Supporting information

Inorganic Anion Regulates the Phase Transition in Two Organic Cation Salts Containing [(4-Nitroanilinium)(18-crown-6)]⁺ Supramolecules

Yuan Chen¹, Yang Liu^{1*}, Binzu Gao¹, Chunli Zhu¹, Zunqi Liu^{1,*}

1 Chemical Engineering College Xinjiang Agricultural University, Urumqi 830052 China

Fig.S1 the arrangement of the supramolecular cations (4-Nitroanilinium)(18-crown-6) of crystal 2 in the *bc* plane.

Fig S2. TG and DTA cures for inclusion compound 1

Fig S3. TG and DTA cures for inclusion compound 2

Fig. S4 IR of crystal 1

Fig. S5 IR of crystal 2

D-H···A	D-H(Å)	H⋯A(Å)	D…A(Å)	D-H···A(°)
		100K		
N_1 - H_{1WC} ···· O_1	0.891	2.480	2.871	107.08
N_1 - H_{1WC} ···· O_2	0.891	2.020	2.903	171.08
N_1 - H_{1WB} ···· O_3	0.923	2.510	2.892	105.24
N_1 - H_{1WB} ···· O_4	0.923	1.935	2.842	167.27
N_1 - H_{1WA} ···· O_5	0.880	2.534	2.912	106.75
N_1 - H_{1WA} ···· O_6	0.880	1.945	2.821	173.97
O_{11} - H_{11C} - O_{10}	0.863	1.785	2.647	175.77
		296K		
N_1 - H_{1WC} ···· O_1	0.848	2.518	2.877	106.52
N_1 - H_{1WC} ···· O_2	0.848	2.024	2.867	172.97
N_1 - H_{1WA} ···· O_3	0.845	2.487	2.927	113.37
N_1 - H_{1WA} ···· O_4	0.845	2.039	2.875	169.73
N_1 - H_{1WB} ···· O_5	0.850	2.562	2.880	103.44
N_1 - H_{1WB} ···· O_6	0.850	2.082	2.907	163.63
O ₁₁ -H _{11C} …O ₁₀	0.842	1.823	2.657	170.13

Table S1. Hydrogen-bond geometry $(Å, \circ)$ for complex 1

Oxygen atom	O _{14A}	O _{14B}	O _{15A}	O _{15B}	O16A	O _{16B}	O17A	O _{17B}
occupation	0.612(15)	0.388(15)	0.51(2)	0.49(2)	0.63(2)	0.37(2)	0.68(2)	0.32(2)
factor								

Table S2. The occupation factor of oxygen atoms in $-NO_2$ group for 296K

D-H····A	D-H(Å)	H…A(Å)	D…A(Å)	D-H····A(°)		
100К						
N_1 - H_{1D} ···O ₇	0.891	2.048	2.867	152.26		
N_1 - H_{1E} ···· O_8	0.889	2.284	2.908	127.10		
N_1 - H_{1E} ····O ₉	0.889	2.032	2.847	151.87		
$N_1\text{-}H_{1C}\text{-}\text{-}O_{10}$	0.890	2.330	2.956	127.40		
$N_{1}\text{-}H_{1C}\cdots O_{11}$	0.890	1.998	2.821	153.24		
N_1 - H_{1D} ···O_{12}	0.891	2.302	2.942	128.66		
N_4 - H_{4D} ···· O_1	0.891	2.460	2.920	112.58		
N_4 - H_{4D} ···· O_2	0.891	2.030	2.905	167.30		
N_4 - H_{4C} ···· O_3	0.891	2.508	2.949	111.18		
N_4 - H_{4C} ···· O_4	0.891	2.029	2.914	172.42		
N_4 - H_{4E} ····O ₅	0.891	2.478	2.906	114.51		
N_4 - H_{4E} ····O ₆	0.891	1.975	2.853	168.38		
		296K				
N_1 - H_{1A} ···· O_7	0.890	2.038	2.924	173.33		
N_1 - H_{1A} ···· O_8	0.890	2.653	2.960	101.35		
N_1 - H_{1C} ···O ₉	0.890	2.039	2.916	168.41		
N_1 - H_{1C} ···O_{10}	0.890	2.590	2.913	102.33		
$N_1\text{-}H_{1B}\text{-}\text{-}O_{11}$	0.889	1.971	2.851	179.01		
N_1 - H_{1B} ···· O_{12}	0.889	2.596	2.953	104.93		
N_4 - H_{4C} ···O ₁	0.891	2.347	2.942	124.23		
N_4 - H_{4A} ···· O_2	0.890	1.970	2.816	158.02		
N_4 - H_{4A} ···· O_3	0.890	2.384	2.966	123.00		
N_4 - H_{4B} ···· O_4	0.889	2.034	2.873	156.89		
N_4 - H_{4B} ····O ₅	0.889	2.338	2.915	122.67		
N_4 - H_{4c} ····O ₆	0.891	2.018	2.867	156.5		

Table S3. Hydrogen-bond geometry $(\text{\AA}, ^{\circ})$ for complex 2