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Abstract: Lead-free ceramics with excellent energy storage performance are important for high-power
energy storage devices. In this study, 0.9BaTiO3-0.1Bi(Mg; ;3Nb1 /3)O3 (BT-BMN) ceramics with x wt%
Zn0O-Biy03-5i0; (ZBS) (x =2, 4, 6, 8, 10) glass additives were fabricated using the solid-state reaction
method. X-ray diffraction (XRD) analysis revealed that the ZBS glass-added ceramics exhibited a
perovskite structure, with the maximum relative density achieved at x = 6. The average grain size
reduced obviously as the glass additive wt% increased. Also, the dielectric constant decreased and
the breakdown strength increased with increases in the glass additives. The optimal energy storage
density of 1.39 J/cm? with an energy storage efficiency of 78.3% was obtained at x = 6 due to high
maximum polarization and enhanced breakdown strength. The results demonstrate that this material
is a potential candidate for high-pulse-power energy storage devices.

Keywords: glass additives; BaTiO3; energy storage properties; dielectric properties

1. Introduction

Barium titanate-based (BaTiOs-based) ceramics have been actively studied over the
past few decades as dielectric materials in energy storage applications due to their high
power density, fast charge/discharge rate, and high stability [1-5]. To design a proper
energy storage dielectric material, high maximum polarization (Pyy), low remanent po-
larization (P;), and high breakdown strength (BDS) should be satisfied at the same time.
Numerous investigations have focused on improving the energy storage performance of
BaTiO3-based ceramics.

Relaxor ferroelectrics exhibit high P4y, low P,, and moderate BDS, making them
promising candidate materials for energy storage applications [6-9]. In recent years, BaTiOs-
BiMeO3 [Me = Sc®*, (Mg 2 Tij /2)**, (Nip/3Nby 3)%*, etc.] as classical relaxor ferroelectrics
have attracted extensive attractions since the introduction of Bi-based perovskite can
improve grain density and obtain high Py, [10-13]. Of particular interest is that the
0.9BaTiO3-0.1Bi(Mg; ;3Nb1 /3)O3 ceramic was reported to achieve a maximum polarization
of 16.57 uC/cm? and a recoverable energy storage density of 1.13]/cm3 at 143.5kV/cm [14];
however, its relatively low BDS limits its potential applications.

The BDS of ceramics is substantially influenced by several factors, such as the grain
size, grain density, porosity, second phase, and interfacial polarization [15-19]. Glass
additives can decrease the sintering temperature and refine the grain size of ceramics. S.
Yoon et al. [20] investigated TiO, ceramics with added ZnO-Bi;O3-5iO; (ZBS) glass and
found that glass additives can lower the sintering temperature and enhance the density
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of ceramics, and improve their dielectric properties. The addition of ZnO can promote
moderate grain growth and improve the uniformity of the microstructure of ceramics.
Dong et al. [21] utilized this method to increase the energy storage density of Bag 35rg7TiO3
ceramics. Bi»O3, when serving as a sintering aid, can significantly reduce the sintering
temperature due to the effect of liquid-phase sintering [22]. SiO; can inhibit grain growth,
which is beneficial for enhanced ceramic density. Lee et al. [23] incorporated SiO; into
BaTiOs-based ceramics, resulting in ceramic materials with a density exceeding 95% and
improved dielectric properties. In summary, the introduction of ZnO-Bi,O3-5iO, (ZBS)
glass can improve the microstructure and sintering properties of ceramics, consequently
enhancing their energy storage performance.

In the present work, to improve the energy storage performance of barium titanate-
based ceramics, ZBS glass samples to be used as additives for 0.9BaTiO3-0.1Bi(Mg,/3Nb; /3)O3
(referred to as BI-BMN) ceramics were prepared. The effects of these glass additives on the
microstructures, dielectric properties, breakdown strengths, and energy storage properties of
the ceramics were systematically investigated.

2. Materials and Methods
2.1. Glass Additive Fabrication

The compositions of the glass were 40ZnO-35Bi;03-255i0; (mol%) and 50ZnO-30BiyOs-
20Si0; (mol%) (referred to as ZBS1 and ZBS2). Calculated amounts of these chemicals were
ball-milled for 4 h and then melted in a corundum crucible at 1450 °C for 2 h. The melt was
then quenched in water to obtain glass powder. Subsequently, the powders were ball-milled
for 1 h and sieved through a 60-mesh screen to produce powders with fine particles.

2.2. Sample Preparation

The BT-BMN powder was fabricated using the solid-state reaction method. High-
purity powders BaCOs3 (>99%), TiO, (>99%), Bi,O3 (>99%), MgO (>98%), and Nb,Os
(>99%) were used as the raw material according to the stoichiometry of BI-BMN. The
weighed raw materials were ball-milled in alcohol for 6 h. After drying, the powders were
calcined at 1000 °C for 4 h in sealed alumina crucibles.

The BT-BMN powders were mixed with the glass additives by ball milling for 6 h
according to the following weight ratio: (100 — x) wt% BT-BMN + x wt% (x =2, 4, 6, 8,
10) glass (depicted as Z1, Z2, Z3, Z4, and Z5, respectively). The mixed powders were
pressed into pellets with the dimensions of 10 mm in diameter and 1 mm in thickness
under a pressure of 200 MPa. The pellets were sintered at different temperatures from
1080 to 1150 °C for 2 h. The sintered pellets were polished down to a thickness of 0.3 mm.

2.3. Characterization

The bulk densities of the samples were measured using the Archimedes method. The
X-ray diffraction (XRD) patterns of the additives and glass ceramics were analyzed using a
PANalytical X'Pert-PRO diffractometer (Eindhoven, The Netherlands) at 40 mA and 40 kV.
The microstructures of the samples were observed using a JSM-6700F Scanning Election
Microscope (SEM) (JEOL, Tokyo, Japan). The samples were coated using a Ag electrode with a
diameter of 2 mm for the dielectric and ferroelectric measurements. The dielectric data were
collected using a precision LCR meter (4284A, HP, USA) from —180 °C to 200 °C with the
measuring frequency of 1 kHz to 1 MHz. The polarization—electric field (P-E) hysteresis loops
were assessed using the TF Analyzer 2000 (aixACCT, Aachen, Nordrhein-Westfalen, Germany)
ferroelectric test system at room temperature and a frequency of 10 Hz.

3. Results and Discussion
3.1. Phase Structure
Figure la,b show the XRD patterns of glass additives ZBS1 and ZBS2, respectively. It

can be observed that the XRD results for ZBS1 exhibit no significant peaks, indicating no
appearance of crystallization and confirming the completion of glass fabrication, while ZBS2
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shows crystallization. As the ZnO content in the glass system increases, the crystallization
temperature of the glass tends to decrease. In addition, ZnO can facilitate grain nucleation
and make glass susceptible to crystallization. Therefore, for the subsequent research, the
ZBS1 glass was chosen for addition into the BT-BMN ceramics. The properties of this ZBS1
glass are shown in Table 1.
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Figure 1. XRD patterns of (a) ZBS1 and (b) ZBS2 glass additives.

Table 1. Properties of the ZBS1 glass.

Density (g/cm?) Softening Point Dielectric Dielectric Loss Breakdown
vi8 Q) Constant ¢, tan o Strength (kV/cm)
3.001 ~700 ~6.3 0.001 358

The effect of sintering temperature on bulk density in the glass-added BT-BMN ce-
ramics is shown in Figure 2. It can be observed that the bulk densities of the Z1 and Z2
samples exhibit an initial increase followed by a decrease with increases in the sintering
temperature, while the Z3, Z4, and Z5 samples exhibit an overall decreasing trend in
their bulk densities with the increasing sintering temperature. The sintering temperature
required to achieve maximum bulk density is 1100 °C for the Z1 and Z2 samples, whereas
this decreases to 1080 °C for the Z3, Z4, and Z5 samples. With increases in the glass ad-
ditive content, the optimal sintering temperature shows a decreasing trend. Due to the
low melting point of ZBS, when the temperature reaches 700 °C, the ZBS glass begins to
soften and forms a liquid phase as the sintering temperature rises. The formation of a
liquid phase in the sintering process can reduce the sintering activation energy, which can
promote material transformation during sintering and the densification of ceramics; this
consequently improves the density and refines the grain size, resulting in enhanced energy
storage performance [24,25].

Figure 3 shows the XRD patterns of BI-BMN ceramics with various amounts of ZBS
glass. The diffraction peaks of each sample exhibit no shifting or splitting, indicating that all
of the samples exhibit a perovskite structure without a secondary phase. The XRD results
after refinement with the program X'Pert HighScore Plus (Version 3.0.5, PANalytical, the
Netherlands)and the crystal structure details are shown in Table 2. The lattice parameter
of each component varies slightly with the increasing content of ZBS1 glass additives,
indicating that the crystal structure of the main phase is unchanged. The changes in crystal
lattice parameters can be attributed to substitution effects. All samples exhibit a perovskite
ABOj3 structure, where the B-site comprises Ti**, Mg?*, and Nb>*. The ionic radius of
Ti** is 0.604 A, while the equivalent ionic radii of Mg2* and Nb°* are 0.693 A. During the
sintering process, the formation of a liquid phase involving ZBS glass participates in the
mass transfer process. In this context, Zn?* ions in the ZBS glass may be substituted into
the lattice due to their proximity to the B-site ions (the ionic radius for Zn2* is 0.74 A),
leading to changes in the lattice parameters [26,27]. The relative density of the ceramics
with different levels of ZBS1 glass content exhibits a trend of initially increasing and then
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decreasing. When the glass content reaches 6% and 8%, the relative density exceeds 95%,
demonstrating a relatively dense structure of the ceramic samples.
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Figure 2. Bulk density as a function of sintering temperature for the glass-added BT-BMN ceramics.
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Figure 3. XRD patterns of the glass-added BT-BMN ceramics.
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Table 2. Lattice parameters and relative density of the glass-added BT-BMN ceramics.

. Theoretical Bulk Relative
Lattice Volume . . .
Sample Structure Parameter (A) (A3) Density Density Density
(g/cm®) (g/cm®) (%)
Z1 Cubic 4.0153 64.74 6.40 5.77 90.13
Z2 Cubic 4.0182 64.88 6.68 6.04 90.47
Z3 Cubic 4.0349 65.20 5.64 5.55 97.55
zZ4 Cubic 4.0192 64.92 5.88 5.64 95.80

zZ5 Cubic 4.0175 64.81 6.13 5.74 94.67
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3.2. Microstructure Analysis

The SEM micrographs of BT-BMN ceramics supplemented with different amounts
of glass are shown in Figure 4. The SEM micrographs of all samples clearly show the
presence of grains, indicating their good crystallinity. As the glass content increases, there is
a significant reduction in the grain size of the ceramic samples, with the average grain size
decreasing from 1.29 pm to 0.55 um. The results of the grain size observation can correspond
to the XRD patterns of the samples. With the increasing content of glass additives, the XRD
patterns of the samples exhibit broader diffraction peaks. This suggests a reduction in the
size of coherent scattering regions (CSRs), indicating smaller grain sizes, which aligns well
with the findings from the SEM micrographs. During the sintering process, glass additives
dissolve at the grain boundaries or interfaces of ceramics, forming a liquid phase. This
liquid phase helps to reduce grain boundary energy, reducing the obstruction between the
grains and facilitating grain movement and rearrangement, ultimately refining the grain
size of the ceramics. Theoretically, a smaller grain size implies more grain boundaries
within the material, which increases the resistance and enhances the breakdown strength.
Ceramics with smaller grain sizes require relatively lower energy for polarization reversal,
facilitating easier polarization reversal and resulting in a higher energy storage density.
When the glass content reaches 10%, a marginal increase in the porosity of the ceramics
is noted. This may be attributed to an excessive glass content, leading to an increase in
the viscosity of the ceramics, and consequently impeding the expulsion of pores within
the ceramics. Observing the results of the SEM tests, it is evident that the grains in the Z3
sample exhibit a homogeneous structure with very few pores, corresponding to the relative
density result in Table 2.
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Figure 4. SEM micrographs of the glass-added BT-BMN ceramics: (a) x =2, Z1; (b) x =4, Z2; (¢) x = 6,
Z3; (d) x =8, Z4; (e) x = 10, Z5. The insets show the grain size distributions in the ceramics.

3.3. Dielectric Behavior

Figure 5 displays the temperature dependence of the dielectric constant and dielectric
loss of the glass-added BT-BMN ceramics as a function of the frequency. The dielectric
constant and dielectric loss of the samples with varying glass additive contents exhibit
distinctly broadened phase transition and frequency dispersion behavior, which indicates
that the dielectric constant and dielectric loss can remain stable within a certain temperature
range. The dielectric constant shows a decreasing trend with increases in the frequency,
which indicates a relaxor-type behavior [28]. The maximum dielectric constants at 1 kHz
decrease from 1020.8 to 624.3 as the glass content increases. In this glass—ceramic system,
the dielectric constant of the ZBS glass is only 6.3, while that of the BT-BMN ceramic
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is ~1200, according to Lichtenecker’s equation [29] (Equation (1)), causing the dielectric
constant to inevitably decrease:

loger = ZVilogsri 1)
i

where ¢, is the relative dielectric constant of the glass—ceramic composite, V; is the relative
volume fraction, and ¢, is the relative dielectric constant of the components. The dielectric
loss tangent for the samples shows an increasing trend with the testing frequency, caused
by the ion jump relaxation at higher frequencies [30]. The dielectric loss shows minimal
variation with the addition of glass, in the range of 0.005~0.007.
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Figure 5. Temperature-dependent dielectric characteristics of the glass—added BT-BMN ceramics:
(a)x=2,21;(b)x=4,72; (c) x =6, Z3; (d) x = 8, Z4; (e) x = 10, Z5. The arrows in the figures represent
the trends of the dielectric constant and dielectric loss as the frequency increases.

3.4. Ferroelectric Behavior and Energy Storage Performance

The ferroelectric and energy storage behavior of the glass-added BT-BMN ceramics
are investigated based on the polarization—electric field (P-E) hysteresis loops at room
temperature and 1 Hz prior to their respective breakdown strength, as shown in Figure 6a.
The total energy density (W) and recoverable energy density (W) are calculated from the
integral area of P-E loops based on the following equations:
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Pmﬂx
W= / EdP ?)
0
Pmax
Wree = / EdP (3)
Py

where E is the applied electric field, Py is the maximum polarization, and P, is the
remanent polarization. The energy storage efficiency 7 is expressed as 77 = Wy /W . The
BDS of glass-added ceramics increases with the addition of ZBS1 glass, as shown in
Figure 6b. The microstructure of the materials, including porosity, grain density, and grain
size, is an important influence factor for the BDS of ceramics. Microstructure analysis
indicates that the enhancement in BDS is mainly due to the fact that the ZBS1 addition
can refine the grains and make the grains distribute uniformly. Despite the lower relative
density and higher porosity of Z5 compared to Z3 and Z4, the reduction in grain size
contributes to increased grain boundaries, which increases the resistance and provides
additional dislocation, leading to more efficient charge trapping and dissipation, and
thereby enhancing breakdown strength. This dominant effect in enhancing the BDS of
ceramics results in the highest BDS being observed in the Z5 sample, reaching 228 kV /cm.
The maximum W and Wy (1.77 J/cm? and 1.39 J/cm3, respectively) are obtained when
x = 6, the same trend as the Py, indicating that the energy density is mainly dominated by
polarization. The P,y of the Z3 sample reaches 17.65 pC/ cm?, representing a 6.6% increase
compared to the pure BI-BMN [14]. The Z5 sample exhibits the highest BDS but its Py is
low and P, is high, resulting in a relatively low energy storage density. Among all of the
measured samples, Z3 has the highest W, at 1.39 ]/ c¢m®, with an ideal 1 of 78.3%, showing
excellent energy storage performance. The increased energy density of these glass-added
BT-BMN ceramics can be attributed to the fact that the addition of an appropriate amount
of ZBS1 glass refines the microstructure of ceramics, resulting in an increase in the BDS and
enhancing the polarization behavior of the ceramics.
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Figure 6. (a) P—E hysteresis loops, (b) breakdown strength, (c) polarization, and (d) energy storage
properties of the glass-added BT-BMN ceramics.
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4. Conclusions

In conclusion, (100 — x)BT-BMN-xZBS glass-added ceramics with improved energy
storage density and efficiency were fabricated via the solid-state reaction method. The
phase structure, microstructure, dielectric properties, and energy storage performance of
these ceramic samples were systematically investigated. XRD analysis revealed that the
glass-added ceramics exhibited a perovskite structure and the optimal relative density was
obtained with ZBS of 6 wt%. The average grain size reduced remarkably with the addition
of ZBS. The samples showed great dielectric temperature stability, improved breakdown
strength, and slim P-E loops. When x = 6, the optimal energy storage performance was
observed with a recoverable energy density of 1.39 J/cm?, marking a 23% increase com-
pared to a previous study, and an energy storage efficiency of 78.3%. All of these energy
storage properties indicate that these BI-BMN-ZBS ceramics can be considered as an ideal
candidate for high-pulse-power energy storage devices.
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