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Abstract: Seventeen new halogen-bonded co-crystals characterized by single crystal X-ray
analysis are presented from 8 × 4 combinations using methyl-substituted pyridine N-oxides and
1,ω-diiodoperfluoroalkanes. The N−O group in six of 17 co-crystals is monodentate and 11 have
µ-O,O bidentate halogen bond acceptor modes. Remarkably, the N−O group in co-crystals of
3-methyl-, 4-methyl- and 3,4-dimethylpyridine N-oxides with octafluoro-1,4-diiodobutane acted as a
µ-O,O,O,O halogen and hydrogen bond acceptor, while acting as a µ-O,O,O acceptor in the co-crystal
of 2,5-dimethylpyridine N-oxide and tetrafluoro-1,2-diiodoethane. The C−H···O−N hydrogen bonds
demonstrated the polydentate cooperativity of the N−O group as a mixed halogen-hydrogen bond
acceptor. The co-crystal of 2,4,6-trimethylpyridine N-oxide and dodecafluoro-1,6-diiodohexane
exhibited C−I···O−−N+ halogen bonds with RXB value 0.76, the shortest of its kind compared
to previously reported structures. The RXB values between 0.76 and 0.83 suggested that the
C−I···O−−N+ halogen bonds are moderately strong compared to our previously studied N−−I+···
O−−N+ system, with RXB in the order 0.66.

Keywords: halogen bond; hydrogen bond; aromatic N-oxides; perfluoroalkyl; diiodoperfluoroalkanes;
polydentate; N−O group; cooperativity; C−H···O interactions

1. Introduction

The halogen bond (XB), analogous to the hydrogen bond (HB), has been defined [1] as a net
attractive interaction between an electrophilic region of a halogen atom bound to a molecular entity
and a nucleophilic site in another moiety, e.g., a nitrogen, oxygen or sulphur atom [2]. This region
of positive electrostatic potential, called the “sigma hole” [3,4], is characteristic for halogen atoms
attached to an organic backbone, with its magnitude generally decreasing in the order I > Br >
Cl > F. Despite similar geometrical features between HB and XB, the halogen bond is still not as
well-explored compared to the ubiquitous HB [5–9]. Halogen bonds are frequently studied using
nitrogen compounds, which typically display monovalent N···X (X = I, Br) interactions and are
well understood as crystal engineering tools for self-assembly processes. Their precedence from
discrete structures to increased dimensionality through the controlled reactivity of substrates is
well-reported [10–13]. In a solid-state XB complex, R−X···B−Z, where X is the donor and B is the
acceptor atom, the ratio of the short distance between X and B atoms (dX-B) to sum of the Van der Waals
radii of X and B atoms (dvdW) is defined as the normalized strength parameter, RXB = dX-B/dvdW [1].
Knowledge of RXB values provides an opportunity to roughly estimate the strengths of XB complexes.
For example, the X···N distances in bis(pyridine)iodonium(I) tetrafluoroborate constitute an RXB value
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of 0.65, and such compounds are classified as halogen bonds of covalent nature [14]. Carefully designed
nitrogen compounds are successfully utilized as molecular building blocks engaging in (N−X−N)+X−

XBs to construct supramolecular structures resembling metal coordination frameworks [15]. However,
weaker C−I···N XBs with typical RXB values ranging from 0.75 to 0.90 are still of considerable
importance for applications in materials chemistry, e.g., for triggering liquid crystallinity and gelation
behaviour [16–18].

Aromatic N-oxides have been long known in heterocyclic chemistry for functionalized pyridines
syntheses [19–25]. Besides being valuable synthetic intermediates, the dipolar neutral N+−O− group
exhibits a push-pull property towards aromatic rings, enabling it to undergo both electrophilic and
nucleophilic substitution reactions, categorizing these compounds as promising building blocks
in supramolecular chemistry [26,27]. Electron-donating and electron-withdrawing substituents on
aromatic ring invoke different hybridization states on oxygen in the N−O group [28,29], allowing for
tuning of its complexation behaviour towards metals [30,31].

Strategic exploitation of XB acceptor properties for heteroatoms, such as oxygen, remains very
much unknown in the literature. A Cambridge Structural Database (CSD) search for pyridine N-oxides
functioning as XB acceptors revealed only a handful of structures (see supporting information for more
details), while their systematic investigations remain especially scarce [32–34]. Previously, monodentate
strong N−−I+···O−−N+ XBs (RXB as low as 0.66) of coordinative nature between pyridine N-oxides
and N-haloimides were studied both in solution and in the solid-state [35]. Here, we aimed to
investigate C−I···O−−N+ XBs using 1,ω-diiodoperfluoroalkanes (DI2–DI8) and methyl-substituted
aromatic N-oxides (1–8), as shown in Figure 1. Haloperfluoroalkanes are robust XB donors, and
their ability to steer the supramolecular assembly by XBs and F···F interactions is well described [36].
However, the volatile nature of these compounds often results in oily or waxy substances, which
are difficult to characterize using single crystal X-ray diffraction [18,37]. Despite their reluctance to
crystallize, our attempts from 8 × 4 (acceptor × donor) combinations resulted in 17 crystal structures,
providing an impressive crystallization success rate to analyze and understand the interactions at play
in their solid-state structures.
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(DI8). 
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Co-crystals 1•DI6, 1•DI8, 2•DI4, 3•DI4, 3•DI8, 4•DI4_I, 4•DI4_II, 5•DI2, 5•DI6, 7•DI4 and 7•DI6 
all form infinite 1-D polymers, and 4•DI4_I and 4•DI4_II are polymorphs. The co-crystals were 
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Figure 1. The chemical structures of acceptors (top) and donors (below) in the current study: pyridine
N-oxide (1), 2-methylpyridine N-oxide (2), 3-methylpyridine N-oxide (3), 4-methylpyridine N-oxide
(4), 2,6-dimethylpyridine N-oxide (5), 2,5-dimethylpyridine N-oxide (6), 3,4-dimethylpyridine N-oxide
(7), 2,4,6-trimethylpyridine N-oxide (8), tetrafluoro-1,2-diiodoethane (DI2), octafluoro-1,4-diiodobutane
(DI4), dodecafluoro-1,6-diiodohexane (DI6) and hexadecafluoro-1,8-diiodooctane (DI8).

2. Results and Discussion

The methods used to obtain the single crystals suitable for X-ray analysis are shown in Table S1.
Co-crystals 1•DI6, 1•DI8, 2•DI4, 3•DI4, 3•DI8, 4•DI4_I, 4•DI4_II, 5•DI2, 5•DI6, 7•DI4 and 7•DI6
all form infinite 1-D polymers, and 4•DI4_I and 4•DI4_II are polymorphs. The co-crystals were
grouped and discussed based on structural similarities observed in the crystal packing. Halogen
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bonds between N−O and C−I groups were explored as the driving force propagating 1-D polymers
with alternate acceptors and donors. The XB interaction bond parameters are shown in Table 1. In
1•DI6, 1•DI8 and 3•DI8, the aromatic rings and donors were essentially coplanar, in contrast to the
orthogonal alignment typically observed in coordination compounds [30,31]. The N−O groups were
µ-O,O bidentate, bridging the donors to form remarkably similar 1-D polymeric chains, as shown in
Figure 2. Further analysis of the crystal packing revealed the donor-acceptor parallel arrangement to
be a result of F···F aggregation [38–42] between perfluorinated donor chains, which, though weaker
than C−I···O−−N+ XBs, play a crucial role to yield a robust 3-D crystal structure.

Table 1. Bond parameters for co-crystals 1•DI6–8•DI6.

S.No Code
Monodentate µ-O,O

ca. d(I···O−N)/Å *
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The strength of the C−H···O interaction is approximately one-third of conventional HBs [43–49]
that operate between donors such as −N−H/−O−H and weak bases, and these interactions
significantly increase the lattice energy of the co-crystals [50]. The C−H···O contacts are attractive,
and are rather site acidity-dependent. For example, the C2-proton acidity in pyridine N-oxides for
ortho-C−H functionalization in organic synthesis [19–25], and in crystal engineering for C−H···O−N
interactions is well studied [51–54]. However, to the best of our knowledge, the combination of
C−H···O−N and C−I···O−N interactions through the N−O group, giving rise to supramolecular
assemblies, has not been extensively studied. Co-crystals 3•DI4, 4•DI4_I, 7•DI4, and 7•DI6 all formed
1-D polymers driven majorly by C−I···O−N interactions; however, C−H···O interactions orthogonal
to XB chains were interpreted as an essential element of the co-crystal structure. For example, in 3•DI4,
the N−O group bridged donors at I···O distances of ca. 2.840 Å (RXB = 0.81) and ca. 2.875 Å (RXB = 0.82)
with I···O···I angles of ca. 139.6◦, leading to 1-D polymers. Orthogonal to µ-O,O XB mode, C−H···O
interactions operated between N−O groups and C2-/C6-protons in the ab-plane to form 2-D sheets
(Figure 3a). The perfluorinated chains and aromatic rings from adjacent 1-D polymers aggregated
through F···F and C−H···O interactions, and induced segregation of donors and acceptors in the
crystal structure. Similar ortho-C−H···O interactions between N-oxide molecules, and donor-acceptor
segregated crystal packing motifs were observed in 4•DI4_I, 7•DI4 and 7•DI6 (Figure 3b–d).
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Structures of co-crystals 2•DI4, 4•DI4_II, 5•DI2 and 5•DI6 showed 1-D undulating patterns driven
by C−I···O−N interactions, as depicted in Figure 4. The I···O···I angles and the centroid-to-centroid
distances between aromatic rings occupying the crest and trough sites were directly related.
For example, the 2•DI4 (145.2◦) and 4•DI4_II (112.2◦) manifested a shallow wave appearance, with
centroid-to-centroid aromatic distances of 23.2 Å and 19.2 Å, respectively. These I···O···I angles were
greater than in 5•DI2 (103.6◦) and 5•DI6 (107.8◦), which both exhibited sharp interwoven patterns
with the respective centroid-to-centroid aromatic distances of 16.9 Å and 17.2 Å. In 5•DI2 and 5•DI6,
the aromatic rings were orthogonal to µ-O,O XB mode, favouring closer interdigitation between 1-D
chains stabilized by C−H···F interactions. Moreover, the 1-D XB chains were cross-aligned in 2•DI4
(Figure 4b), different from parallel stack observed in 4•DI4_II, 5•DI2 and 5•DI6 (Figure 4f). In these
structures, the aromatic rings did not participate in any π···π interactions, and the structures were
sustained by several weak F···F, C−H···O and C−H···F interactions.
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Figure 4. Interwoven by C−H···F interactions, the 1-D undulated XB polymeric chains in 2•DI4 (a),
4•DI4_II (c), 5•DI6 (d) and 5•DI2 (e). Section of 3-D crystal packing in 2•DI4 (b) showing cross stack
of 1-D polymers, and common parallel 1-D stack motifs observed in 4•DI4_II, 5•DI6 and 5•DI2 (f).

The N−O groups in co-crystals 7•DI2 and 7•DI8 act as monodentate XB acceptors with I···O
distances ca. 2.703 Å (RXB = 0.77) and ca. 2.715 Å (RXB = 0.78). Contrary to above examples, the
C−H···O interactions became more pronounced in 7•DI2 and 7•DI8, breaking the XB continuity in 1-D
chains, and inducing alternate XB and cyclic C−H···O interactions as seen in Figure 5. The molecules
of 7 could be seen as forming fully planar dimers, which were further connected by XB respectively
with DI2 or DI8. In 7•DI2, the offset stacking of the acceptor dimers prevented the formation of F···F
interactions by DI2 (Figure 5c). In 7•DI8, due to longer DI8 chains, the π···π stacking prevented only a
half of the perfluorooctane chain from establishing F···F interactions (Figure 5d), with the packing in
co-crystals 7•DI2 and 7•DI8 being otherwise quite similar.
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Co-crystals 5•DI4, 8•DI2 and 8•DI6 also formed 2:1 acceptor-donor discrete structures (Figure 
7a–c), with monodentate XB acceptor modes for N−O groups. In 5•DI4, the 1:2 discrete units 
propagated along the b-axis by C−H···O interactions between N−O and methyl groups. Further, the 
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Figure 5. 1-D Chains propagated by alternating XB and C−H···O interactions in 7•DI2 (a) and 7•DI8
(b). Section of crystal packing displaying isolated DI2 in 7•DI2 (c), and partially F···F stabilized DI8 in
7•DI8 (d). Black and red broken lines are respectively XB and HB interactions.

The 6•DI2 exhibited a 1:2 donor-acceptor stoichiometry, crystallizing in the monoclinic space
group P21/n, with the donor molecule DI2 lying on an inversion centre. A XB with I···O distances of
ca. 2.714 (RXB = 0.78) and two C−H···O−N interactions at N−O group suggested sp3 hybridization
of the oxygen. The C−H···O interactions played a significant role in the crystal packing. Analysis of
the interlayer packing revealed the formation of a 1-D zig-zag HB tape along the b-axis (Figure 6a)
through C−H···O interactions between the N−O group and the C2-methyl and C6-hydrogens. The
1-D tapes were connected by DI2 (Figure 6b) to give 2-D sheets which further stacked along the third
dimension, with centroid-to-centroid aromatic distances of ca. 3.84 Å.
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Co-crystals 5•DI4, 8•DI2 and 8•DI6 also formed 2:1 acceptor-donor discrete structures
(Figure 7a–c), with monodentate XB acceptor modes for N−O groups. In 5•DI4, the 1:2 discrete
units propagated along the b-axis by C−H···O interactions between N−O and methyl groups. Further,
the 1-D motifs (Figure 7d) extended three dimensionally through C−H···F and π···π interactions.
Co-crystal 8•DI2 had an interesting 1-D ladder structure (Figure 7f), with N-oxides forming 1-D
tapes through C−H···O interactions as the side rails (Figure 7g) connected by halogen bonds via DI2.
These 1-D ladders further packed through stacking of the aromatic rings as depicted schematically in
Figure 7h. On the other hand, 8•DI6 with its 3:1 acceptor-donor generated a more complex structure,
extended by π···π interactions between 2:1 discrete units and the additional, “passive” molecule of
N-oxide 8, not involved in XB, as depicted in Figure 7e. While the “passive” molecule of 8, situated
near an inversion centre, was disordered over two components with 50:50 occupancies, the anti-gauche
conformation of DI6 was not compatible with the presence of an inversion centre in the middle of the
C3-C4 bond of the donor.
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3. Conclusions

Halogen bonding between pyridine N-oxides and 1,ω-diiodoperfluoroalkanes was found to be
a reliable tool for crystal engineering, as witnessed by the successful structural characterization of
17 co-crystals reported here. The N-oxide functionality was able to act as either a monodentate
(6/17 co-crystals) or µ-O,O bidentate (11/17 co-crystals) halogen bond acceptor. Monodentate
C−I···O−−N+ halogen bonds were stronger than bidentate C−I···O−−N+ halogen bonds. Based on
the observed RXB values, ranging from 0.76 to 0.83, C−I···O−−N+ halogen bonds can be classified as
moderately strong compared to e.g. very strong monodentate N−−I+···O−−N+ type halogen bonds,
previously studied by us, which display RXB values as low as 0.66. In addition to that, an important
role of weak interactions, such as weak C−H···O hydrogen bonds and aromatic ring stacking, has



Crystals 2017, 7, 214 8 of 11

been established. In particular, the N-oxide oxygen atom was shown to simultaneously engage in both
the hydrogen and halogen bonding as a mixed acceptor. However, the C−H···O hydrogen bonds were
fairly weak, as witnessed by the observation of two polymorphs of 4•DI4, where only one of the two
exhibited C−H···O hydrogen bonds. The ability of N-oxide oxygen to act as a µ2- (one XB and one HB),
µ3- (one XB and two HB) and µ4-acceptor (two XB and two HB) is a complex process. For example,
the pronounced C−H···O hydrogen bonds between N-oxide oxygen and C2- acidic protons can be a
result of F···F interaction [38–42] between adjacent perfluorinated donor chains, resulting in a stable
crystal lattice.

4. Materials and Instrumentation

All solvents used for crystal growth were of reagent grade, and used as received. Pyridine
N-oxide (1), 2-methylpyridine N-oxide (2), 3-methylpyridine N-oxide (3), 4-methylpyridine
N-oxide (4), 2,6-dimethylpyridine N-oxide (5) and hexadecafluoro-1,8-diiodooctane (DI8) were
purchased from Sigma-Aldrich, while tetrafluoro-1,2-ethane (DI2), octafluoro-1,4-diiodobutane (DI4),
and dodecafluoro-1,6-diiodohexane (DI6) were purchased from Apollo Scientific Chemicals Ltd.
2,5-Dimethylpyridine N-oxide (6), 3,4-dimethylpyridine N-oxide (7) and 2,4,6-trimethylpyridine
N-oxide (8) were synthesized as previously reported [29].

Single crystal X-ray data for 1•DI6, 1•DI8, 2•DI4, 3•DI4, 4•DI4_I, 4•DI4_II, 5•DI4, 7•DI2, 7•DI4,
7•DI6 and 8•DI2 were measured on a Bruker-Nonius Kappa CCD diffractometer (Bruker AXS Inc,
Wisconsin, USA) with an APEX-II CCD detector using graphite-monochromated Mo-Kα (λ = 0.71073
Å) radiation. The data for 3•DI8, 5•DI2, 5•DI6, 6•DI2, 7•DI8, and 8•DI6 were measured on an
RigakuOxford single-source diffractometer (Rigaku Corporation, Tokyo, Japan) equipped with an Eos
CCD detector using mirror-monochromated Mo-Kα (λ = 0.71073 Å) radiation. The crystal data and
experimental details for the data collections are given in Tables S2–S5. Data collection and reduction
for Rigaku Oxford diffractometer were performed using the program CrysAlisPro [55], while for
Bruker-Nonius Kappa CCD diffractometer using the program COLLECT [56] and HKL DENZO AND
SCALEPACK [57]. A Gaussian face indexing-based absorption correction method [55] was used for
3•DI8, 5•DI2, 5•DI6 and 7•DI8, while the multi-scan absorption correction through CrysAlisPro [55]
was used for 8•DI6 and through SADABS [58] for 1•DI6, 1•DI8, 2•DI4, 3•DI4, 4•DI4_I, 4•DI4_II,
5•DI4, 6•DI2, 7•DI2, 7•DI4, 7•DI6 and 8•DI2. The structures were solved with direct methods (either
SHELXS or SHELXT) [59] and refined by full-matrix least squares on F2 using OLEX2 [60] and/or
WinGX [61] which utilize the SHELXL-2016/6 module [59]. No attempt was made to locate the
hydrogens from difference electron density Fourier maps, and appropriate constraints and restraints
were used when necessary for disordered molecules.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4352/7/7/214/s1, Table
S1: Summary of crystallization experiments, Table S2: Crystal data and X-ray experimental details for 1•DI4–3•DI8,
Table S3: Crystal data and X-ray experimental details for 4•DI4_I–5•DI6. Table S4: Crystal data and X-ray
experimental details for 6•DI2–7•DI8. Table S5: Crystal data and X-ray experimental details for 8•DI2 and 8•DI6.
Figure S1: Scatter plot of N-O···I angles vs. I···O distances in N-oxide oxygens functioning as halogen bond
acceptors, as found in CCDC. Figure S2: Scatter plot of N−O···I angles vs. I···O distances as a comparison of our
previous and current results of N-oxide oxygens functioning as halogen bond acceptors.
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