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Abstract: Tetrathiafulvalene derivatives condensed with 2-alkylidene-1,3-dithiole moiety, 

MeDTES (2-isopropylidene-1,3-dithiolo[4,5-d]-4,5-ethylenediselenotetrathiafulvalene), 

EtDTES (2-(pentan-3-ylidene)-1,3-dithiolo[4,5-d]-4,5-ethylenediselenotetrathiafulvalene), 

and CPDTES (2-cyclopentanylidene-1,3-dithiolo[4,5-d]-4,5-ethylenediselenotetrathiafulvalene) 

have been synthesized. Crystal structure analysis of MeDTES salts with Au(CN)4
−, ReO4

−, 

and I3
− and a CPDTES salt with I3

− reveals that the donor−anion ratios of all salts are 1:1. 

Band calculation of (MeDTES)[Au(CN)4] suggests a quasi-one-dimensional Fermi surface 

that could be the result of the uniform stack of donor molecules. In spite of this stacking, 

the salt is a Mott insulator because of a large on-site Coulomb interaction U. 

(MeDTES)(ReO4)(H2O)0.5 possesses Fermi points and exhibits semiconducting behavior 

with small activation energy (Ea = 0.058 eV). I3
− ions form disordered infinite chain in 

(MeDTES)(I3)(DCE)0.25, but those in (CPDTES)(I3) exist as discrete ions. They show low 

conductivity (10−4−10−2 S cm−1) at room temperature and the band calculation suggests that 

they are band insulator.  

Keywords: molecular conductors; tetrathiafulvalene derivatives; cation radical salts; crystal 

structure; band calculation 
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1. Introduction 

Two-dimensional organic superconductors based on bis(ethylenedithio)tetrathiafulvalene  

(BEDT-TTF) have been developed and some of them have showed a superconducting transition above 

10 K [1−4]. Two-dimensional molecular arrangements such as β- and κ-types [5,6] and the effective 

half filled band are important to produce high Tc organic superconductors. In the β- and κ-types, donor 

molecules form face-to-face dimers, and they form two-dimensional conducting layers. Introduction of 

appropriate substituents introducing steric hindrance is regarded as an effective strategy to obtain a 

dimerized molecular arrangement. Actually, a large number of TTF derivatives have been synthesized 

in order to develop novel molecular conductors with a two-dimensional molecular arrangement.  

TTF derivatives condensed with 2-alkylidene-1,3-dithiole moiety (DT-TTFs) containing methyl 

groups or an ethylenedithio group, 2-isopropylidene-1,3-dithiolo[4,5-d]-4,5-dimethyltetrathiafulvalene 

(MeDTDM), 2-isopropylidene-1,3-dithiolo[4,5-d]-4,5-ethylenedithiotetrathiafulvalene (MeDTET), 

and 2-cyclopentanylidene-1,3-dithiolo[4,5-d]-4,5-ethylenedithiotetrathiafulvalene (CPDTET), often 

provide such salts possessing the two-dimensional β- and κ-type molecular arrangements that show 

metallic conductivity down to low temperature. They did not, however, show superconductivity 

because their metallic nature derived from a wide bandwidth is too stable [7,8] and the non-half-filled 

band, such as the quarter-filled band [9], the 5/6 filled band with 3:1 composition [10], and the  

non-stoichiometric band filling [11].  

To reduce bandwidth of the molecular conductors based on MeDTET and CPDTET, we designed 

new electron donors, 2-isopropylidene-1,3-dithiolo[4,5-d]-4,5-ethylenediselenotetrathiafulvalene 

(MeDTES), 2-(pentan-3-ylidene)-1,3-dithiolo[4,5-d]-4,5-ethylenediselenotetrathiafulvalene (EtDTES), 

and 2-cyclopentanylidene-1,3-dithiolo[4,5-d]-4,5-ethylenediselenotetrathiafulvalene (CPDTES) as 

depicted in Figure 1. Replacement of sulfur atoms by selenium atoms on the π-system usually extends 

the bandwidth [12−14]. In contrast, introduction of substituents containing selenium atoms reduces the 

intermolecular interaction because of their steric hindrance and selenium atoms have small coefficients 

in the highest occupied molecular orbital (HOMO) [15,16]. Introduction of the ethylenediseleno group 

in the DT-TTF derivatives could bring the reduction of the bandwidth of the system, which might be 

helpful to develop new superconductors. Here we report the synthesis and properties of MeDTES, 

EtDTES, and CPDTES together with structures of their cation radical salts. 

Figure 1. Molecular structures of TTF derivatives condensed with 2-alkylidene-1,3-

dithiole unit (DT-TTFs).  
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2. Results and Discussion 

2.1. Synthesis and Property of MeDTES, EtDTES, and CPDTES 

The synthesis of MeDTES, EtDTES, and CPDTES is outlined in Figure 2. The triethyl  

phosphite-mediated cross-coupling reaction of 4,5-ethylenediseleno-1,3-dithiole-2-thione (1) [17] with 

the ketone 2 [18] afforded phosphonate ester 3 in a 62% yield [19]. MeDTES, EtDTES and CPDTES 

were synthesized in a 68−86% yield by the Wittig−Horner reaction of 3 with corresponding ketone in 

the presence of lithium diisopropylamide (LDA) in THF at −78 °C. Molecular structures of all the new 

compounds were determined by NMR, MS, and elemental analyses. Redox potentials were measured 

by cyclic voltammetry (CV) in benzonitrile. The cyclic voltammograms of MeDTES, EtDTES, and 

CPDTES showed two pairs of reversible redox waves and one pair of irreversible waves. The redox 

potentials are summarized in Table 1. The first oxidation potentials of these donors are lower by 

0.01−0.02 V than those of MeDTET and BEDT-TTF [20], which could be due to the smaller 

electronegativity of the selenium atom compared with that of the sulfur atom. There is not, however, 

much difference in the electron-donating ability between these new donors and MeDTET.  

Figure 2. Synthesis of MeDTES, EtDTES, and CPDTES.  
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Table 1. Redox potentials a (V vs. Fc/Fc+) of MeDTES, EtDTES, CPDTES, and related compounds. 

Donor E1 E2 E3 
b E (=E2 − E1) 

MeDTES 0.04 0.34 1.00 0.30 
EtDTES 0.05 0.35 1.01 0.30 
CPDTES 0.04 0.35 1.00 0.31 
MeDTET 0.06 0.37 0.99 0.31 
BEDT-TTF c 0.06 0.38 – 0.32 

a Measured in benzonitrile containing 0.1 M nBu4NPF6, scan rate was 50 mV s−1; b Irreversible 
wave. Anodic peak potentials; c Measured in benzonitrile containing 0.1 M nBu4NBF4, scan rate 
was 100 mV s−1 [20]. 

The theoretical calculation of MeDTES was carried out using a hybrid method of Hartree-Fock and 

density functional theory (DFT) B3LYP methods using the 6−31G(d) basis set. Figure 3 shows an 

optimized structure and the HOMO of MeDTES. The TTF moiety adopts a chair conformation and the 

dihedral angles are 17.0 and 20.7°. The 2-isopropyridene-1,3-dithiole unit also bends with the dihedral 

angle of 21.7°. The terminal six-membered ring of MeDTES has an eclipsed conformation [15]  

and the selenium atoms of the ethylenediseleno group protrude from the DT-TTF skeleton,  

that is, the ethylenediseleno group is so bulky that is a crucial factor to form a dimer structure.  

The HOMO of MeDTES distributes mainly to the DT-TTF moiety and hardly distributes to the  

ethylenediseleno group. 
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Figure 3. (a) Top view and side view of optimized structure of MeDTES are represented 

by a ball and stick model (left) and a space-filling model (right); (b) The HOMO of 

MeDTES, of which the energy level is −4.72 eV. 
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2.2. Preparation, Structures of Cation Radical Salts 

2.2.1. Preparation of Cation Radical Salts 

Single crystals of the cation radical salts of MeDTES and CPDTES were prepared by 

electrocrystallization in tetrahydrofuran, 1,2-dichloroethane (containing 6% ethanol, v/v), and 

chlorobenzene (containing 6% ethanol, v/v) in the presence of corresponding tetra-n-butylammonium 

salts as the supporting electrolyte (Table 2). The salts of MeDTES with Au(CN)4
− (4), ReO4

− (5), and 

I3
− (6) and the CPDTES salt with I3

− (7) were obtained as platelet crystals, although EtDTES did not 

afford single crystalline salts. Crystal data of 5−7 are summarized in Table 3.  

Table 2. Conditions of the preparation of 4−7 a. 

Salt Donor (/ mg) Electrolyte (/ mg) b Solvent, 18 mL c Current/μA Period/day 
4 MeDTES (2.0) TBAAu(CN)4 (39.1) THF 0.5 2 
5 MeDTES (2.0) TBAReO4 (35.5) THF 0.5 2 
6 MeDTES (2.0) TBAI3 (44.9) DCE (6% EtOH) 0.5 2 
7 CPDTES (2.0) TBAI3 (44.9) PhCl (6% EtOH) 0.5 2 
a 25 °C under an argon atmosphere; b The tetra-n-butylammonium (TBA) salts were employed;  
c THF = tetrahydrofuran; DCE = 1,2-dichloroethane; PhCl = chlorobenzene; EtOH = ethanol. 

Table 3. Crystal data, structure refinement details and electrical properties for 4−7. 

Compound 4 5 6 7 
CCDC no. 879812 879813 879814 879815 

Chemical formula 
C12H10S6Se2· 
AuC4N4 

C12H10S6Se2· 
ReO4·(H2O)0.5 

(C12H10S6Se2)2· 
(I6)·(C4H4Cl2)0.5 

C14H12S6Se2·I3 

Formula weight 805.53 763.69 1819.84 911.22 
Crystal size (mm3) 0.05  0.04  0.01 0.04  0.02  0.01 0.06  0.02  0.01 0.08  0.06  0.03 
Crystal system Orthorhombic Triclinic Triclinic Triclinic 
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Table 3. Cont. 

Compound 4 5 6 7 
Space group Pnma P1 P1 P1 
a/Å 42.054(4) 8.532(6) 7.893(2) 8.443(2) 
b/Å 12.3735(9) 9.750(7) 8.594(3) 8.859(2) 
c/Å 4.2760(3) 13.597(10) 34.646(10) 16.686(5) 
α/° 90 94.949(17) 89.481(8) 84.118(11) 
β/° 90 94.723(14) 84.178(6) 89.712(13) 
γ/° 90 93.783(13) 77.788(4) 68.365(9) 
V/Å3 2225.0(3) 1120.0(14) 2285.0(12) 1153.2(5) 
Z 4 2 2 2 
Dcalc/mg m−3 2.405 2.264 2.645 2.624 
μ/mm−1 10.459 9.250 7.894 7.764 
Temperature/K 273 120 273 273 
Measured reflections 19893 13612 23602 9519 
Independent 
reflections (Rint) 

2660 (0.0660) 5066 (0.0800) 10260 (0.0856) 5193 (0.0705) 

Observed reflections 
[I  2σ (I)] 

2464 3763 6592 2485 

Restraints/parameters 0/149 0/206 0/437 0/229 
R1/wR2 [I  2σ (I)] 0.0535, 0.1123 0.0835, 0.2044 0.0654, 0.1591 0.0455, 0.0993 
R1/wR2 (all data) 0.0593, 0.1154 0.1084, 0.2303 0.1006, 0.1818 0.0972, 0.1235 
Goodness of fit 1.214 1.070 1.093 0.902 
σrt/S cm−1 4.4  10−3 1.3  10−2 5.3  10−2 6.1  10−4 
Ea/eV 0.15 0.058 0.051 0.17 

2.2.2. Structures and Electrical Properties of (MeDTES)[Au(CN)4] (4) 

(MeDTES)[Au(CN)4] (4) crystallizes in orthorhombic space group Pnma. The ORTEP drawings of 

the MeDTES molecule are shown in Figure 4. A half of the donor molecule is crystallographically 

independent, in which the carbon atoms C3, C4, C6, and C7 are on the mirror plane at b = 0.25. The 

terminal ethylene bridge of the MeDTES molecule shows a flipping disorder. The gold atom of the 

Au(CN)4
− ion also exists on the mirror plane at b = 0.75 and half of the Au(CN)4

− ion is 

crystallographically independent. These facts indicate a 1:1 donor−anion ratio. Donor molecules stack 

uniformly along the c axis with the interplanar distance z = 3.49 Å and the slipping distance x = 2.47 Å 

in a head-to-head manner. The geometrical parameters x, y, and z are estimated by the literature  

method [5], and the definition of these parameters is shown in Supplementary Materials. There are 

four, crystallographically equivalent donor columns in the unit cell: I, II, III, and IV (Figure 5). The 

Se···Se contact (3.720(1) Å) is shorter than the sum of the van der Waals radii [21], which are 

represented by blue broken lines in Figure 5. The adjacent donor columns I and II (III and IV) are 

orthogonally linked by the Se···Se contacts along the b axis. The square-planar Au(CN)4
− ions also 

stack along the c axis with the interplanar distance of 3.24 Å. In consequence, this salt shows a 

segregate columnar structure like (TTF)(TCNQ) [22].  
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Figure 4. Top view (left) and side view (right) of ORTEP drawings of the MeDTES 

molecule in 4. Displacement ellipsoids are drawn at the 50% probability level. Symmetry 

operator * is x, 0.5 − y, z. 
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Figure 5. Crystal structures of 4 (a) viewed along the c axis and (b) b axis. Blue broken lines 

indicate the Se···Se contacts, shorter than the sum of the van der Waals radii; (c) Top view 

and side view of molecular overlap of c. The atoms in the front molecule are represented by 

solid circles and those in the rear are represented by open circles. One of the conformations 

for the ethylene bridge is omitted for clarity. 
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Intermolecular overlap integrals are calculated by the extended Hückel method [23] and are listed in 

Figure 6. Intrastack overlap integral c (−26.80  10−3) is much larger than integrals b1, b2, and p. The 

calculated band dispersion and the Fermi surfaces for 4 based on the tight-binding approximation are 



Crystals 2012, 2              

 

 

399

shown in Figure 7 [23]. The energy band shows a half-filled band because of the 1:1 donor–anion ratio 

and uniform donor column. The flat Fermi surfaces suggest that this salt is a one-dimensional  

metal. This salt shows, however, low conductivity (σrt = 4.4  10−3 S cm−1) at room temperature and 

semiconducting behavior with an activation energy of Ea = 0.15 eV. The redox potential difference,  

(∆E = E2 − E1), corresponds to the on-site Coulomb interaction U. The ∆E value of MeDTES (0.30 V) 

is almost the same as that of BEDT-TTF (0.32 V [20]). These facts suggest that this salt is a Mott 

insulator derived from the relatively large on-site Coulomb interaction U.  

Figure 6. Molecular arrangements of (a) columns I and II viewed along the molecular short 

axis and (b) columns II and III viewed along the molecular long axis. The calculated overlap 

integrals (×10−3) are c = −26.80, b1 = 0.20, b2 = −0.02, and p = −0.58. The hydrogen atoms 

are omitted for clarity. 
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Figure 7. Calculated band dispersion (left) and Fermi surfaces (right) for 4. 
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2.2.3. Structures and Electrical Properties of (MeDTES)(ReO4)(H2O)0.5 (5) 

(MeDTES)(ReO4)(H2O)0.5 (5) crystallizes in triclinic space group P1. The molecular structure of the 

donor molecule is shown in Figure 8. The MeDTES molecule in this salt shows high planarity except for 

the terminal ethylene bridge. One donor molecule and one ReO4
− ion are crystallographically 

independent and they are located in the general position, giving the 1:1 donor−anion ratio. An oxygen 



Crystals 2012, 2              

 

 

400

atom is found around the center of inversion with a half occupancy. Since the origin of the oxygen is 

not clear, we assumed it as a part of the solvent, tetrahydrofuran (THF). However, the refinement did 

not converge to give the THF molecule. Therefore we conclude that the oxygen atom is either water 

(H2O) or of oxonium ion (H3O
+) origin, which might explain the conducting property of the salt.  

Figure 8. Top view (left) and side view (right) of ORTEP drawings of the MeDTES 

molecule in 5. Displacement ellipsoids are drawn at the 50% probability level.  
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As shown in Figure 9, donor molecules form a columnar structure along the a axis and they are 

linked by Se···S contact (3.682(5) Å) which is shorter than the sum of the van der Waals radii  

(Se···S = 3.70 Å) [21]. The donor molecules stack in a two-fold periodicity with the interplanar 

distance of 3.65 Å for a1 and 3.33 Å for a2. The slipping distance x along the molecular long axis is 

9.01 Å for a1 and 4.60 Å for a2 [5]. The donor molecules are also slipping by 1.97 Å for a1 and  

0.20 Å for a2 along the molecular short axis. The large slipping distance for a1 results in the formation 

of a large cavity where the ReO4
− ions are situated.  

Figure 9. (a) Crystal structure of 5 viewed along the a axis; (b) Columnar structure of 

MeDTES in 5; (c) Top view and side view of molecular overlaps of a1 and a2. The atoms 

in the front molecule are represented by solid circles and those in the rear are represented 

by open circles. 
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Figure 9. Cont. 
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The calculated overlap integral a1 (−2.04  10−3) is much smaller than the integral a2 (21.47  10−3), 

indicating strong dimerization along the stacking direction (Figure 10). Interestingly, there is  

a large overlap integral q2 because of the existence of short Se···S contacts. The energy band structure 

and Fermi surface were calculated by the tight-binding approximation [23]. There are two energy 

branches and there is no energy gap between upper and lower bands (Figure 11). If the origin  

of oxygen atom is an oxonium ion, the Fermi level (EF) crosses the upper branch, which results in the 

quasi-one-dimensional metal (Figure 12a). However, the σrt of the salt is 1.3  10−2 S cm−1 and this salt 

shows semiconducting behavior with small activation energy of 0.058 eV. When the composition of 5 

is (MeDTES)+(ReO4
−)(H2O)0.5, the EF crosses just through the degeneracy point, which suggest that 

the salt possesses Fermi points at the B and X points (Figure 12b). The conducting property  

supports the idea that the origin of oxygen is water and the composition of the salt 5 is 

(MeDTES)(ReO4)(H2O)0.5. 

Figure 10. Molecular arrangement viewed along the molecular long axis. The calculated 

overlap integrals (×10−3) are a1 = −2.04, a2 = 21.47, p = 0.05, q1 = 0.80, and q2 = 22.04. 

The hydrogen atoms are omitted for clarity. 
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Figure 11. Calculated band dispersion of the salt 5. The EF depends on the composition. 
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2.2.4. Structures and Electrical Properties of (MeDTES)(I3)(DCE)0.25 (6) (DCE = 1,2-Dichloroethane) 

The MeDTES salt with I3
− (6) crystallizes in triclinic space group P1. There are crystallographically 

independent two MeDTES molecules. The ORTEP drawings of Molecules A and B of MeDTES are 

shown in Figure 13. TTF moiety of Molecule A shows high planarity, and the 2-isopropylidene-1,3-

dithiole unit slightly bends with dihedral angle of 6.3(3)°. Molecule B also has flat chair-like structure 

with dihedral angles 5.9(1) and 7.3(3)° as shown in Figure 13b.  

Figure 13. Top view and side view of ORTEP drawings of (a) Molecule A and (b) Molecule 

B of MeDTES in 6. Displacement ellipsoids are drawn at the 50% probability level.  
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As shown in Figure 14, there is 1,2-dichloroethane (DCE) solvent molecule at around the center of 

inversion with a half occupancy. Six iodine atoms I1−I6 are crystallographically independent and they 

form infinite zig-zag chains. The interatomic distances d1 (I1−I2), d4 (I4−I4), and d7 (I6−I6) are 

2.900(2), 2.950(2), and 2.935(2) Å, respectively, which are consistent with the average distance of the 

I−I bond (2.92 Å) in triiodide I3
− [24,25]. In contrast, the distances d2 (I2−I3), d3 (I3−I4), d5 (I5−I1), 

and d6 (I6−I5) are 3.271(2)−3.471(3) Å which is close to the mean value (3.44 Å) of the I−I bond 

length of triiodide (2.92 Å) and the sum of the van der Waals radii of iodine atoms (3.96 Å) [21]. The 

triiodide often forms an infinite chain and the typical I···I distance is 3.60 Å [24], which is slightly 

longer than d2, d3, d5, and d6 of the salt 6. There might be two patterns of configuration model of 

triiodide ions which are depicted in Figure 14b as light blue and pink lines. The infinite zig-zag iodine 

chains observed in the salt 6 are disordered. 

Figure 14. (a) Crystal structure of 6 viewed along the a axis; (b) Iodine chain structure  

in 6 with the atom numberings. Interatomic distances are d1 = 2.900(2), d2 = 3.271(2),  

d3 = 3.352(2), d4 = 2.950(2), d5 = 3.471(3), d6 = 3.445(3), and d7 = 2.935(2) Å. Two 

patterns of configuration model of I3
− ion are depicted as light blue and pink lines. 
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As shown in Figure 15, Molecules A and B form the head-to-head dimer with an interplanar 

distance of 3.40 Å and a slipping distance of 0.76 Å along the molecular long axis [5]. The intradimer 

overlap integral a (−41.80  10−3) is larger than those of the interdimer p (−14.10  10−3) and  

q (−11.27  10−3). The calculated energy band structure is shown in Figure 16. There are two branches, 

which are separated by a gap because of the dimerized structure. When the infinite iodide chain 

consists of polyiodide, such as pentaiodide I5
−, the Fermi level (EF) crosses the upper branch, which 

makes the salt metallic. However, this salt behaves as a semiconductor with an activation energy of 
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0.051 eV and shows low conductivity σrt = 5.3  10−2 S cm−1 at room temperature. When the 

composition of 6 is (MeDTES)+(I3
−)(DCE)0.25, the EF lies at the gap (Figure 17), which suggests that 

the salt 6 is a band insulator. Conductivity measurement supports the idea that the composition of the 

salt 6 is (MeDTES)(I3)(DCE)0.25. 

Figure 15. (a) Top view and side view of molecular overlap of a. The atoms in the front 

molecule are represented by solid circles and those in the rear are represented by open 

circles; (b) Molecular arrangement viewed along the molecular long axis. The calculated 

overlap integrals (×10−3) are a = −41.80, p = −14.10, and q = −11.27. The infinite iodine 

chains are depicted by pink circles. The hydrogen atoms are omitted for clarity. 

 

Figure 16. Calculated band dispersion (left) and Fermi surfaces (right) of 

(MeDTES)3/5+(I5
−)3/5(DCE)0.25. 
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Figure 17. Calculated band dispersion of (MeDTES)+(I3
−)(DCE)0.25. 
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2.2.5. Structures and Electrical Properties of (CPDTES)(I3) (7) 

(CPDTES)(I3) (7) crystallizes in triclinic space group P1. The ORTEP drawings of the CPDTES 

molecule are shown in Figure 18. The molecule takes a flat chair-like structure and the dihedral angles of 

the TTP moiety composed of the S3−S6 and C6−C9 atoms are 5.7(1) and 6.9(2)°. One donor molecule is 

crystallographically independent. There are two types of I3
− ion in the crystal and two halves of the ions 

are also crystallographically independent (Figure 19).  

Figure 18. Top view (left) and side view (right) of ORTEP drawings for the CPDTES 

molecule in 7. Displacement ellipsoids are drawn at the 50% probability level.  
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Figure 19. Crystal structure of 7 viewed along the b axis. 
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As shown in Figure 20, donor molecules form a head-to-tail dimer with an interplanar distance of 

3.36 Å and a slipping distance of 0.98 Å along the molecular long axis [5]. The dimers are connected 

by short S···S contacts (3.555(3) and 3.583(4) Å) that are shorter than the sum of the van der Waals 

radii and form a two-dimensional S···S network on the ab plane. One of the I3
− ions is situated in a 

space surrounded by the donor dimers in the S···S network on the ab plane. The other I3
− ion is situated 

between the dimers along the c axis. Although the S···S contacts are formed between the dimers, the 

interdimer overlap integrals p (3.98  10−3) and q (7.08  10−3) are much smaller than the intradimer 

integral a (38.11  10−3). Calculated energy band structure reveals that this salt is a band insulator 

(Figure 21). This result is consistent with the low conductivity (σrt = 6.1  10−4 S cm−1) and large 

activation energy (Ea = 0.17 eV) of the salt.  
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Figure 20. (a) Top and side views of molecular overlap of a. The atoms in the front 

molecule are represented by solid circles and those in the rear are represented by open 

circles; (b) Molecular arrangement viewed along the molecular long axis. The calculated 

overlaps integrals (×10−3) are a = 38.11, p = 3.98, and q = 7.08. Orange broken lines and 

pink circles indicate S···S contacts shorter than the sum of the van der Waals radii and I3
− 

ion. The hydrogen atoms are omitted for clarity. 

 

Figure 21. Calculated energy band dispersion of 7. 
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3. Experimental Section  

3.1. General 

All chemicals and solvents are of reagent grade. All reactions were conducted under an argon 

atmosphere. Dehydrated THF was purchased from Wako Pure Chemical Industries, Ltd., and used 

without further purification. A THF solution of LDA was prepared from diisopropylamine with an  
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n-hexane solution of n-BuLi (1.6 M, Wako Pure Chemical Industries) prior to use. Column 

chromatography was carried out with silica gel (Kanto Chemical, 100−210 μm and Wakosil®,  

64−210 μm). 1H NMR spectra were recorded on a JEOL JNM-EX270 spectrometer. The chemical 

shifts are given in δ (ppm), downfield from internal tetramethylsilane. Mass spectra were measured on 

Applied Biosystem MALDI-TOF-MS Voyager-DE™ PRO. The melting points were determined with 

a Yanaco MP-J3. IR spectra were recorded on a JASCO FT/IR-460 plus spectrometer. Elemental 

analyses were performed at the Integrated Center for Science, Ehime University. Cyclic voltammetry 

(CV) measurements were performed using a BAS ALS/chi 617B electrochemical analyzer. The cell for 

CV consisted of a Pt disk working electrode, a Pt wire counter electrode, and an Ag/AgNO3 reference 

electrode. The measurements were carried out in benzonitrile containing 0.1 M tetra-n-butylammonium 

hexafluorophosphate as a supporting electrolyte. All redox potentials were converted relative to a. 

ferrocene/ferrocenium (Fc/Fc+) couple. All computations were performed with the Gaussian 09 

program package [26] using the 6-31G(d) basis set [27]. Density functional theory (DFT) calculations 

were carried out using a hybrid method of Hartree-Fock and B3LYP method [28−30]. 

3.2. Synthesis 

3.2.1. Diethyl (5-(5,6-dihydro-[1,4]diselenino[2,3-d][1,3]dithiol-2-ylidene)-[1,3]dithiolo[4,5-

d][1,3]dithiol-2-yl)phosphonate (3) 

Triethyl phosphite (26 mL) was added to a mixture of 4,5-ethylenediseleno-1,3-dithiole-2-thione  

(1) [17] (1.00 g, 3.14 mmol) and diethyl (5-oxo-1,3-dithiolo[4,5-d]-1,3-dithiol-2-yl)phosphonate (2) [18] 

(737 mg, 2.23 mmol) in toluene (26 mL), and the solution was stirred at 110 °C for 2 h under argon 

atmosphere. After cooling to room temperature, the solution was evaporated under reduced pressure to 

eliminate the solvent and excess of triethyl phosphite. The residue was subjected to silica-gel column 

chromatography (SiO2/dichloromethane:ethyl acetate = 10:1). The target compound 3 was isolated as 

an orange solid (828 mg, 1.38 mmol, 62%). mp 132−136 °C; 1H NMR (CDCl3, 270 MHz) δH 1.37 (t,  

J = 6.8 Hz, 6H), 3.35 (m, 4H), 4.26 (m, 4H), 5.35 (m, 1H); IR (KBr) ν 2979, 2895, 1256, 1162, 1044, 

1016, 954, 794, 764, 543, 532 cm−1; LDI-TOF-MS Calcd. for C13H15O3PS6Se2: 601.74 (M+). Found: 

602.01 with an isotropic pattern of these selenium atoms; Anal. Calcd. for C13H15O3PS6Se2: C, 26.00; 

H, 2.52%. Found: C, 25.77; H, 2.60%. 

3.2.2. 2-Isopropylidene-1,3-Dithiolo[4,5-d]-4,5-ethylenediselenotetrathiafulvalene (MeDTES) 

A THF solution of LDA (0.5 M, 0.30 mL, 0.15 mmol) was added to a mixture of 3 (65 mg,  

0.11 mmol) and acetone (0.10 mL, 1.4 mmol) in dehydrated THF (5 mL) at −78 °C. The reaction mixture 

was stirred for 2 h at −78 °C, then quenched by addition of methanol (10 mL) and warmed to room 

temperature. The resulting precipitate was collected by filtration and washed with methanol. The crude 

product of MeDTES was purified by silica gel column chromatography (SiO2/carbon disulfide). 

Analytically pure MeDTES was isolated as orange plates (48 mg, 0.095 mmol, 86%). mp 222−225 °C 

(decomp.); 1H NMR (CS2-C6D6, 270 MHz) δH 1.60 (s, 6H), 3.11 (s, 4H); IR (KBr) ν 2925, 2900, 1433, 

1399, 1365, 1266, 963, 766 cm−1; LDI-TOF-MS Calcd. for C12H10S6Se2: 505.74 (M+). Found: 506.24 



Crystals 2012, 2              

 

 

408

with an isotropic pattern of these selenium atoms; Anal. Calcd. for C12H10S6Se2: C, 28.57; H, 2.00%. 

Found: C, 28.34; H, 2.26%. 

3.2.3. 2-(Pentan-3-ylidene)-1,3-dithiolo[4,5-d]-4,5-ethylenediselenotetrathiafulvalene (EtDTES) 

A THF solution of LDA (0.5 M, 1.05 mL, 0.53 mmol) was added to a mixture of 3 (247 mg,  

0.41 mmol) and 3-pentanone (0.10 mL, 0.94 mmol) in dehydrated THF (15 mL) at −78 °C. The 

reaction mixture was stirred for 2 h at −78 °C, then quenched by addition of methanol (20 mL) and 

warmed to room temperature. The same procedure as for MeDTES was adopted for the separation of 

the products. EtDTES was isolated as orange solid (159 mg, 0.30 mmol, 73%). mp 208−210 °C 

(decomp.); 1H NMR (CS2-C6D6, 270 MHz) δH 0.97 (t, J = 7.8 Hz, 6H), 2.00 (q, J = 7.8 Hz, 4H),  

3.10 (s, 4H); IR (KBr) ν 2963, 2925, 1265, 765 cm−1; LDI-TOF-MS Calcd. for C12H10S6Se2:  

533.78 (M+). Found: 534.23 with an isotropic pattern of these selenium atoms; Anal. Calcd. for 

C14H14S6Se2: C, 31.57; H, 2.65%. Found: C, 31.43; H, 2.70%. 

3.2.4. 2-Cyclopentanylidene-1,3-dithiolo[4,5-d]-4,5-ethylenediselenotetrathiafulvalene (CPDTES) 

A THF solution of LDA (0.5 M, 0.30 mL, 0.15 mmol) was added to a mixture of 3 (67 mg,  

0.11 mmol) and cyclopentanone (0.10 mL, 1.12 mmol) in dehydrated THF (5 mL) at −78 °C. The 

reaction mixture was stirred for 2 h at −78 °C, then quenched by addition of methanol (20 mL) and 

warmed to room temperature. The same procedure as for MeDTES was adopted for the separation of 

the products. EtDTES was isolated as orange solid (40 mg, 0.075 mmol, 68%). mp 198−201 °C 

(decomp.); 1H NMR (CS2-C6D6, 270 MHz) δH 1.25 (m, 4H), 1.75 (m, 4H), 3.22 (s, 4H); IR (KBr) ν 

2938, 2906, 2869, 1620, 1516, 1425, 1266, 766 cm−1; LDI-TOF-MS Calcd. for C14H12S6Se2: 531.76 

(M+). Found: 532.23 with an isotropic pattern of these selenium atoms; Anal. Calcd. for C12H10S6Se2: 

C, 28.57; H, 2.00%. Found: C, 28.34; H, 2.26%. 

3.3. Preparation of Cation Radical Salts 

Single crystals of the cation radical salts of MeDTES and CPDTES were prepared by the 

galvanostatic oxidation under the conditions listed in Table 2. Platinum wire electrodes (2.0 mm φ) 

and standard H-shaped cells were employed. 

3.4. X-Ray Crystallographic Analysis 

The diffraction data were collected on a Rigaku Saturn724 diffractometer using multi-layer mirror 

monochromated Mo-Kα radiation (λ = 0.71075 Å) at the Integrated Center for Science, Ehime 

University. The structures were solved by the direct method (SIR2004 [31], SIR2008 [32], and 

SHELXS-97 [33]). All calculations were performed using the CrystalStructure crystallographic 

software package [34] except for full-matrix least squares refinement on F2, which was performed 

using SHELXL-97 [33]. Crystal data collection and refinement parameters for (MeDTES)[Au(CN)4] 

(4), (MeDTES)(ReO4)(H2O)0.5 (5), (MeDTES)(I3)(DCE)0.25 (6), and (CPDTES)(I3) (7) are summarized 

in Table 3. CCDC-879812, CCDC-879813, CCDC-879814, and CCDC-879815 (for 4, 5, 6, and 7) 
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contain the supplementary crystallographic data for this paper. These data can be obtained free of 

charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

3.5. Band Calculations 

From the results of the X-ray crystal structure analysis, intermolecular overlap integrals were 

calculated using highest occupied molecular orbitals (HOMOs) of the donor molecules obtained by the 

extended Hückel MO calculations. The electronic band dispersions and Fermi surfaces were calculated 

using the intermolecular transfer integrals under the tight-binding approximation [23]. 

3.6. Electrical Resistivity Measurement 

Electrical resistivities were measured by the four-probe method using YOKOGAWA 7651 

programmable direct current source and KEITHLEY 2001 digital multimeter unit. Gold wires (10 μm  

φ diameter) were attached to a single crystal using carbon paste. The sample was cooled using an Iwatani 

CryoMini model CRT-HE05-RE cooling system and the temperature was controlled using Lakeshore 

S331 digital program temperature controller. Electrical properties of 4−7 are summarized in Table 3. 

4. Conclusions  

A series of DT-TTF derivatives containing ethylenediseleno group have been synthesized, and crystal 

structures, band structures, and electrical properties of their cation radical salts have been investigated. 

There is no distinct difference in the electrochemical properties between the ethylenediseleno-substituted 

donors and the ethyledithio-substituted donors. In contrast, crystal structures of the cation radical salts are 

different. It is known that the ethylendithio-substituted DT-TTFs tend to afford the -type molecular 

conductors with non-half-filled bands [10,11], and the self-aggregating property is the key to form the  

κ-type molecular arrangement [35]. The self-aggregating property is associated with the moderate  

steric hindrance of the ethylenedithio group. The theoretical calculation of MeDTES reveals that the 

replacement of sulfur atoms in the ethylenedithio group by larger selenium atoms leads to an 

enhancement of steric hindrance. As a result, the self-aggregating property has disappeared in the present 

ethylenediseleno-containing donor system, and MeDTES and CPDTES yielded cation radical salts with 

various crystal structures. The dimerized structure is observed in the salts 5−7 and the donor-anion ratio 

of the salts is 1:1. Calculated energy bands of these salts consist of two branches. Their conductivity 

results support the idea that the EF lies in the gap and crosses just through the degeneracy point. If 

cation radical salts with a 2:1 donor-anion ratio could be obtained, the EF might cross the upper 

branch, which is in favor of formation of effective half-filling conductors. At the moment, we have 

obtained a small size Au(CN)2
− salt of MeDTES with poor quality and preliminary structure analysis 

suggests the β-type donor arrangement with the 2:1 donor-anion ratio. This salt could be a candidate 

for the new organic metals including organic superconductors. Preparation of high quality single 

crystals of such cation radical salts is underway. 
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