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Abstract: Methane hydrate formation is analytically studied in the presence of the water memory
effect using the classical nucleation theory. The memory effect is introduced as a change in nucle-
ation site from a three-dimensional heterogenous nucleation on a solid surface with cap-shaped
hydrate clusters (3D-HEN) to a two-dimensional nucleation on the solid hydrate residue surface
with monolayer disk-shaped hydrate clusters (2D-NOH). The analysis on the stationary nucleation
of methane hydrate under isobaric conditions shows that the memory effect caused an average
decrease of 4.4 K in metastable zone width, or subcooling. This decrease can be erased at higher
dissociation temperatures (∆T > 17.2 K) due to a decrease in the concentration of 2D-NOH nucleation
sites. Moreover, the probability of hydrate formation is estimated for the purpose of quantifying risk
associated with methane hydrate formation in the presence of the memory effect.
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1. Introduction

Hydrates are categorized under the compound group named clathrates. They consist
of a guest molecule of one substance surrounded by host molecules of another substance.
Host molecules form a cage structure, and the guest molecule resides in these structures
freely without forming bonds [1]. Natural gas hydrates, in particular those composed of
one natural gas molecule such as methane or carbon dioxide enclosed in water molecules,
have attracted the attention of researchers from various fields. Three main reasons exist for
this interest: natural gas hydrates occur in pipes and create a flow barrier [2], natural gas
hydrates are present in large volumes as a potential energy resource [2], and the hydrate
clathrates could offer an alternative storage mechanism for carbon sequestration in the
ocean and in geological formations [2]. The focus of these studies is to understand the
mechanisms of hydrate growth and dissociation.

Hydrate dissociation is an endothermic process and heat must be supplied by the
system and transferred to the location to break the hydrogen bonds between the water
molecules of the clathrates and to overcome the van der Waals forces between the natural
gas molecule inside the cage and the water molecules [2]. Because a majority of researchers
agree on hydrate dissociation being a heat-transfer limited process [3–9], hydrate plug
removal methods from pipes are mainly concentrated on delivering heat to the hydrate
through thermal stimulation or chemical (thermodynamic inhibitor) injection.

A phenomenon recognized by many researchers as the water “memory effect”, how-
ever, may cause natural gas hydrates to form easier after being dissociated or melted
down [10–27]. In these studies, the memory effect is observed as a shorter induction time
during a constant subcooling or as a smaller subcooling phase during a linear cooling ramp.

Many studies have reported an explanation of the dominant physical mechanism of
the memory effect since it was first identified by Vysniauskas and Bishnoi as the effect of
water history on hydrate formation [28]. Structural memory, which refers to the presence
of residual structures in the liquid water after hydrate dissociation, was one of the first
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theories to explain the memory effect [10,16–18,29]. Then, Rodger theorized the guest
supersaturation model in which the supersaturation of the gas molecules upon dissociation
of hydrates was considered as the reason for the memory effect [11]. This theory was later
advanced by Bagherzadeh et al., who claimed nano-bubbles existed in the bulk liquid
following the hydrates’ dissociation [30]. This was later confirmed by Uchida et al. by
showing the formation of micro- and nano-bubbles in the liquid after the dissociation and
this was linked to the memory effect [31]. Zeng et al. postulated the impurity imprinting
theory which postulated the presence of heterogeneous nucleation and hence the necessity
of solid walls for realization of the memory effect [15]. Similarly, interfacial gaseous states
theory states that the nano-bubbles should be forming on the solid wall as opposed to form-
ing in the bulk liquid because heterogeneous nucleation on the walls is always easier—less
energy is required—than homogeneous nucleation in the bulk liquid phase [32–34]. In a
more recent study, it was reported that the memory effect depends on the thermal history
of the water [26].

All these studies are considered fundamental in solving the mystery behind the mem-
ory effect during secondary hydrate formation. Based on these studies and considering the
classical nucleation theory [35], it is safe to say that the hydrate memory effect is attributed
to increased nucleation rates. However, due to the stochastic nature of the nucleation pro-
cess, it has been difficult to make direct experimental observations. Adams et al. recently
performed hydrate crystallization experiments using sand-pack [36]. In this study, we will
attempt to develop a computational methodology to investigate the nucleation rates caused
by the memory effect using a new modeling approach based on the classical nucleation
theory, CNT. The latter is chosen for this purpose due to its widespread use in defining the
nucleation of clathrate hydrates and its analytical simplicity [37]. Combining the theory
with the so-called shortest path of hydrate formation method [38], a sample computation
of generating a hydrate equilibrium curve with and without the memory effect will be
provided. Lastly, the conditions for erasing the memory effect will also be investigated.

Primary hydrate formation involves a solid surface such as a pipe wall or a grain of
rock for the crystal nucleation and growth, as seen in Figure 1a. In the case of 3D-HEN,
cap-shaped hydrate clusters form at the interface between the solid surface and water with
a wetting angle θ. In 2D nucleation on previously formed hydrate clusters (2D-NOH),
however, hydrates form easier because there is no solid–water interface and hence less of
an energy barrier needs to be overcome, as seen in Figure 1b [35]. It is theorized here, that
after the dissociation of hydrate, the residual 2D hydrate clusters with monolayer height
can act as nucleation sites with increased nucleation rates compared to three-dimensional
heterogeneous nucleation (3D-HEN).
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2. Computational Method 

Figure 1. (a) Representation of 3D-HEN and (b) representation of 2D-NOH.

2. Computational Method

The methodology used in this study involves (1) generating the hydrate equilibrium
curve of methane using PVTSim®, a software that can be used to construct the curve;
(2) calculating nucleation rates at different temperatures using Classical Nucleation Theory;
(3) calculating the growth rates at different temperatures; (4) calculating induction times
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at different temperatures; (5) generating the spinodal curve and metastable zone width
(MSZW); and (6) generating the probability map of having “hydrate growth” using the
shortest path to hydrate formation method [38].

2.1. Generation of the Hydrate Equilibrium Curve

PVTsim® Nova from Calsep Inc in Houston, TX, USA, was used to generate the
methane hydrate equilibrium curve. (SRK Peneloux model and a composition of 95.2 mol%
water and 4.7 mol% methane was chosen for illustrative purposes.) The resulting curve
shown in Figure 2 was fitted with a third-degree polynomial function:

Pe = 0.003607 × T3
e − 3.004 × T2

e + 834.3 × Te − 7.727 × 104, (1)

where Pe is equilibrium pressure in MPa at Te, the equilibrium temperature in Kelvin. This
hydrate equilibrium curve can be validated with experiments with multiple data points
(pressure and temperature). However, due to the lack of an experimental setup, the output
from the PVTsim is used in this study.
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Figure 2. Methane hydrate equilibrium curve.

2.2. Calculation of Nucleation Rates

In a continuously stirred tank environment, when the methane–water system is cooled
down at a constant pressure to a temperature below Te, 3D-HEN applies. In this first cooling
cycle, there is no memory effect and the cap-shaped hydrate clusters form across three
interfaces: solution/hydrate, solution–solid, and hydrate/solid interfaces (Figure 3a) [35].
Therefore, the effective specific surface energy is calculated using the following equations:

σe f = ψσah, (2)

ψ =
[
(1/4)(2 + cosθ)(1 − cosθ)2

]1/3
, (3)

cosθ = (σsa − σhs)/σah. (4)

In Equations (2)–(4), σe f is the effective specific surface energy, ψ is a factor between 0
and 1, θ is the wetting angle between 0 and 180 degrees, σsa is the specific surface energy for
the solution/solid interface, σhs is the specific surface energy for the hydrate/solid interface,
and σah is the specific surface energy for the solution/hydrate interface. σah is assumed,
approximately, as 20 mJ/m2, which is the specific surface energy of an ice/water interface,
and it was assumed to remain approximately constant at any given hydrate formation
pressure and temperature [39].
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Figure 3. (a) Hydrate formation in the first cooling cycle (no memory effect), (b) hydrate dissociation,
and (c) hydrate formation in the second cooling cycle (memory effect).

The nucleation rate (in m−3 s−1) of 3D-HEN for the stationary nucleation of one
component phase under isobaric conditions is given as [35]

J3D−HEN = A exp(∆se∆T/kT)exp
(
−4c3υ2

hσ3
e f /27k∆s2

e T∆T2
)

, (5)

where A is kinetic factor, ∆se is the entropy of hydrate dissociation at Te, T is the system
temperature in Kelvin, k is the Boltzmann constant, c is shape factor, υh is the volume
of a spherical hydrate building unit, ah (= (9πυ2

h/16)1/3
) is the cross-sectional area of

a spherical-shaped hydrate building unit, and dh (= (6υh/π)1/3) is the diameter of a
spherical-shaped hydrate building unit. ∆se = ∆he/Te, where ∆he is the enthalpy of disso-
ciation of methane and the values found in the literature are used [40,41]. The kinetic factor
(A) is assumed to be independent of driving force because the change in the attachment
frequency of building units to the nucleus is negligible within the pressure and temperature
range of hydrate formation [39]. ∆T = Te − T is defined as the temperature difference
between the equilibrium temperature and the system temperature. If Te > T, then ∆T is
called subcooling. If Te < T, then ∆T is called superheating. The corresponding values of
these parameters are given in Table 1.

Table 1. Parameters used in the nucleation rate calculations.

Parameter Unit Value Reference

A m−3 s−1 4 × 1026 [39]
k m2 g s−2 K−1 1.38 × 10−23 [39]

∆se J/K 3.07 × 10−22 [39]
c - (36π)1/3 [39]

C0 m−2 1019 [35]
pe Mpa 2.6 [39]
σah mJ/m2 20 [39]
υh nm3 0.216 [39]
αh nm2 0.440 [39]
dh nm 0.744 [39]
υ0 nm3 0.216 [39]
α0 nm2 0.330 [35]
d0 nm 0.650 [35]
h nm 0.650 [35]

Hydrates dissociate radially, and therefore the heat is transferred through the melted
water to the inner portions of the hydrate [2]. This type of dissociation results in a cooling
region near the solid walls during the melting of the hydrate [42]. After the first cooling
cycle, if the system is heated up under isobaric conditions to melt down the hydrate, a
negative driving force (∆µ) can be effective near the solid walls due to this cooling effect.
When ∆µ < 0 and ∆σ < 0, hydrate structures can deposit on the solid surfaces via 2D
undersaturation nucleation (2D-UNS) [35], creating nucleation sites for 2D nucleation
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on the hydrate (2D-NOH) (Figure 3b). The nucleation rate of 2D-UNS is given by the
following equations:

J2D−UNS = A′ exp(∆se∆T/kT)exp[−B/(∆se∆T − a0∆σ)], (6)

A′ = A′′/η(T), (7)

A′′ =
[
b(kT)1/2(∆se∆T)1/2/6πd0υ0

]
C0(peυ0/kT), (8)

η(T) = 4.47 × 10−7exp[1234.6/(T − 122.3)], (9)

B = b2κ2/4kT, (10)

b = 2(πa0)
1/2, (11)

κ = σahh, (12)

where A′ is the kinetic factor, ∆σ is the specific surface energy, κ is the specific edge energy
(equivalent of specific surface energy), η(T) is the temperature dependence of the viscosity
of water, υ0 is the volume of a disk-shaped hydrate building unit, a0(= υ0/d0) is the cross-
sectional area of a disk-shaped hydrate building unit, d0

(
= (4υ0/π)1/3

)
is the diameter

of a disk-shaped hydrate building unit, h = d0 is the height of the disk-shaped hydrate
building unit, C0 is the concentration of nucleation sites, and pe is the phase-equilibrium
pressure of the liquid.

The 2D undersaturation nucleation (2D-UNS) could be at the heart of explaining
the memory effect, because with increasing superheating (∆T), the nucleation rate of
2D-UNS decreases (Figure 4). Assuming a linear relationship between J2D−UNS and C0,
concentration of nucleation sites (C0) also decreases with increasing ∆T (Figures 4 and 5),
which can explain why the memory effect is erased at higher superheating values. The
effect on MSZW is further discussed in Section 2.5.
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superheating during dissociation at Te = 293.2 K and Pe = 19.4 MPa for ∆σ = −20 mJ/m2.

In the second cooling cycle, we consider that 2D nucleation on the hydrate (2D-NOH)
dominates the nucleation process, as seen in Figure 3c. The term 2D-NOH is derived
specifically for the hydrate case, representing 2D nucleation on the substrate (a subtype of
heterogeneous nucleation) and is based on the Classical Nucleation Theory explained by
Kashchiev [35]. In this scenario, the hydrate cluster plays the role of the solid surface but
there is no interface between solid and water. The creation of the lateral phase boundary
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is the only energy barrier for nucleation to take place. The nucleation rate (in m−3 s−1)
taking place between 2D monolayer hydrate disks is given with Equation 13 [35]. The
corresponding values of these parameters are given in Table 1.

J2D−NOH = A′ exp(∆se∆T/kT)exp[−B/(∆se∆T)], (13)
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Figure 5. Linear relationship between J2D-UNS and C0 at Te = 293.2 K and Pe = 19.4 MPa for
∆σ = −20 mJ/m2.

As a sample calculation, using the parameters given in Table 1 at equilibrium condi-
tions of Te = 293.2 K and Pe = 19.4 MPa, the nucleation rates were calculated for 2D-NOH,
3D-HEN at θ = 60o, and 3D-HEN at θ = 90o at different subcooling temperatures under
isobaric conditions. In the extreme case of 2D-NOH, the contact angle, θ, does not exist.
Therefore, θ = 60o and θ = 90o were chosen in our calculations to represent 3D-HEN in
order to compare against 2D-NOH. σe f is taken as 0.0108 J/m2 for θ = 60o and 0.0159 J/m2

for θ = 90o, respectively [39]. The results are shown on a semi-log plot in Figure 6.
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The memory effect is observed in the formation and melting cycles of ice as well [43].
The ice case could be a reference point for comparisons. Therefore, in Figure 6, the nucle-
ation rate of ice formation is also included. For the calculation of these nucleation rates of
ice formation, the same procedure is applied with only a few changes in the parameters
used; ∆se (=3.07 × 10−22 J/K) is the entropy of ice melting [35], υh (=0.033 nm3) is the
volume of a spherical ice building unit [35], ah (=0.124 nm2) is the cross-sectional area of
a spherical-shaped ice building unit [39], dh (=0.398 nm) is the diameter of a spherical-
shaped ice building unit [39], υ0 (=0.033 nm3) is the volume of a disk-shaped ice building
unit [39], a0 (=0.095 nm2) is the cross-sectional area of a disk-shaped ice building unit [39],
d0 (=0.348 nm) is the diameter of a disk-shaped ice building unit [39], and pe (=0.61 kPa)
is the phase-equilibrium pressure of the water [35]. The figure shows that the nucleation
rates are significantly different at low temperatures.

2.3. Calculation of Hydrate Growth Rates

There are two types of hydrate growth mechanisms that take place for 3D-HEN (no
memory effect) and 2D-NOH (memory effect). After 3D-HEN, hydrate building units are
transferred across the crystallite/solution interface. The crystal surface is rough during this
process, and it is called continuous growth [35]. The equation for continuous growth is
given by the following equations:

G = εahDe f Ce

(
e∆µ/kT − 1

)
, (14)

∆µ = ∆se∆T, (15)

where G is growth rate in m/s, ε is the sticking coefficient of building units to the crystallite
surface, De f is the effective diffusion coefficient, Ce is the concentration of dissolved gas at
phase equilibrium, and ∆µ is the driving force defined for isobaric conditions.

For the 2D-NOH case, on the other hand, hydrate growth can only proceed after the
crystal face roughens by nucleation of 2D clusters [35]:

G = εa0De f Cee∆µ/3kT
(

e∆µ/kT − 1
)2/3

e−B/3∆µ, (16)

This growth type is called nucleation-mediated growth, which is behind the memory
effect, along with the 2D-NOH. The corresponding values of the parameters used in
Equations (14)–(16) are given in Table 2. As a sample calculation, using the parameters
given in Table 2 at equilibrium conditions of Te = 293.2 K and Pe = 19.4 MPa, the growth
rates were calculated for 2D-NOH and 3D-HEN at different subcooling temperatures under
isobaric conditions. The results are shown on a semi-log plot in Figure 7. As expected, the
growth rate of continuous growth is higher than the growth rate of nucleation-mediated
growth [35].

Table 2. Parameters used in the growth rate calculations.

Parameter Unit Value Reference

ε - 1 [44]
Def µm2/s 1000 [44]
Ce nm−3 0.03 [44]
αh nm2 0.440 [44]
h nm 0.650 [35]
k m2 g s−2 K−1 1.38 × 10−23 [39]

∆se J/K 3.07 × 10−22 [39]
σah mJ/m2 20 [39]
α0 nm2 0.330 [35]
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2.4. Calculation of Induction Times

To quantify the effect of the memory effect on hydrate formation, induction time
and/or metastable zone width values are required to be compared with and without the
memory effect. Induction time can be identified as the time required for the hydrate clusters
to become visible. It is a measure of the ability of a supersaturated system to stay in the
state of metastability [44]. Metastability is defined as the ability of a nonequilibrium state to
persist for a long period of time [2]. MSZW represents metastable one width and is used to
define the metastable region in terms of subcooling under isobaric conditions. The spinodal
curve marks the end of the metastable region on the left side of hydrate PT curve.

Progressive nucleation occurs when the hydrate crystallites are constantly nucleated [35].
Induction time is then calculated for progressive nucleation with the following equation:

ti = ((1 + 3m)αd/c′G3m J)
1/(1+3m)

, (17)

where ti is the induction time in seconds, m is a factor, αd is the fraction of hydrate crystal-
lized, c′ is a shape factor and it is equal to (4π/3)ψ for cap-shaped clusters [44] and 8 for
disk-shaped monolayer clusters [45], G is the growth rate, and J is the nucleation rate. The
values used for the calculation of induction times are given in Table 3.

Table 3. Parameters used in the induction time calculations.

Parameter Unit Value

αd - 0.01
Ψ(60◦) - 0.538

c′ (3D-60◦) - 2.25
c′ (2D) - 8

m - 1
Ψ(90◦) - 0.794

c’ (3D-90◦) - 3.33
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2.5. Generating the Spinodal Curve (MSZW)

The next step to quantify the effect of the memory effect on hydrate formation is to
obtain the metastable zone width (MSZW) by generating the spinodal curve position on
the left side of the hydrate equilibrium curve and measuring the distance between the two
curves at constant pressure. This is accomplished by calculating the critical nucleation
potential [46]. As the system is cooled down beyond the equilibrium conditions, it resists
staying in the metastable region until the critical nucleation potential is reached. The
nucleation potentials are given by the following equations:

N3D−HEN = 4c3υ2
hσ3

e f , (18)

N2D−NOH = b2κ2. (19)

The instantaneous nucleation potential is calculated by dividing the critical nucleation
potential by the instantaneous induction time. The difference between the equilibrium
temperature and the temperature where the cumulative instantaneous nucleation potential
reaches the critical nucleation potential is taken as the MSZW.

Nins,n =
N
ti,n

, (20)

∆T = MSZW at ∑ Nins,n = N. (21)

Table 4 illustrates a sample calculation for 3D-HEN with θ = 60◦ at Te = 293.2 K and
Pe = 19.4 MPa. Note that N3D−HEN = 2.66 × 10−59 J·m is reached when ∆T = 6.9 K.

Table 4. Sample calculation of the MSZW for 3D-HEN with at Te = 293.2 K and Pe = 19.4 MPa.

T, K ∆T, K J, m−3 s−1 G, m/s ti, s Nins,n Cumulative Nins,n

291 2.2 2.58 × 10−205 2.39 × 10−3 4.74 × 1052 5.60 × 10−112 5.60 × 10−112

290 3.2 1.06 × 10−83 3.62 × 10−3 1.37 × 1022 1.94 × 10−81 1.94 × 10−81

289 4.2 7.08 × 10−38 4.97 × 10−3 3.78 × 1010 7.03 × 10−70 7.03 × 10−70

288 5.2 8.92 × 10−16 6.44 × 10−3 9.29 × 104 2.86 × 10−64 2.86 × 10−64

287 6.2 1.93 × 10−3 8.04 × 10−3 6.49 × 101 4.10 × 10−61 4.10 × 10−61

286 7.2 7.51 × 104 9.78 × 10−3 7.09 × 10−1 3.75 × 10−59 3.79 × 10−59

285 8.2 7.63 × 109 1.17 × 10−2 3.48 × 10−2 7.65 × 10−58 8.02 × 10−58

284 9.2 2.31 × 1013 1.37 × 10−2 4.15 × 10−3 6.41 × 10−57 7.21 × 10−57

283 10.2 7.71 × 1015 1.60 × 10−2 8.66 × 10−4 3.07 × 10−56 3.79 × 10−56

282 11.2 5.99 × 1017 1.85 × 10−2 2.62 × 10−4 1.02 × 10−55 1.39 × 10−55

281 12.2 1.71 × 1019 2.12 × 10−2 1.02 × 10−4 2.60 × 10−55 3.99 × 10−55

280 13.2 2.40 × 1020 2.41 × 10−2 4.79 × 10−5 5.55 × 10−55 9.55 × 10−55

279 14.2 2.01 × 1021 2.74 × 10−2 2.56 × 10−5 1.04 × 10−54 1.99 × 10−54

278 15.2 1.14 × 1022 3.09 × 10−2 1.51 × 10−5 1.76 × 10−54 3.75 × 10−54

277 16.2 4.85 × 1022 3.48 × 10−2 9.66 × 10−6 2.75 × 10−54 6.50 × 10−54

276 17.2 1.64 × 1023 3.90 × 10−2 6.54 × 10−6 4.07 × 10−54 1.06 × 10−53

275 18.2 4.62 × 1023 4.37 × 10−2 4.63 × 10−6 5.74 × 10−54 1.63 × 10−53

This calculation procedure was repeated at different equilibrium conditions and the
results are shown in Figures 8 and 9. Since the nucleation process is a stochastic process,
it is not possible to estimate the wetting angle during 3D-HEN. Therefore, the results
are only representative, and it is seen that, in the case of 2D-NOH, where we claim the
presence of the memory effect, the mean MSZW is smaller than the 3D-HEN. A future
experimental study could validate the findings in Figures 8 and 9 by observing the changes
in the induction times for the onset of hydrate formation. However, it should be noted that
the induction time measurements are subject to problems due to the stochastic nature of
the MSZW [47].
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An important aspect of the memory effect in hydrates is that, after being superheated to
a certain temperature, the memory effect is erased. As explained in Section 2.2, 2D undersat-
uration nucleation (2D-UNS) might be the reason for this. Using Equation (6), if we assume
a driving force equal to the absolute value of a negative driving force (|−∆µ| = ∆µ) during
dissociation at Te = 293.2 K and Pe = 19.4 MPa and assume the values as ∆σ = −20 mJ/m2

and C0 = 1019 m−2, it is observed that nucleation rate values decrease with increased su-
perheating (Figure 4). According to Equation (13) (2D-NOH), the nucleation rate is linearly
proportional to the concentration of nucleation sites when the other parameters are kept
constant. Taking C0 = 1019 m−2 as the base value at 1 K superheating, we can extrap-
olate the values for the concentration of nucleation sites using the 2D-UNS nucleation
rate values at Te = 293.2 K and Pe = 19.4 MPa (Figure 5). Repeating the calculation
procedure for 2D-NOH at these different C0 values and at different superheating values
for ∆σ = −20 mJ/m2, it is seen that the shift in the MSZW caused by the memory effect is
decreased with increasing superheating values, and at 17.2 K the memory effect is erased
(Figure 10).
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2.6. Generating Probability of Hydrate Formation

In the final step, we calculated the probability of the hydrate formation on a macro
level at different operating conditions. The shortest path of hydrate formation method
was used to calculate different probability values on the right side of spinodal curve [37].
There are four steps in the methodology: (1) generating the hydrate equilibrium curve (and
spinodal curve), (2) defining the reference temperature and pressure values, (3) using the
shortest path of hydrate formation, and (4) calculating the hydrate formation probability.

The shortest path of hydrate formation method involves taking n different linear
pathways from the operating conditions to the spinodal curve between two tangent lines on
the spinodal curve (Figure 11). Tmin (minimum temperature) and Pmax (maximum pressure)
are taken as 274.8 K and 17.2 MPa, respectively, which mark the upper and lower limits for
the tangent lines. Then, the probability values are calculated according to the following
formula:

Pr =
1
n∑n

i=1

(
(TOP − TSP)

(Ti − TSP)

)
∗
(
(POP − PSP)

(Pi − PSP)

)
, (22)

Pri =


(TOP−TSP)
(Ti−TSP)

; Pi ≤ POP(
(TOP−TSP)
(Ti−TSP)

)
∗
(
(POP−PSP)
(Pi−PSP)

)
; Pi > POP, Ti ≤ TOP

(POP−PSP)
(Pi−PSP)

; Ti > TOP

, (23)
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where TOP is operating temperature, TSP is the safe temperature, Ti is the temperature
on the spinodal curve, POP is the operating pressure, PSP is the safe pressure, and Pi is
the pressure on the spinodal curve. Here, safe temperature and pressure represent the
operating conditions with no hydrate formation probability. They are calculated using
mean temperature and pressure (Tmd and Pmd), which are the mean distance between the
safe point and the points on the spinodal curve. Accordingly, TSP and PSP are calculated as
314.4 K and 1.7 MPa, respectively.

∑n
i=1(TSP − Ti)

n
= Tmd, (24)

∑n
i=1(PSP − Pi)

n
= Pmd. (25)
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MatLab was used to perform these calculations and the results are shown in Figures 12 and 13.
The average growth rate on the spinodal curve is 2.22×10−2 m/s for Figure 12a, 9.70× 10−3 m/s
for Figure 12b, and 6.78 × 10−7 m/s for Figure 13.
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3. Results and Discussion

Our results indicate that the change in the nucleation mechanism due to the memory
effect can be explained with Classical Nucleation Theory. Accordingly, the dominant
nucleation mechanism of 3D-HEN could be replaced with 2D-NOH in a second cycle of
hydrate formation after the dissociation of the hydrate. This resulted in a decrease in the
MSZW (subcooling) from 12.3 K (θ = 90o 3D-HEN) and 7.0 K (θ = 60o 3D-HEN) to 5.3 K
(2D-NOH). It should be noted here that nucleation is a stochastic process and the two
wetting angles chosen for 3D-HEN are used only as an example. It is difficult to determine
how many of the nucleation events are taking place at which wetting angle. Therefore, we
used these results only to quantify our theory for explaining the possible change in the
nucleation mechanism which could promote the hydrate memory effect.

3.1. The Shift in MSZW Values

Considering the stochastic nature of nucleation events, it is difficult to make direct
comparisons between the results presented here and the experimental observations made
in the literature. Therefore, the methodology presented in the previous sections are only
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representative. Moreover, in our calculations, methane is selected to make the math simpler
with its known parameters such as surface energy, entropy, etc., whereas the experimental
studies found in the literature involved the use of a mixture gas.

While keeping these challenges in mind, the explanation of the hydrate memory effect
using Classical Nucleation Theory is still consistent with the literature. Taking the mean of
MSZW values for 3D-HEN, a reduction of 4.4 K in the MSZW is calculated for methane
hydrate because of the memory effect. This value is in parallel with the results found in the
literature. An experimental study conducted with cyclopentane hydrate revealed that the
onset temperature could be increased up to 4 ◦C in a water sample with hydrate history
compared to a freshwater sample in which the onset temperature for hydrate formation
is 0 ◦C [18]. May et al. measured the performances of different kinetic hydrate inhibitors
using multi-component synthetic natural gas [48]. Their experiments showed that the
subcooling values were shifted 4 K in a pure water system due to the memory effect and
this shift was as high as 14 K in the worst performing inhibitor. By observing several
thousand nucleation events, Sowa and Maeda concluded that a reduction of at least 4 K
in subcooling was present due to the memory effect [19]. This reduction was increased
with decreasing superheating temperature. In their experiments, under the single thermal
stimulation dissociation pattern (STSP), Cheng et al. reported a 3.1 ◦C decrease in the ∆T
value of methane hydrate during reformation cycles due to the memory effect [49].

3.2. Erasing of the Memory Effect with Increasing Superheating

It is shown here that 2D undersaturation nucleation upon hydrate dissociation can
create nucleation sites for 2D-NOH which may be responsible for the hydrate memory effect.
Using this concept, the sensitivity analysis conducted on the parameters of Equation (6)
may have significant implications for the memory effect (Figure 14). First, C0 (initial
concentration of nucleation sites) and pe (the phase-equilibrium pressure of the liquid) do
not play a role in the erasing of the memory effect. The changes in these parameters only
change the nucleation rate of 2D undersaturation nucleation. The size and therefore the
surface area (a0) of the hydrate building unit is one of the important parameters controlling
the erasing of the memory effect. The parameter relating to the surface energies of the solid,
water, and hydrate (∆σ) strongly affect the superheating value at which the memory effect
is erased, along with the specific surface energy term of the interface between water and
the hydrate (σah).
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Accordingly, the superheating temperature at which the memory effect is erased is
linearly related to the specific surface energy of the solid surface. This might explain the
different dissociation temperatures reported in the literature. Sowa and Maeda conducted
hydrate formation experiments inside a ‘glass’ cell [19]. They reported that the memory
effect was erased at a temperature of 311 K (37.85 ◦C). Wu and Zhang conducted similar
research using a ‘stainless steel’ cell and found that the memory effect was erased at
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25 ◦C [16]. In a series of experiments conducted inside a ‘sand pack’ to show the memory
effect in confined spaces, Adams et al. observed that the memory effect disappeared at a
dissociation temperature of 46.4 ◦C [36]. Table 5 summarizes these results by comparing
the specific surface energies of the solids used in these studies.

Table 5. Comparison of dissociation temperatures at which the memory effect is erased, reported in
the literature with different solid surfaces.

Material σ (mJ/m2) Reference

Stainless Steel 30.54 [50]
Glass 58.95 [50]

Quartz 96.00 [51]

Experimental Setup Used Dissociation Temperature at which the memory effect is erased (◦C) Reference

Stainless Steel Cell 25.00 [16]
Glass Cell 37.85 [19]
Sand pack 46.40 [36]

It should be noted here that, to obtain the exact relationship between these parameters
and the erasing of the memory effect, the rate of cooling (hence the amount of negative
driving force) caused by the endothermic dissociation of hydrates should be known. Here,
we simply assumed a 1:1 ratio, i.e., one unit of heating resulted in one unit of cooling.
Although surface energies of different solids change the temperature at which the memory
effect is erased, future work involving experimental studies is needed to provide empirical
proof of the phenomena.

3.3. Probabilistic Estimation of Hydrate Formation under the Memory Effect

A probabilistic estimation for hydrate formation is also provided by using the shortest
path of hydrate formation method. This way, the hydrate probability color map for methane
hydrate obtained by Herath et al. is expanded to the spinodal curve [38]. Both hydrate
nucleation and growth take place inside the metastable region; however, the dominant
mechanism is nucleation. Once the spinodal curve is reached, spontaneous hydrate growth
occurs, and hydrates become visible to the naked eye. Therefore, the knowledge of the loca-
tion of this curve is important to decide if the operating conditions are safe for production
without having hydrate blockage inside pipelines. The results show increased probability
values between the spinodal curve and hydrate equilibrium curve, namely the metastable
region, due to the memory effect.

4. Conclusions

Classical Nucleation Theory is used to explain a possible mechanism for the memory
effect during hydrate formation/dissociation cycles. Conclusions obtained from this study
are as follows:

1. Figure 3 illustrates the steps leading to the memory effect during hydrate formation
and dissociation cycles;

a. Hydrate formation occurs under isobaric conditions via 3D heterogeneous nucle-
ation on the solid surface;

b. Hydrate dissociates endothermically under isobaric conditions. Endothermic
melting results in a cooling region near the solid surface resulting in 2D under-
saturation nucleation, creating nucleation sites for the second hydrate formation
cycle;

c. During the second hydrate formation cycle, nucleation sites created on the solid
surface provide the conditions for 2D nucleation on the hydrate with faster nu-
cleation rates than 3D heterogeneous nucleation. This results in lower induction
times and lower subcooling temperatures for spontaneous hydrate growth to
take place, namely the memory effect;
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2. Increased nucleation rates can be attributed to the change in the nucleation mechanism
from 3D-HEN to 2D-NOH. Results show an average decrease of 4.4 K in subcooling
temperature due to the memory effect;

3. The 2D undersaturation nucleation rate equation is used to explain the erasing of
the memory effect. It has strong implications for the role of solid surfaces on which
hydrate nucleation takes place. Accordingly, a solid surface with a lower specific
surface energy could lead to erasing of the memory effect at lower superheating
temperatures under isobaric conditions;

4. A significant increase in the hydrate formation probability is observed due to the
decrease in the MSZW caused by the memory effect;

5. Future work involving experimental and/or simulation studies could support the
findings presented here.
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Nomenclature

a0 Cross sectional area of a disk–shaped hydrate building unit, m2

ah Cross sectional area of a spherical–shaped hydrate building unit, m2

αd Fraction of hydrate cyrstallized
∆µ = ∆se∆T Driving force, J
∆σ Specific surface energy, J/m2

∆he Enthalpy of dissociation of methane
∆se Entropy of hydrate dissociation, J/K
∆T = Te − T Undercooling if Te > T, superheating if Te < T, K
ε Sticking coefficient of building units to the crystallite surface
η(T) Temperature dependence of the viscosity of water
θ Wetting angle between 0

◦
and 180

◦

κ Specific edge energy(equivalent to ∆σ for 2D nucleation), J/m
υ0 Volume of a disk–shaped hydrate building unit, m3

υh Volume of a spherical–shaped hydrate building unit, m3

σah Specific surface energy for solution¯hydrate interface, J/m2

σe f Effective specific surface energy, J/m2

σhs Specific surface energy for hydrate¯solid interface, J/m2

σsa Specific surface energy for solution¯solid interface, J/m2

ψ A factor between 0 and 1
A Kinetic factor for 3D nucleation, m−3 s−1

A′ Kinetic factor for 2D nucleation, m−3 s−1

C0 Concentration of nucleation sites, m−2

Ce Concentration of dissolved gas at phase equilibrium, m−3

c Shape factor
c′ Shape factor
De f Effective diffusion coefficient, m2/s
d0 Diameter of a disk–shaped hydrate building unit, m
dh Diameter of a spherica–shaped hydrate building unit, m
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G Growth rate, m/s
h = d0 Height of the disk–shaped hydrate building unit, m
J Nucleation rate, m−3 s−1

J2D−UNS Nucleation rate of 2D undersaturation nucleation, m−3 s−1

J2D−NOH Nucleation rate of 2D nucleation on own hydrate, m−3 s−1

J3D−HEN Nucleation rate of 3D heterogeneous nucleation, m−3 s−1

k Boltzmann constant, m2 g s−2 K−1

N2D−NOH Nucleation potential of 2D − NOH
N3D−HEN Nucleation potential of 3D − HEN
Nins,n Instantaneous nucleation potential
Pe Equilibrium pressure, MPa
Pi Pressure on spinodal curve, MPa
POP Operatingp ressure, MPa
PSP Safe pressure, MPa
pe Phase–equilibrium pressure of the liquid, MPa
T System temperature, K
Te Equilibrium temperature, K
Ti Temperature on spinodal curve, K
TOP Operating temperature, K
TSP Safe temperature, K
ti Induction time, s
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