

Article

Flux Growth and Crystal Structure Refinement of Calcite Type Borate GaBO₃

Shichao Wang¹, Ning Ye² and Kenneth R. Poeppelmeier^{1,*}

- ¹ Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; E-Mail: shichao-wang@northwestern.edu
- ² Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, China; E-Mail: nye@fjirsm.ac.cn
- * Author to whom correspondence should be addressed; E-Mail: krp@northwestern.edu; Tel.: +1-847-491-3505; Fax: +1-847-491-7713.

Academic Editor: Glen Deacon

Received: 1 May 2015 / Accepted: 21 May 2015 / Published: 27 May 2015

Abstract: A single crystal of gallium borate, GaBO₃, $4 \times 4 \times 0.2 \text{ mm}^3$ in size has been grown by spontaneous crystallization with a molten flux based on a Bi₂O₃-3B₂O₃ solvent. From single crystal X-ray diffraction measurement, GaBO₃ was found to crystallize in the trigonal calcite type, space group *R*-3c, with cell dimensions *a* = 4.56590(10) and *c* = 14.1764(4) Å, *Z* = 6. Layers of distorted [GaO₆] octahedra are interleaved by layers of triangular planar [BO₃] unites. The transmission spectrum on a single crystal indicated that the band gap of GaBO₃ is 3.62 eV.

Keywords: borates; gallium borate; calcite type; crystal growth; flux

1. Introduction

Calcium carbonate, CaCO₃, exists in three different polymorphs: The calcite, vaterite, and aragonite structures [1]. Triangle planar BO₃^{3–} groups can replace $CO_3^{2–}$ to form metal orthoborates with the nominal formula A^{III}BO₃ which have been determined to be isostructural with different forms of CaCO₃. Usually, small cations of A³⁺ lead to the crystallization of A^{III}BO₃ in a calcite type structure which belongs to the trigonal space group *R*-3*c*. The A³⁺ caions occupy octahedral positions and can be substituted by Al³⁺, In³⁺, Fe³⁺ and Sc³⁺ [2–6]. These compounds have attracted attention because of their

potential applications as photoluminescence materials, laser media, scintillating materials and magnetic materials [7,8].

Gallium borate, GaBO₃, has been well studied with respect to luminescence properties [9–11], thermal behavior [12,13] and thermochemistry [14,15] in phase equilibria in the Ga₂O₃-B₂O₃ system. Gallium borate melts incongruently, decomposes to β -Ga₂O₃ above 918 °C, and crystallizes in the calcite-type structure with the unit cell *a* = 4.568 Å and *c* = 14.182 Å by powder X-ray diffraction [16]. Single crystal of calcite-type borates usually are grown by the hydrothermal method [4], high pressure solid state reaction [16] or in a flux. The B₂O₃ [13], Li₂O-B₂O₃ [5,6], B₂O₃-PbO-PbF₂ [17] systems have been proved to be suitable flux for growing calcite-type borates. Recently, Vitzthum *et al.* have also reported the structure of GaBO₃ determined from crystals synthesized under high pressure [18]. We report a flux-based crystal growth procedure under ambient pressures to grow crystals up to $4 \times 4 \times 0.2$ mm³ in size. In this contribution, the flux-based crystal growth procedure, crystal structure, and optical properties of GaBO₃ are reported.

2. Results and Discussion

2.1. Crystal Growth

According to a previous study [12] of the thermochemistry of GaBO₃ and phase equilibria in the Ga₂O₃-B₂O₃ system, the compound GaBO₃ melts incongruently and decomposes to β -Ga₂O₃ above 918 °C. Thus, a flux must be used to grow single crystals. Here, transparent and light yellowish GaBO₃ crystals have been grown by spontaneous crystallization in a molten flux based on the Bi₂O₃-3B₂O₃ solvent, which has a low melting temperature (708 °C) [19] and good solubility for the calcite type borates [2]. There are two key experimental considerations in order to obtain phase pure GaBO₃: (1) The ratio of GaBO₃ and Bi₂O₃-3B₂O₃; and (2) Annealing procedure. Without enough flux or annealing procedure, single crystals of β -Ga₂O₃ will be obtained as a secondary phase. Simultaneously, too much flux will lead to the formation of a glass because of the high viscosity of B₂O₃. As shown in Figure 1, the GaBO₃ crystals have the typical morphology of the calcite type showing forms of well-formed hexagonal plates elongated along the *c*-axis, with sizes up to $4 \times 4 \times 0.2$ mm³. They are chemically stable with respect to hot water and strong acid.

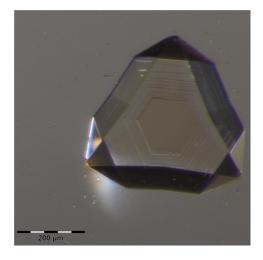


Figure 1. As-grown GaBO₃ crystal.

2.2. Structural Analysis

GaBO₃ is isostructural with the mineral calcite CaCO₃ and other calcite type borates, such as AlBO₃, InBO₃, FeBO₃ and ScBO₃. The cell dimensions of GaBO₃ (a = 4.56590(10) and c = 14.1764(4) Å) are larger than AlBO₃ (a = 4.4638(3) and c = 13.745(1) Å) [4] and smaller than InBO₃ (a = 4.8217(8) and c = 15.438(1) Å) [6]. The structure of GaBO₃ is illustrated in Figure 2.

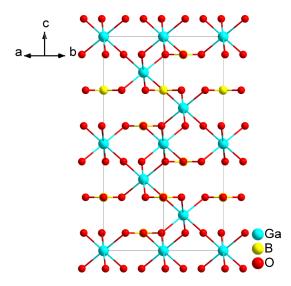


Figure 2. Crystal structure of GaBO₃.

GaBO₃ crystallizes in the centrosymmetric trigonal space group R-3c. In the asymmetric unit of GaBO₃, Ga, B, and O occupy only one crystallographically unique positions, respectively. The bond length and bond angles are listed in Table 1. It is worthwhile to note that our crystal structure (cell constants, bond distances and angles) agrees very closely with those reported by Vitzthum *et al.* [18].

Bond lengths (Å)		Bond angles (°)		
Ga–O	1.9875(2)	O–Ga–O	180.00(3)	
		O–Ga–O	91.718(7)	
		O–Ga–O	91.719(8)	
		B–O–Ga	117.055(14)	
		O–B–O	120	
В-О	1.3789(5)	O–Ga–O	180	
		O–Ga–O	88.282(7)	
		O–Ga–O	88.281(8)	
		Ga–O–Ga	125.89(3)	

Table 1. Bond lengths and bond angles for GaBO₃ (Å, °)

The B atoms are coordinated to three O atoms to form planar [BO₃] triangles with B–O bond lengths 1.3789(5) Å and O–B–O bond angles 120°. The Ga atoms are bound to six O atoms to form distorted [GaO₆] octahedra with Ga–O bond lengths 1.9875(2) Å and O–Ga–O bond angles from 88.281(8)° to 180.00(3)°. Each O atom is threefold coordinated with two Ga atoms and one B atom. The compound adopts the classical calcite structure type with Ga-centered distorted octahedra connected by sharing vertices with the isolated [BO₃] triangles that extend parallel to the *ab* plane. The [BO₃] borate groups

are distributed in layers so that the $[BO_3]$ triangles present reversed orientations in alternating layers, while each $[GaO_6]$ octahedron share only vertices with other six $[GaO_6]$ octahedra (Figure 3), three from the upper layer and three from the lower layer, resulting in the final 3D framework.

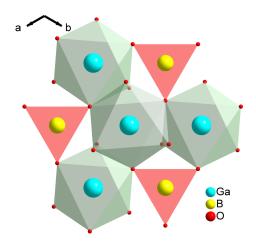


Figure 3. The connection of the polyhedra in the structure of GaBO₃ shown along the *c*-axis.

As shown in Figure 4, the powder X-ray diffraction patterns of GaBO₃, as-grown crystals and the theoretical simulations from single crystal structures match each other very well. The differences in peak intensity for the same crystallographic index between the two patterns are believed to be caused by the preferred orientation of the powder samples. The powder patterns also confirmed the presence of small amount of β -Ga₂O₃ as a secondary phase.

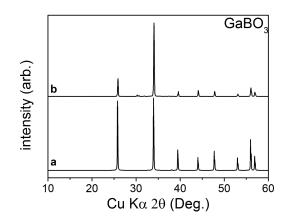
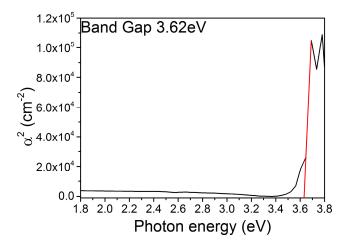



Figure 4. X-ray powder diffraction patterns of (a) simulation results, and (b) crystal sample.

The result of ICP elemental analysis of GaBO₃ is calculated on the basis of one B atom and three O atoms in each formula unit. The result of Ga_{0.94}BO₃ is consistent with the compositions determined from the single crystal X-ray analysis.

2.3. Optical Properties

To confirm the band gap of GaBO₃, transmittance (*T*) and reflectance (*R*) spectra were recorded from single crystals. From *T* and *R*, the absorption coefficient (α) can be determined as a function of incident photon energy. As shown in Figure 5, a linear fit to α^2 versus energy gives a band gap 3.62 eV for GaBO₃ crystal.

Figure 5. Square of absorption coefficient *vs.* photon energy of a GaBO₃ sample. The optical band gap of the sample was estimated to be 3.62 eV.

3. Experimental Section

3.1. Growth

Single crystals of GaBO₃ were grown from a high temperature solution by using Bi₂O₃-3B₂O₃ as a flux. This solution was prepared in a platinum crucible with an Al₂O₃ lid by melting a reagent-grade mixture of Bi₂O₃ (99.999%, Alfa-Aesar, Ward Hill, MA, USA), Ga₂O₃ (99.99%, Alfa-Aesar) and B₂O₃ (99.999%, Alfa-Aesar) in a molar ratio of Ga₂O₃:Bi₂O₃:B₂O₃ = 3:4:15. The mixture was heated in a programmable temperature electric furnace at 1000 °C, and held for one day until the melt became transparent and clear. The homogenized melt solution was then cooled rapidly (50 °C/h) to the initial temperature of crystallization 850 °C, and then cooled slowly to the final crystallization temperature 700 °C at the rate of 3 °C/h. After annealing for three days at 700 °C, the melt was allowed to cool to room temperature by turning off the power of the furnace. The flux attached to the crystal was readily dissolved in nitric acid and hot water.

3.2. Elemental Analysis

Elemental analysis of the crystals was performed using a Jobin Yvon Ultima2 inductively coupled plasma optical emission spectrometer (ICP-OES) with Sepex Certiprep standards. The crystal samples were dissolved in a mixture of nitric acid (2 mL), phosphoric acid (3 mL) and hydrochloric acid (5 mL) by microwave digestion at 220 °C for 2 h.

3.3. X-ray Measurements

X-ray diffraction patterns of polycrystalline materials were obtained on a Rigaku Ulitma powder X-ray diffractometer (Rigaku Americas, Woodlands, TX, USA) by using Cu K α radiation ($\lambda = 1.540598$ Å) at room temperature in the angular range of $2\theta = 5^{\circ}-65^{\circ}$ with a scan step width of 0.05° and a dwell step of 2 s.

Single crystal X-ray diffraction data were collected at 100 K on a Bruker Kappa APEX II CCD diffractometer (Bruker AXS Inc., Madison, WI, USA) with monochromatic Mo Ka radiation

USA). Absorption corrections based on the Multi-scan technique were applied with SADABS (Bruker AXS Inc., Madison, WI, USA). The structure was solved by direct methods using SHELXS-97 [20] and then refined by full-matrix least-squares refinement on F^2 with SHELXL-97 [20] found in the software suite WinGX v2013.3 [21]. The structure was verified using ADDSYM algorithm from the program PLATON [22], and no higher symmetries were found. Relevant crystallographic data and details of the experimental conditions are summarized in Table 2. Atomic coordinates and isotropic displacement coefficients are listed in Table 3. The Cif document could be found in supplementary information.

Parameter	Data				
Formula mass (amu)	128.53				
Crystal system	Trigonal				
Space group	<i>R</i> -3 <i>c</i>				
<i>a</i> (Å)	4.56590(10)				
<i>c</i> (Å)	14.1764(4)				
$V(Å^3)$	255.946(11)				
Ζ	6				
Crystal size (mm)	$0.15 \times 0.11 \times 0.07$				
ρ (calcd) (g/cm ³)	5.003				
F(000)	360				
$\mu (mm^{-1})$	15.716				
Absorption correction	Multi-scan				
Temperature (K)	100(2)				
Wavelength (Å)	0.71073				
θ (deg)	5.91-45.16				
	$-8 \le h \le 9$				
Index range	$-8 \le k \le 9$				
	$-26 \le l \le 28$				
$R_{ m int}$	0.0353				
Reflections collected	6025				
Independent reflections	242				
Reflections $(I > 2\sigma(I))$	237				
Completeness	100%				
Data/Restraints/Parameters	242/0/11				
R/wR ($I > 2\sigma$ (I))	0.0153/0.0432				
<i>R</i> / <i>wR</i> (all data)	0.0155/0.0433				
GOF on F^2	1.172				
Largest diff. peak and hole $(e/Å^{-3})$	1.504 and -1.156				
Notes: $R(F) = \Sigma F_o - F_c / \Sigma F_o ; w R(F_o^2) = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$					

Table 2. Crystal data and structure refinement for GaBO₃.

Atom	x	y	z	Wyckoff	$U_{ m eq}({ m \AA}^2)$	Occupancy
Ga	0	0	0	6b	0.00262(8)	1
В	0	0	1/4	6a	0.0043(3)	1
0	0.30201(12)	0	1/4	18e	0.00391(11)	1

Table 3. Atomic positions and isotropic displacement factors for GaBO₃.

3.4. Optical Measurements

The optical transmission and reflection spectra of single crystal samples were measured with a PerkinElmer Lambda 1050 UV/Vis/NIR spectrometer over the range of 180–860 nm with a photomultiplier tube (PMT). In the transmission configuration, the transmittance T, reflectivity R, and absorption coefficient α are related by the expression

$$\alpha = \frac{1}{d} \ln \left[\frac{\left(1 - R\right)^2}{2T} + \sqrt{\frac{\left(1 - R\right)^4}{4T^2} + R^2} \right]$$

where *d* is the thickness of the sample (d = 0.2 mm). The reflectivity was obtained by normalizing the reflectance of the sample to that of a silicon reference, which has a reflectivity of 0.3 at the wavelength regime > 1300 nm. The band gap energy is determined by plotting the square of absorption coefficient, α^2 , *versus* photon energy. Extrapolating the linear part of the curve to zero and finding the point of interception with the E axis gives the corresponding band gap energy.

4. Conclusions

Transparent and yellowish calcite type borate GaBO₃ crystals have been grown using Bi₂O₃-B₂O₃ as a flux by spontaneous crystallization for the first time. The crystal structure of GaBO₃ is refined by single crystal X-ray diffraction. It crystallizes in space group *R*-3c with cell dimensions a = 4.56590(10) and c = 14.1764(4) Å. The transmission spectrum results indicated that band gap of GaBO₃ compound is 3.62 eV.

Acknowledgments

This material is based upon work supported by National Science Foundation (Awards DMR-1005827 and DMR-1307698). We thank Zhifu Liu for helping with band gap measurement.

Author Contributions

Shichao Wang and Ning Ye conceived the project, Shichao Wang performed the experiments and analyzed the data under the direction of Ning Ye and Kenneth R. Poeppelmeier, and all authors contributed in the manuscript preparation.

Conflicts of Interest

The authors declare no conflict of interest.

References

- Levin, E.M.; Roth, R.S.; Martin, J.B. Polymorphism of ABO₃ type rare earth borates. *Am. Mineral.* 1961, *46*, 1030–1055.
- 2. Bernal, I.; Struck, C.W.; White, J.G. New transition metal borates with the calcite structure. *Acta Crystallogr.* **1963**, *16*, 849–850.
- 3. Diehl, R. Crystal structure refinement of ferric borate, FeBO₃. *Solid State Commun.* **1975**, *17*, 743–745.
- Vegas, A.; Cano, F.H.; Garciablanco, S. Refinement of aluminium orthoborate Sample: 30–50 degree reflections, Al³⁺, O- Note: Calcite structure type. *Acta Crystallogr. Sect. B Struct. Sci.* 1977, 33, 3607–3609.
- Keszler, D.A.; Sun, H.X. Structure of ScBO₃. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1988, 44, 1505–1057.
- 6. Cox, J.R.; Keszler, D.A. InBO₃. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1994, 50, 1857–1859.
- Ding, X.X.; Huang, Z.X.; Huang, X.T.; Gan, Z.W.; Cheng, C.; Tang, C.; Qi, S.R. Synthesis of gallium borate nanowires. J. Cryst. Growth 2004, 263, 504–509.
- Santamaria-Perez, D.; Gomis, O.; Sans, J.A.; Ortiz, H.M.; Vegas, A.; Errandonea, D.; Ruiz-Fuertes, J.; Martinez-Garcia, D.; Garcia-Domene, B.; Pereira, A.L.J.; *et al.* Compressibility systematics of calcite-type borates: An experimental and theoretical structural study on ABO₃ (A = Al, Sc, Fe, and In). *J. Phys. Chem. C* 2014, *118*, 4354–4361.
- 9. Blasse, G.; Bril, A. Crystal structure and fluorescence of some lanthanide gallium borates. *J. Inorg. Nucl. Chem.* **1967**, *29*, 266–267.
- 10. Dirksen, G.J.; Hoffman, A.; Vandebout, T.P.; Laudy, M.P.G.; Blasse, G. Luminescence spectra of pure and doped GaBO₃ and LiGaO₂. *J. Mater. Chem.* **1991**, *1*, 1001–1005.
- Dotsenko, V.P.; Efryushina, N.P.; Berezovskaya, I.V. Luminescence properties of GaBO₃:Bi³⁺ Mater. Lett. 1996, 28, 517–520.
- 12. Sajuti, D.; Yano, M.; Narushima, T.; Iguchi, Y. Phase diagrams of the Ga₂O₃-B₂O₃ and In₂O₃-B₂O₃ binary systems. *Mater. Trans. JIM* **1993**, *34*, 1195–1199.
- 13. Tajima, K.; Hino, Y.; Narushima, T.; Iguchi, Y. Activity of Ga₂O₃ in B₂O₃ flux and free energies of formation of GaBO₃ and InBO₃. *Mater. Trans. JIM* **2000**, *41*, 714–718.
- 14. Hoch, M. Thermodynamic properties and phase diagrams of the binary systems B₂O₃-Ga₂O₃, B₂O₃-Al₂O₃ and B₂O₃-In₂O₃. *J. Alloys Compd.* **2001**, *320*, 267–275.
- 15. Pelzer, H.; Muller, F. Thermochemistry of GaBO₃ and phase equilibria in the Ga₂O₃-B₂O₃ system. *J. Alloys Compd.* **2001**, *320*, 262–266.
- Bither, T.A.; Young, H.S. MBO₃ Calcite-type borates of Al, Ga, Tl, and Rh. J. Solid State Chem. 1973, 6, 502–508.
- 17. Rudenko, V.V. High-temperature solution growth of GaBO₃ crystals. *Kristallografiya* **1995**, *40*, 382–384.
- Vitzthum, D.; Hering, S.A.; Perfler, L.; Huppertz, H. High-pressure syntheses and crystal structures of orthorhombic DyGaO₃ and trigonal GaBO₃ Z. *Naturforschung Sect. B J. Chem. Sci.* 2015, *70*, 207–214.

- 19. Levin, E.M.; Mc Daniel, C.L. The system Bi₂O₃-B₂O₃. J. Am. Ceram. Soc. 1962, 45, 355–360.
- 20. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122.
- 21. Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849-854.
- 22. Spek, A.L. Structure validation in chemical crystallography. *Acta Crystallogr. Sect. D Biol. Crystallogr.* 2009, 65, 148–155.

 \bigcirc 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).