadzu UV-3900 spectrometer (Shimadzu,
Japan). 1H NMR spectra were determined by German Bruker AVANCE DRX-400/600 spectroscopy
(Bruker AVANCE, Billerica, MA, USA). X-ray single crystal structure determinations for coordination
compounds 1 and 2 were carried out on a Bruker Smart Apex CCD (Bruker AVANCE, Billerica,
MA, USA) and SuperNova Dual (Cu at zero) Eos four-circle diffractometer. Fluorescence spectra were
recorded on a F-7000 FL spectrophotometer (Hitachi, Tokyo, Japan). Antimicrobial experiments were
carried out using a SW-CJ (Standard Type), LDZX-50KBS Vertical Pressure Steam Sterilizer made by
Boyn Instrument Company Limited (Hangzhou, China), YCP-100P Microbiological incubator made by
Guangzhou Fangtong Biotechnology Company Limited (Guangzhou, China).

2.2. Synthesis of H2L1

The ligand 4,4′-dichloro-2,2′-[(propane-1,3-diyldioxy)bis(nitrilomethylidyne)]diphenol (H2L1)
was synthesized in accordance with a similar method reported earlier [44,48,50]. (Scheme 1) Yield:
75.8%. m.p. 164–166 ◦C. 1H NMR (400 MHz, CDCl3), δ 2.14 (t, J = 6.0 Hz, 2H, CH2), 4.31 (t, J = 6.0 Hz,
4H, CH2), 6.85 (d, J = 8.0 Hz, 2H, ArH), 7.25 (s, 2H, ArH), 7.33 (d, J = 8.0 Hz, 2H, ArH), 8.09 (s, 2H,
CH=N), 9.80 (s, 2H, OH). IR (KBr, cm–1): 3101 [ν(O-H)], 1606 [ν(C=N)], 1263 [ν(Ar-O)]. UV-Vis
(CH3OH), λmax (nm) (εmax): 220, 265 and 323 nm (2.5 × 10−5 M). Anal. Calcd. for C17H16Cl2N2O4 (%):
C 53.02; H 4.11; N 7.45. Found: C 53.28; H 4.21; N 7.31.
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2.3. Syntheses of Coordination Compounds 1, 2, and 3

Tri- and mono-nuclear coordination compounds 1, 2, and 3 were synthesized via the reaction of
Co(OAc)2 and Ni(OAc)2 with H2L1, respectively (Scheme 2).
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Scheme 2. Syntheses of coordination compounds 1, 2, and 3.

2.3.1. Synthesis of Coordination Compound 1

To an isopropanol solution (2 mL) of cobalt(II) acetate tetrahydrate (3.72 mg, 0.015 mmol),
a solution of H2L1 (3.83 mg, 0.010 mmol) in acetone (3 mL) was added dropwise, the mixed solution
color changed to brown instantly, and stirring was continued for 20 min. With the gradual diffusion
of solvent, several brown block crystals were obtained after three weeks on slow evaporation of the
mixture solution in open atmosphere.

2.3.2. Synthesis of Coordination Compound 2

To a solution (3 mL) of nickel(II) acetate tetrahydrate (5.07 mg, 0.015 mmol) in methanol was
added dropwise H2L1 (3.83 mg, 0.010 mmol) in acetone (2 mL) and then stirred for 20 min. With the
gradual diffusion of solvent, several green block single crystals were obtained after two weeks on
slow evaporation of the solution in open atmosphere. Several green block crystals suitable for X-ray
crystallography were collected and then filtered and washed with n-hexane.

2.3.3. Synthesis of Coordination Compound 3

Coordination compound 3 was synthesized according to the same method reported earlier [36].
Coordination compound 1, light brown blocks. Yield, 3.05 mg (51.9%). IR (KBr, cm−1):

1616 [ν(C=N)], 1205 [ν(Ar-O)]. UV–Vis (CH3OH), λmax (nm) (εmax): 230 and 367 nm (2.5 × 10−5 M).
Anal. Calcd. for C44H46Cl4Co3N4O14 (%): C, 45.04; H, 3.95; N, 4.77; Co, 15.07. Found: C, 45.10; H, 4.18;
N, 4.59; Co, 15.09.

Coordination compound 2, light green blocks. Yield, 2.75 mg (60.3%). IR (KBr, cm−1):
1626 [ν(C=N)], 1254 [ν(Ar-O)]. UV–Vis (CH3OH), λmax (nm) (εmax): 232 and 364 nm (2.5 × 10−5 M).
Anal. Calcd. for C18H18Cl2N2NiO4 (%): C, 47.42; H, 3.98; N, 6.14; Ni, 12.87. Found: C, 47.46; H, 4.05;
N, 6.07; Ni, 12.81.

2.4. Crystal Structures of Coordination Compounds 1 and 2

A crystal diffractometer provides a monochromatic beam of Mo Kα radiation (0.71073 Å) produced
from a sealed Mo X-ray tube using a graphite monochromator and was used for obtaining crystal
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data for coordination compounds 1 and 2 at 293(2) and 294.29(10) K, respectively. The LP factor and
semi-empirical absorption were applied using the SADABS program. The structures of coordination
compounds 1 and 2 were solved by direct methods (SHELXS-2014) [51], and H atoms were included at
the calculated positions and constrained to ride on their parent atoms. All the non-hydrogen atoms
were refined anisotropically using a full-matrix least-squares procedure on F2 with SHELXL-2014 [52].
Crystal data and experimental parameters relevant to the structure determinations are given in Table 1.

Table 1. Crystallographic data and refinement parameters for coordination compounds 1 and 2.

Coordination Compound 1 2

Formula C44H46Cl4Co3N4O14 C18H18Cl2N2NiO4
Formula weight 1173.44 455.95
Temperature (K) 293(2) 294.29(10)
Wavelength (Å) 0.71073 0.71073
Crystal system triclinic monoclinic

Space group P-1 P21/c
a (Å) 9.6429(13) 26.642(2)
b (Å) 11.4136(15) 5.0020(4)
c (Å) 12.5954(17) 13.8504(14)
α (◦) 99.797(2) 90
β (◦) 106.340(2) 92.278(9)
γ (◦) 104.907(2) 90

V (Å3) 1240.7(3) 1844.3(3)
Z 1 4

Dcalc (g·cm–3) 1.570 1.642
µ (mm–1) 1.274 1.369

F (000) 599 936
Crystal size (mm) 0.18 × 0.22 × 0.25 0.04 × 0.05 × 0.14

θ Range (◦) 1.75–25.008 3.372–26.022

Index ranges
–11 ≤ h ≤ 8 –32 ≤ h ≤ 32
–13 ≤ k ≤ 13 –6 ≤ k ≤ 6
–14 ≤ l ≤ 14 –16 ≤ l ≤ 17

Reflections collected 6937 3674
Independent reflections 4359 1808

Rint 0.0175 0.0584
Completeness to θ 99.5% (θ = 25.01) 99.7% (θ = 25.242)

Data/restraints/parameters 4359/0/316 1808/0/129
GOF 1.046 1.017

Final R1, wR2 indices 0.0376, 0.1038 0.0526, 0.0882
R1

a, wR2
b indices (all data) 0.0429, 0.1096 0.0899, 0.1105

Largest differences peak and hole (e Å−3) 0.844/−0.478 0.449/−0.368
a R1 = Σ||Fo| − |Fc||/Σ|Fo||. b wR2 = {Σw(Fo

2 − Fc
2)2/Σ[w(Fo

2)]2}1/2.

Crystallographic data were deposited with the Cambridge Crystallographic Data Centre as
supplementary publication, No. CCDC 1812269, 1812270 and 1812268 for coordination compounds 1, 2, and
3. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge
CB21EZ, UK (Telephone: (44) 01223 762910; Fax: +44-1223-336033; E-mail: deposit @ccdc.cam.ac.uk).
These data can be also obtained free of charge at www.ccdc.cam.Ac.uk/conts/retrieving.html.

3. Results and Discussion

3.1. IR Spectra

The IR spectra of H2L1 and coordination compounds 1 and 2 show various absorption bands
(Figure 1). A characteristic band of C=N stretching vibrations of the free ligand H2L1 appears at
1606 cm−1, which is shifted to 1616 and 1626 cm−1 in the spectra of coordination compounds 1 and 2,

www.ccdc.cam. Ac.uk/conts/retrieving.html
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respectively [53–55]. This indicates that the Co(II) and Ni(II) atoms are coordinated with azomethine
nitrogen atoms of deprotonated (L1)2− and (L2)− units [56,57]. An Ar–O stretching band emerges
at 1263 cm-1 in the IR spectrum of the free ligand H2L1, while those of coordination compounds 1
and 2 appear at 1205 and 1254 cm−1, respectively. The Ar–O stretching bands are shifted to lower
frequencies, which can be evidence of the coordination of phenolic oxygen atoms to the Co(II) and
Ni(II) atoms [58,59]. The free ligand H2L1 shows an expected absorption band at 3101 cm−1 and a
sharp absorption band emerges at 3361 cm−1 in coordination compound 2, which indicates that the
phenolic groups of the ligand have been deprotonated in the case of coordination compound 1 [60,61],
while the N-H bond exists in coordination compound 2.
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3.2. UV-Vis Spectra

UV-vis spectra of H2L1 and coordination compounds 1 and 2 are presented in Figure 2.
The absorption spectrum of H2L1 exhibits three absorption peaks at ca. 220, 265, and 323 nm, the former
two peaks could be attributed to the π-π* type transitions of the benzene rings, the later peak at 323 nm
is assigned to the π-π* transitions of the C=N bonds and conjugated aromatic chromophore [62,63].
Compared to the absorption peaks of the free ligand H2L1, the first absorption peaks are observed at
230 and 235 nm in coordination compounds 1 and 2, respectively. These peaks are bathochromically
shifted, indicating coordination of the (L1)2− and (L2)− moieties with the Co(II) and Ni(II) atoms.
The other two peaks at ca. 265 and 323 nm have disappeared in coordination compounds 1 and 2.
Meanwhile, new peaks emerge at ca. 367 and 364 nm in coordination compounds 1 and 2, respectively,
which belong to the n-π* charge transfer transitions from the lone-pair electrons of the N atoms of
C=N groups [64,65].

3.3. Description of the Crystal Structures

Selected bond lengths and angles for coordination compounds 1 and 2 are listed in Table 2,
respectively. The corresponding hydrogen bonds of coordination compound 1 are summarized in
Table 3.
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Table 2. Selected bond lengths (Å) and angles (◦) of coordination compounds 1 and 2.

Coordination Compound 1

Bond Lengths Bond Lengths

Co1-O1 2.0948(17) Co1-O2 2.1438(16)
Co1-O5 2.0884(17) Co1-O1#1 2.0948(17)

Co1-O2#1 2.1437(16) Co1-O5#1 2.0884(17)
Co2-O1 2.0756(16) Co2-O2 2.0177(17)
Co2-O6 2.0224(19) Co2-O7 2.276(2)
Co2-N1 2.109(2) Co2-N2 2.208(2)

Bond Angles Bond Angles

O1-Co1-O2 76.14(6) O5-Co1-O1 88.26(7)
O1-Co1-O1#1 180.0 O1-Co1-O2#1 103.86(6)
O5#1-Co1-O1 91.74(7) O5-Co1-O2 87.37(7)
O1#1-Co1-O2 103.86(6) O2-Co1-O2#1 180.0
O5#1-Co1-O2 92.63(7) O5-Co1-O1#1 91.74(7)
O5-Co1-O2#1 92.63(7) O5#1-Co1-O5 180.0

O1#1-Co1-O2#1 76.14(6) O5#1-Co1-O1#1 88.26(7)
O5#1-Co1-O2#1 87.37(7) O2-Co2-O1 79.36(7)

O6-Co2-O1 91.68(7) O1-Co2-O7 99.74(8)
O1-Co2-N1 84.64(7) O1-Co2-N2 164.08(8)
O2-Co2-O6 99.88(8) O2-Co2-O7 86.31(7)
O2-Co2-N1 160.21(8) O2-Co2-N2 84.77(7)
O6-Co2-O7 167.88(7) O6-Co2-N1 92.09(8)
O6-Co2-N2 89.78(9) N1-Co2-O7 85.00(8)
N2-Co2-O7 80.36(8) N1-Co2-N2 111.15(8)

Coordination Compound 2

Bond Lengths Bond Lengths
Ni1-O1 1.914(3) Ni1-N1 1.918(4)

Ni1-O1#2 1.914(3) Ni1-N1#2 1.918(4)
Bond Angles Bond Angles

O1-Ni1-N1 92.15(15) O1#2-Ni1-O1 180.0
O1-Ni1-N1#2 87.85(15) O1#2-Ni1-N1 87.85(15)
N1-Ni1-N1#2 180.0 O1#2-Ni1-N1#2 92.15(15)

Symmetry transformations used to generate equivalent atoms: #1 −x + 1, −y + 1, −z; #2 −x + 1/2, −y + 1/2, −z.
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Table 3. Hydrogen bonding interactions (Å, ◦) of coordination compound 1.

D–H···A D–H H···A D···A D–H···A
Coordination compound 1

C2–H2···O2 0.93 2.58 3.281(3) 133
C8–H8B···O7 0.97 2.53 3.425(4) 153

C10–H10B···O3 0.97 2.54 2.931(5) 104
C10–H10B···O6 0.97 2.45 3.329(4) 150
C16–H16···O5 0.93 2.48 3.207(3) 135

C20–H20C···O5 0.96 2.49 3.358(5) 151

3.3.1. Crystal Structure of Coordination Compound 1

The unit cell of coordination compound 1 is composed of three Co(II) atoms, two completely
deprotonated (L1)2− units, two µ2-acetate ions, and two coordinated acetone molecules. (Figure 3) A
symmetrical trinuclear Co(II) coordination compound is formed, with the Co1 atom occupying the
center of symmetry (1/2, 1/2, 1/2) and the other two Co(II) atoms (Co2, Co2#1, symmetry code (#1):
−x + 1, −y + 1, −z) to be related by this center of symmetry. The two (L1)2−, two µ2-acetate ions and
the two coordinated acetone molecules are also centrosymmetry related. The Co(II) atoms have no
significant distortion in CoO6 or CoO4N2 octahedrons. The two terminal Co(II) atom (Co2 or Co2#1) is
hexa-coordinated with donor N2O2 atoms (N1, N2, O1, O2 or N1#1, N2#1, O1#1, O2#1), one µ2-phenoxo
oxygen atom (O2 or O2#1) and the other oxygen atom (O7 or O7#1) comes from the coordinated
acetone molecule, respectively. One axial bond of Co2-O7 is 2.276(2) Å, is longer than the bond of
Co2-O6 (2.0224(19) Å). It shows that the acetate ions involved in the coordination are more stable than
the coordinated acetone molecules [66]. The dihedral angle between the planes of N1-Co2-O1 and
N2-Co2-O4 is 4.23(5)◦, reveals the Co(II) atom (Co2 or Co2#1) with significant distortion in the CoO4N2

octahedron [67]. Meanwhile, the central Co1 atom is completed by four phenoxo oxygen atoms (O1,
O5, O1#1, and O5#1) of two deprotonated (L1)2− units, two oxygen atoms (O2 and O2#1) from the
bridging µ2-acetate ions, and the axial bond Co1-O5 (2.0884(16) Å) is also shorter by 0.0064(01) Å than
the Co1-O1 bond (2.0948(17) Å) and by 0.05540 Å than the Co1-O2 bond (2.1438(16) Å). Although the
Co(II) atoms are all hexa-coordinated, the coordination sphere of the Co1 atom consists of six oxygen
atoms, and that of the Co2 (or Co2#1) atom includes two nitrogen and four oxygen atoms.Crystals 2018, 8, 43  8 of 17 
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In coordination compound 1, six pairs of intramolecular hydrogen bond (C2–H2···O2, C8–H8B···O7,
C10–H10B···O3, C10–H10B···O6, C16–H16···O5 and C20–H20C···O5) [68] interactions involving one
phenoxo oxygen, one coordinated acetone, two acetate ions, and alkoxy O atoms in each molecule
(Figure 4) and the weak hydrogen bonds existing in the coordination compound 1 are described in
graph sets (Figure 5) [69], A pair of π· · ·π interactions (Cg1· · ·Cg2 (Cg1=C1-C2-C3-C4-C5-C6 and
Cg2=C12-C13-C14-C15-C16-C17)) (Figure 6) were formed [70].
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3.3.2. Crystal Structure of Coordination Compound 2

The crystal structure of coordination compound 2 is given in Figure 7. The crystal structure
demonstrates that coordination compound 2 crystallizes in the monoclinic system, space group
P21/c. A mononuclear Ni(II) coordination compound is formed, with a Ni1 atom occupying the
center of symmetry (1/2, 1/2, 1/2) is related by this center of symmetry. The two (L2)2− (symmetry
code (#2): −x + 1/2, −y + 1/2, −z) is related by this center of symmetry. Obviously, the desired tri-
or mono-nuclear Ni(II) coordination compound was not obtained (Scheme 2). The coordination
compoundation of the ligand H2L1 with Ni(II) acetate is unstable, giving a new NO bidentate ligand
(H2L2). The formation of the new ligand may be due to the catalysis of Ni(II) ions resulting in
unexpected cleavage of two N–O and two C–C bonds in H2L1. In the C=N bond, the electronegativity of
the N atom is higher than the C atom, so the electron cloud density of C atom is lower. At the same time,
due to the high electronegativity of the Cl atom, the electron cloud density of the C atom in the C=N
bond will be further reduced in this conjugated system, and is positively charged. The electronegativity
of the O atom in the O–C–C bond is high, and will attack the C atom in the C=N bond and form the
new ligand H2L1. Finally, an unprecedented mono-nuclear Ni(II) coordination compound is obtained.
This phenomenon is observed in the formation of Salamo-type Cu(II) coordination compounds [71].
However, the catalytic phenomenon of Ni(II) ions is a first in the previously reported Salamo Ni(II)
coordination compounds. In coordination compound 2, the Ni1 atom has no significant distortion
in the NiO2N2 planar quadrilateral geometry. It is noteworthy that the angles of N1–Ni1–N1#3 and
O1–Ni1–O1#3 are all 180.0◦ in coordination compound 2 [72].

3.4. Fluorescence Properties

The fluorescence properties of H2L1 and coordination compounds 1 and 2 were investigated
(Figure 8). The H2L1 demonstrates an intense emission peak at ca. 508 nm upon excitation at 328 nm.
Coordination compounds 1 and 2 demonstrate weak photoluminescence with maximum emission
peaks at ca. 516 and 510 nm upon excitation at 386 nm, respectively, and the absorption peaks are
bathochromically-shifted, which could be attributed to LMCT (ligand-to-metal charge transfer) [73,74].
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Compared with H2L1, the emission intensity of coordination compound 2 is reduced, which indicates
that the Ni(II) ions possess the property of fluorescent quenching.
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3.5. Antimicrobial Activities

The antimicrobial activities of H2L1, cobalt acetate and its coordination compounds 1 and
3 were tested against Escherichia coli as Gram-negative bacteria and Staphylococcus aureus as
Gram-positive bacteria by a disk diffusion test. With sterile disks impregnated with purified H2L1,
cobalt acetate, coordination compounds 1 and 3 were applied to lysogeny broth agar (LB) plates
(2% agar). The bacteria inoculum was spread on the surface of the plate, while the impregnated disks
were placed near the edge of the plate at a constant distance from the disk for all assays. After eight
hours of incubation at 37 ◦C, the growth-inhibitory influence and diameters of the inhibition zones
were mensurated. The discs measuring 5 mm in diameter were dissolved in dimethyl sulfoxide
(DMSO) and soaked in concentrations of 0.35, 0.7, 1.4, 2.8 and 5.0 mg mL−1. The results were compared
to Ampicillin as reference standard with different concentrations. The diameter of inhibition zones of
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H2L1, cobalt acetate and coordination compounds 1 and 3 are shown in Figure 9, the two coordination
compounds show more enhanced antimicrobial activities than H2L1 and cobalt acetate under the same
conditions. H2L1 and cobalt acetate also have weak biological activity [75,76]. As shown in Figure 9,
chelation decreases the polarity of the metal atom mainly because of the partial share of the positive
charge of the Co(II) atom with donor groups and possible delocalization of π-electrons within the whole
chelating ring. Further, it enhances the lipophilic character of the central atom. These observations are
analogical to earlier reports of biological activities of related Schiff base coordination compounds [77].Crystals 2018, 8, 43  12 of 17 
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4. Conclusions

One trinuclear Co(II) coordination compound 1 and one unprecedented mononuclear Ni(II)
coordination compound 2 were formulated and synthesized. The results show that the Co(II)
atoms have no significant distortion in CoO6 or CoO4N2 octahedrons in coordination compound 1.
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Catalysis of Ni(II) ions gives rise to unexpected cleavage of two N–O and two C–C bonds in H2L1,
the coordination compoundation of the ligand H2L1 with Ni(II) acetate is unstable, giving a new NO
bidentate ligand (H2L2). The desired tri- or mono-nuclear Salamo Ni(II) coordination compound was
not obtained, a novel mono-nuclear Ni(II) coordination compound [Ni(L2)2] was however obtained.
Interestingly, in coordination compound 2, the Ni1 atom has no significant distortion in the NiO2N2

planar quadrilateral geometry. The fluorescence behavior of H2L1 and its coordination compounds 1
and 2 were investigated, compared with the ligand H2L1: the emission intensity of coordination
compound 2 decreases obviously, which indicates that the Ni(II) ions possess the quality of fluorescent
quenching. Antimicrobial experiments show that coordination compounds 1 and 3 demonstrate more
enhanced antimicrobial activities than Salamo bisoxime ligand H2L1 under the same conditions and
the ligand possesses a weak biological activity.
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