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Abstract: Quasicrystals have a wide range of applications due to their unique multi-field coupling
effects and distinctive physical and mechanical characteristics. In this paper, the static and dynamic
problems of imperfectly bonded, multilayered, functionally graded, two-dimensional decagonal
piezoelectric quasicrystal laminates under mixed boundary conditions are investigated. The state
equations in a concise and compact matrix form can be expressed by using differential quadrature
regional discrete point expansions in any layer of the laminate. This allows for the representation
of displacement, stress, electric potential, and electric displacement components. Then, different
imperfect interface conditions are introduced to characterize specific structural and electric contact
properties at the bounding interfaces, which are further converted to the interface propagator matrix.
Numerical examples are carried out to investigate the impact of varying interface compliances, load
types, and functional gradient factors on the static bending and vibration phenomena of QC laminates.
These results can be used as references to validate existing or future numerical work on QC laminates
and could further guide the design of related QC laminate structures.

Keywords: piezoelectric quasicrystal; functional gradient materials; differential quadrature method;
imperfect interface

1. Introduction

Quasicrystals (QCs) were discovered by Shechtman [1] in 1982 during X-ray diffraction
experiments on Al-Mn alloys. Natural QCs were first discovered in 2009 [2], followed by
the discovery of natural QCs with decagonal symmetry in 2015 [3], proving that QCs are
widespread in the natural environment. Until now, nearly 210 different natural and syn-
thetic solid QC materials have been reported. QCs can be divided into one-(1D), two-(2D),
and three-dimensional (3D) QCs according to the dimensionality of the atoms’ quasiperi-
odic arrangement [4]. Due to the special atomic arrangement and multi-field coupling
effects, QCs possess various superb characteristics. The mathematical elasticity of solid
and soft matter QCs and their related theories were systematically studied by Fan [5], who
summarized various QC material parameters and methods for solving various problems.
Piezoelectric quasicrystals (PQCs) refer to QCs with piezoelectric effects. PQCs can have
various applications across different fields due to their unique combination of characteris-
tics, such as sensors and actuators [6,7], electromechanical systems, acoustic devices, and
so on. Since PQC materials have a wide range of applications, it is important to study the
effect of piezoelectric and multi-field coupling on their mechanical properties [8-11], to
enhance the exploration of their potential applications.

Due to the highly complex composition of QCs’ non-stoichiometric structure, the
preparation of large-size QCs is very difficult. As such, QCs are often fabricated as layered
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structures with their mechanical behaviors being important in various engineering applica-
tions. Yang et al. [12] utilized the pseudo-Stroh formalism to provide an accurate solution
for a multilayered 2D decagonal QC laminate with simply supported boundary conditions.
Guo et al. [13] developed analytical solutions for the free and forced vibrations of a 1D QC
nanoplate. Huang et al. [14] employed the state-space method (S5SM) to study the behavior
of compressible fluids that are filled with multilayered 2D PQC cylindrical shells. Huang
et al. [15] examined the interlaminar stresses in piezoelectric composite laminates. Guo
et al. [16] proposed a non-local analytical solution for FG multilayered 1D hexagonal PQC
nanoplates.

Functional gradient materials (FGMs) consist of two or more materials with a gradual
change in composition and structure. By gradually altering the volume fraction of the
constituent materials, the mechanical properties in the FGMs can be tuned to smoothly
and continuously vary from one surface to another. FGMs are widely used in laminates,
especially in QC laminates, due to their designable characteristics. Vel et al. [17] obtained
3D accurate solutions of free and forced vibrations of FGM rectangular thick plates under
simply supported boundary conditions. Phung-Van et al. [18] applied the generalized shear
theory deformation principle to investigate the response of FGM piezoelectric plates under
thermo-mechanical loading. Guo et al. [19] studied the scale effect in anisotropic and MEE
FGM plates. Feng et al. [20] analyzed the effects of boundary conditions and functional
gradient factors on the static solutions of 2D FGM QC plates.

In practice, however, internal defects and imperfect interfaces could exist in composites
where the interfaces could be made of interfacial dislocations and/or cracks [21,22]. A
common imperfect interface is the spring-type where the traction is linearly connected to
the displacement jump [23]. Qu [24] modeled the imperfect interface with linear spring
layers of unaccounted thickness and investigated the impact of imperfect interfaces on the
overall elastic property of the composites using the Mori-Tanaka method. Shariyat [25]
analyzed the non-linear bending and buckling of imperfect sandwich plates under thermo-
mechanical loading using the generalized 3D higher-order double superposition theory.
Chen et al. [26] used a general spring model to simulate imperfect interfaces and obtained
an accurate 3D solution for a piezoelectric rectangular laminate with imperfect interfaces.

In 1971, Bellman [27] proposed the differential quadrature method (DQM) to solve
boundary-value problems and found that the DQM could be very accurate by using only a
few discrete points. DOM is a numerical technique used to solve both ordinary and partial
differential equations. It is essentially a matching point method, which requires finding
the corresponding discrete points in the solution region and replacing the derivatives of
the original function at the discrete points with a linear combination of the function values
at the discrete points and the corresponding weights. By applying DQM, Bert and Malik
et al. [28] studied the free vibration of laminates under different boundary conditions and
demonstrated that the computational space required in DQM is much less than that based
on either the Fourier series method or the Rayleigh-Ritz method. Chen et al. [29] combined
DQM with SSM, called SS-DQM, to deal with laminar structures with free boundaries, and
studied a series of static bending and free vibration problems for laminated structures with
complex boundary conditions and multi-field coupling. The SS-DQM was also used to
solve the static bending and free vibration problems with different boundary conditions for
piezoelectric, piezomagnetic, and other smart materials [30-32].

In this paper, a semi-analytical solution is derived for a layered PQC rectangular
laminate with imperfect interfaces. It is based on the SS-DQM and propagator matrix
method. This paper is organized as follows: Section 2 presents the governing equations for
2D decagonal PQCs based on the QC linear elasticity, introduces the DQM, and derives
the solution to the state equations. Section 3 implements joint coupling matrices to avoid
numerical instability at various discrete points. Section 4 derives the imperfect interface
forms for elastic fields, as well as weakly (or highly) conducting dielectric interfaces.
Section 5 studies the influence of interface compliances, functional gradient factors, and
load types on the static and dynamic response of 2D PQC laminates.



Crystals 2024, 14, 170

30f24

2. Description and Formulation of the Problem

Figure 1 is the problem geometry of a three-layered 2D PQC rectangular laminate
with length L1, width Ly, and height & in terms of a global and fixed Cartesian coordi-
nate system (x, y, z) = (x1, x2, x3). The thickness of each layer in the laminate, denoted
ashy (p=1,2,3,..., M), is defined as the difference between the coordinates z, and z, 1.
The generalized spring model is employed to represent the imperfect interface between
adjacent layers. In this imperfect interface model, the tractions remain continuous across
the interface, and they are further proportional to the displacement jumps via the interface
“spring factor”. For the interface with weakly conducting dielectric, the electric displace-
ment remains continuous, but the electric potential does not. The jump in the electric
potential is proportional to the electric displacement. On the other hand, for the interface
with highly conducting dielectric, the electric potential stays continuous, while there exists
a discontinuity in the electric displacement, which is a function of the electric potential.
The atomic arrangement of 2D PQC is quasiperiodic in the x;-x, plane and periodic in
the x3-direction. The flat top and bottom surfaces are located at (x3)y; = /2 and (x3); =0,
respectively.

X3

(*3)m

Imperfect interface
between layers

(x3)1

Figure 1. Geometry of a layered QC rectangular laminate with imperfect interfaces.

2.1. Basic Equations

Based on the QC linear elasticity, the geometric equations of 2D PQCs are

1 (ou; , duj _owy 0P
81]—§<a_xj+a—xi>l wm]—_axj/ E = a_xi/ 1)

where ¢;; (i, j =1, 2, 3) and wy,; (m =1, 2) are the strains in the phonon and phason fields,
respectively; u; and w;, are the displacements in the phonon and phason fields, respectively;
E; stands for the electric field; and ¢ represents the electric potential.

The essence of FGMs is the continuous change of material properties in a certain
direction. We assume that the material properties of FG QC materials are exponentially
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distributed along the x3-direction. Therefore, the generalized constitutive equations [33] of
2D decagonal PQCs are

011 = Cr1(x3)e11 + Cra(x3)en + Ci3(x3)ess + Ry(x3) (w11 + wa) — e31(x3)Es,

022 = Cia(x3)e11 + Cr1(x3)e2n + Ci3(x3)e33 — Ry(x3) (w11 + waz) — e31(x3)Es,

033 = Ci3(x3)e11 + Ci3(x3)enn + Ca3(x3)e33 — e33(x3) Es,

023 = 032 = 2Cy4(x3)e23 — €15(x3) E2,

013 = 031 = 2Cye(x3)e13 — €15(x3) Eq,

012 = 021 = 2Cg6(x3)e12 — Ry (x3)w12 + Ry (x3)wy1,

Hyp = Ry(x3)(e11 — e22) + Ky (x3)w1 + Ka(x3)wna,

(x3)wa + K (x3)w11, 2)

— — N —

Hy = Ry(x3)(e11 — €22) + Ky (x3
Hys = Ky(x3)wos,

Hyp = —2Ry(x3)e12 + Ky (x3)wip — Ka(x3)way,
Hiz = Ky(x3)wr3,

Hy1 = 2Ry (x3)e12 + Ky (x3)wa1 — Ka(x3) w12,

Dy = 2e15(x3)e13 + C11(x3) Eq,

Dy = 2e15(x3)€23 + G22(x3) E2,

D3 = e31(x3)(e11 + €22) + e33(x3)e33 + G33(x3) Es,

where 0;; and H,,; are the stresses in the phonon and phason fields, respectively; D; stand
for the electric displacements; Cjj, Cy4, and Ces = (C11 — C12)/2 (in N/ m?) are the elastic
constants in the phonon field; K;, K, and K4 (in N/ m?) represent the phason elastic
constants; Ry (in N/m?) represents the phonon—phason coupling elastic constant; &; (in
C2/(N-m?)) represent the dielectric coefficients; and e;5, e31, and e33 (in C/ m?) represent
the piezoelectric coefficients in the phonon field. Each material parameter is a function of
x3, assuming that the material parameters vary exponentially along the x3 axis, i.e.,

Cij(x3) = C?je”x3,R1(x3) = R%e3, Ky (x3) = KO, €73, &3 (x3) = €;€3,
e11(x3) = 1€, e15(x3) = e)5e™3, e33(x3) = eF3e”™3,

3)

where the superscript “0” represents the material parameters at the bottom of each layer,
and 7 is the gradient factor.

The equilibrium equations of 2D PQCs, in the absence of body force and electric charge
densities, can be expressed based on Newton’s second law and Bak’s theory [34,35]

(Tij,j = 0, Hm = O, D]/] =0. (4)

1:]
Regarding the dynamic behavior of QCs, there are various arguments due to the
unclear physical phenomenon on the phason field, as compared to the statics. Lubensky
et al. [36] proposed that the phason field, unlike the phonon field, does not respond to
spatial translations and exhibits diffusive behavior with significantly longer diffusion times.
Building upon this concept, they introduced the hydrodynamics model for QCs. However,
Bak [34] pointed out a different perspective, suggesting that both the phonon and phason
fields behave similarly in dynamics, following the acoustic modes. Ding et al. [37], based
on Bak’s theory, examined the equation of motion for QCs and found that the law of
momentum conservation applies to both phonons and phasons. In this paper, we use
the elastodynamics model with wave type to investigate the dynamic behavior of QCs.
Therefore, the motion equations of 2D PQCs in the absence of body force and electric charge

densities following the elastodynamics model of wave type [37,38] can be expressed as
0ijj = PUipt, Hpjj = pwmu, Djj =0, ®)

’,

where p is the desity of the 2D PQCs.
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2.2. State Equations of a Homogeneous QC Laminate Layer
Substituting Equation (1) into Equation (2) and combining with Equation (4) or
Equation (5), the partial differential state equations are

d
E& — Dalr (6)

where state variable &1 = [u1, up, us, w1, wo, ¢, 033, 023, 013, Ha3, His, D3]T, and D is the state
matrix, which has different forms in the static and dynamic cases. The specific forms of the
equations for both the static and dynamic cases are given in the Appendices A.1 and A.2.

For the electro-elastic problem of a 2D PQC laminate, the simply supported and
electrically grounded boundary conditions are

up; =u3z; =0, 011, =Hy1; =0, ¢ =0. )

To satisfy the simply supported boundary conditions (Equation (7)), we assume the
following general solutions in the form of Fourier series expansions for displacements,
stresses, electric potential, and electric displacements (for the time-harmonic case)

Uy cos(pxq) sin(gxz) 033 033mn SIn(pxq ) sin(gxz)

Upyy sin(pxq) cos(gxp) 093 023mn Sin(px1) cos(gxy)

ugmp sin(px1) sin(qxz) | jor | 013 | _ i i 013mn OS(px1) $in(4¥2) | ot ®)
W1mp cOS(px) sin(gxz) "| Has = 2| Hasmn sin(pxy) cos(gxz) ’

Womn SIN(px1) cos(gxz) His Hi3mn cos(pxy) sin(gxz)

$mn sin(pxq) sin(gxz) Ds D3y sin(pxq) sin(gxz)

where the imaginary i =v/—-1; p =mmn/Ly, q = nrt/Ly, in which m, n is the half-wave
number taking only positive integers; and w is the angular frequency. And w is the angular
frequency. The above general solutions apply to the dynamic case, while the static case can
be obtained by letting w = 0.

By substituting Equation (8) into Equation (6), Equation (6) is transformed from partial
differential equations (PDEs) to ordinary differential equations (ODEs). However, the
double Fourier series expansion form can only satisfy the simply supported boundary
condition, but no longer be applicable if there are clamped or mixed boundary conditions.

Assume that the laminate is simply supported at x; = 0 and x; = Ly, and the other two
edges are random boundary conditions, then, each quantity can only be expanded in the
Fourier series along the x;-direction

U U1y, sin(gxz) 033 033, Sin(gx7)

Uy Upy, cos(gx2) 023 023, cOs(gx7)

us | _ i i3y sin(qx2) et | 13| i 0130 8IN(7%2) | it )
w1 =1 W1in Sll’l(QXz) Hops oo Hosy, COS(QXz)

wy Wy, cos(gx2) Hiyz Hiz, sin(gxz)

¢ ¢n sin(gxz) D3 D3, sin(gx2)

Substituting Equation (9) into Equation (6), we obtain Equation (A1) (the exact form is
given in Appendix A.4). It should be noted that Equation (A1) is still partial differential
equations (PDEs) and cannot be solved analytically. Therefore, the DQM is used to solve
the PDEs. DQM can approximate the derivative of a function with respect to a direction by
a linear combination of the weight coefficients and the values of the original function at the
discrete points. Therefore, the n-order derivative of a function f (x1, x3) at a discrete point
in the Cartesian coordinate system at x = x7 ; is

9" f(x1,x3)

N
oxh =), Xi(l?)f(xl,k/ x3), (10)
1

X1 :xl,,' k=1
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(n)

where X, are the differential quadrature weight coefficients; and N is the number of
discrete points in the x;-direction. The weighting coefficients along the x;-direction are
calculated using the polynomial expansion form as

(1) _ Hf'vlr#z(xx xr
Xik B (x,-ka)]'[r 1r7ék(xk xr) ( #k)
(1) N L)
Xt =~ Xi's 11
! k:ﬁ;ﬁ ik (11)
N
= £

Also, the form of Chebyshev-Gauss—-Lobatto discrete points is used to represent the
distribution of discrete points in the discrete domain

L i —1
X1, = 21{1“)5(1;—17[)}':1’2"”]\]' (12)

By expanding the stresses, displacements, electric potential, and electric displacements
in Equation (6) using the Fourier series and DQM, for static problem, we obtain the
following set of state equations

N
du1 i
T = Z Mak —m Z X 4>,k + 42013,
dllz i -
de. = —qusi — 4199, +a2023,
N
dus ; (1) a
T =~ L X ikt i+ 50 Ds,
1
dwq
ddx3’ =ayHys,
wy,
oy = A7H23,,
N
dpi _ ag (1) ag o
i = gk);l Xik Uy — gquz,z (7 D31/
dogg i

i N
dx; 9923 — kz X 013 ks
=1

dos i N _a N @
T = (% —ap - ﬂ13)q Z Xy — ars Z Xy (% - ﬂll)q 03 .
+2ﬂ1467 Z sz Wk — A14 Z X,k Wa — B14G°W5 ; — ixqo3si + 2qD3,

doyz i

N
1
Te = 113 ui  + (aw a 1) ): Xlk urg+ (* —ap — 013) kgl Xi(k)”z,k

2
—a14 Z Xl'(k)wl k — a1aq7w3 ; + 2a14qk21 Xik)wz,k

Z sz o33 + o Z X,k D3kr

N
dHpsi _ 1) 2) 2,2 ) 2,2
dX3l — —2a14qkz Xik Upf — Ll14k2 Xik Up e — 147Uy ; — Ll15k2 Xik Wy ko + a159 w3 i
=1 =1 =1
N N N
dHi3 _ 2 2,2 (1 2 2
T = —a14 ), Xik)ul,k — a14q°uT; — 20149 ). Xik)uz,k —a15 ), Xi(k)wl,k +aswy;,
3 k=1 ’ k=1 k=1 ’

N N
2 1
?1233 = (a16 + H17)k§1 Xi(k)(P,k — (a16 + a17) 2Pk + a1g0s, — alkg X,-(k )Uls,k,

wherei =1, 2, ..., N, and the involved coefficients a,, are listed in Appendix A.3. By
using the same way, applying Equations (10)—(12) into Equation(A2), we can get the state
equations for dynamic problem.
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Equation (13) represents the state equations at the endpoints when i = 1 and N. There-
fore, we can express the simply supported (Equation (14)) and clamped (Equation (15))
boundary conditions directly in terms of displacements, stresses, and electric potential

Upg=1u33=0, 0114 =Hp1g=0, ¢4 =0, (14)

Upg =lpg =Uzg =W =wrq=0,¢45=0, (15)

where d =1 and N. Substituting the boundary conditions into Equation (13), the governing
equations with relevant boundary conditions can be solved, as presented below.

To simplify the presentation, we introduce the following abbreviations for the bound-
ary conditions of the laminate. Taking the 2D PQC laminates with SSSS and CCCC bound-
ary conditions as examples, ‘SSSS’ denotes that the boundary condition is simply supported
along the edges x1 = 0, x1 = Ly, xp =0, and xp = L1, and ‘CCCC’ indicates that the boundary
condition is clamped along the edges x; =0, x; = Ly, xp =0, and x, = L1. The state equations
of these two boundary conditions are shown in Equations (A5) and (A6), respectively.

As such, Equation (13) for any layer, saying Layer p, can be simplified to a matrix form as

dixg () = p)p), (16)

T T pT1 7T - :
where ¢(P) = [ul ,ul, ul, wl, wl, ¢T, 0k, 0L, 0L, H;, H,, DI, ul = uy; PP is the

coefficient matrix of Layer p.

3. General Solutions for a 2D QC Laminate

The state equations can be described as a system of homogeneous linear ODEs with
constant coefficients. Due to their linear nature, it is possible to obtain the general solutions
of these equations directly.

Based on the solution theory of ODEs, the general solutions of Equation (16) are

et (z) = exp [(z — zp,l)P(p)} (P (zp—1) (zp—1 <z <3zp), (17)

where z, 1 and z,, respectively, represent the coordinates of the lower and upper interfaces
of Layer p. Let z = z,, we have

P =GP, (18)

where GIP) = exp [EPP(P)], in which by, = z, — 2,1, E,;p) = &) (zp), E,(()p) = &) (zp-1),
subscripts 0 and 1 represent the lower and upper interfaces of Layer p. Similarly, let z = z,,4,
we have

cgp'i‘l) _ G(p-l—l)c(()l"‘rl)_ (19)

In the case of perfectly connected layers, all variables are continuous at their common
interface

(Y = () (2,)) = ) (z)) = &P, (20)

Substituting Equation (20) into Equations (18) and (19) and eliminating the state
variables on their common interface z,, we obtain

Cg”“) — G(P+1)G(P)C(()F’). 1)

For the entire multilayered laminate, when all the interfaces are perfectly connected,
we have L .
P =gV, (22)
where

1
G=GW...grthgk ...gM = IT G, (23)
p=k
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and Equation (23) is called the global propagator matrix.
Separating the displacements and stresses of the above equation, we obtain

U (k)i (;11 c;12 U (1) (24)
Tl_G21 G| T/,
where U — [uf,ul,ul, w], wl,¢7], T = [0%,, o, ofs, HE, HT,, DI .
Then, from Equation (24), we have

Ul = Gnul + Gty (25)

Gy UV = T — Gyl (26)

The above procedure is the same when solving static and dynamic problems. For
the case of free vibration, assume the tractions and electric displacements on the top and
bottom surfaces of the layered plate are zero. The frequency equation is obtained as

(Ga1| = 0. (27)

Then, the natural frequencies of different orders can be obtained by solving its eigen-
values.

For the static problem, we assume that the mechanical loads acting on the top and
bottom surfaces of the laminate can be expressed as

T =4, 1" =4, (2)

where g, and gy, represent the mechanical loads on the top and bottom surfaces, respectively.
Substituting Equation (28) into Equations (25) and (26), we obtain

U = GjulY + Gy, 29)

G U =9, — Gy, (30)

The displacements and electric potential on the bottom surface can be obtained from
Equation (30)
1 1= _
U(() )= Gzll (@ — G2qp), 31)
With these solutions, the state vectors at any thickness position in the laminate can be
obtained using Equation (22).

4. Imperfect Conductive Interface Analysis

The interface of PQC laminates can be in an intermediate state between firmly bonded
and completely debonded at the interfacial joints due to defects such as damage or cracks.
On both sides of such an interface, the displacements or stresses are always discontinuous,
and such an interface is called an imperfect interface. It is assumed that the traction at the
interface is continuous, but the displacement is discontinuous. The imperfect condition on
the interface for the elastic field can be expressed as follows

(013)(P+1)— _ (013)(P)+ _ (u1)(p+l)_ _ (ul)(P)Jr ucgp),

(023) P = (023) P F = () PHV™ — (1) P+ aép),

((733)(17“)* (033)(P)+ _ (uS)(PH)* _ (u3>(}7)+ aép), 32)
(His) P~ = (Hp) P = §(w1)(p+l)_ - (wl)(p”;ﬁﬁ’”),

(Haz) P~ = (Ho) P T = ((wo)PHV ™ = (wy) P ,ng)
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where “—" and “+” are the quantities on the two sides of the common interface z, between

(p)

;" and ,B,(f ) are the interface-stiffness coefficients of the

(p) 2P

phonon and phason fields on the interface. It is noted that a;"’, B,;;” — 0 represents

(P) 2p)

a completely separated interface, while &;", B;;” — co denotes a perfectly connected
interface.

The imperfect condition of the electric field can be categorized into two cases: dielec-
trically weakly and highly conducting. In the weakly conducting case (Equation (33)), it is
assumed that the electric displacements on the interface are continuous while the electric
potential is not.

(D3) "7 = (D3)PF = ()7 = (9)P7) (—11")- (33)

In the highly conducting case (Equation (34)), the electric potential is continuous while
the electric displacements are not.

Layer p + 1 and Layer p; and «

((P>(p+1)f _ (¢)(p)+ _ ((D3>(p+1)* _ (DB)(P)Jr)%,),gp), (34)

where A = 92/ x% + 02/ x%, 'y,(f ) are the stiffness coefficients of the electric field. Now by
ordering Equations (32)—(34) according to their orders in terms of ¢;, we have

GRS LU (35)
where I is the identity matrix
») [ I g 55)]
Jr = : (36)
o
In the case of a dielectrically weakly conducting interface, we have

Jé’f) = 06x6, (37)
) = diag[1/ai"'l 1/af 1 1/a" 11/ 14 1/ 815 ~1/111|. (38)

In the case of dielectrically highly conducting, we have

) _ g (p)
J,;, =diagl0 0 0 0 0 1/9,"Alg|, (39)
1 = diag|1/ai" 1 1/l 1728 151/81 141/ 615 0] (40)

If the laminate is perfectly connected, ]gg) = ]g’{ ) = 0.
In the following numerical studies, we further assume that

1 1 1 1 1 1 1
agp) agp) agp) ,ng) 5&#) ﬁp) ,ng)

where the interface compliance ¢ is used to characterize the degree of interface imperfection.
For the imperfect interface case, Equation (22) can be rewritten as follows

& =TT, ()G )

In summary, the partial differential state equations are obtained through the state-
space method. By using DOM and Fourier series expansions, they are modified to an
ordinary differential form. Then, the imperfect interfaces are considered and the general
solutions are obtained.
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5. Numerical Examples

To validate the accuracy of the proposed method, a numerical example is solved for
laminates with simply supported boundary conditions under normal stress (Equation (44)).
The geometry and material properties of the plates are taken from the work of Yang et al. [12].
In this analysis, the effect of the electric field is neglected, and the phonon displacement of
the laminates along the x3-direction is determined at the point (x1, x3) = (0.75L1, 0.75L;). The
obtained results are compared with the literature [12] and shown in Figure 2a, demonstrating
a high level of consistency. Furthermore, the influence of the number of discrete points on
the accuracy of the results is analyzed in Figure 2b. It can be observed that the results tend to
converge as the number of discrete points increases, with convergence occurring at N = 7. To
ensure the accuracy of the results, a total of 13 discrete points are selected in this study.

S 1.0 @ ' ' Result by Yang 2014 2.0 (b) ' ' ' '
~ T
Sost ——w 315
i Presentresult <
: s .
206} vow £ 1.0
.2 o
£ 2
T 04F 14 8 05
s 7
goz- - 0.0}909900900000000090000000000 004
2
Z

0'0 1 1 1 1 1 1 1 _0‘5 1 1 1 1

-09 -06 -03 0.0 0.3 0.6 0.9 0.0 0.2 0.4 0.6 0.8 1.0

Normalized variables Normalized thickness (z/H)

Figure 2. (a) Phonon and phason displacement distributions along thickness direction in QC/QC/QC
laminate, compared with the results of Ref. [12]. (b) Relative error analysis.

This section mainly studies the effect of the interface compliance J, functional gradient
factor 7, and initial stress on the static bending of 2D PQC laminates by using the semi-
analytical solutions derived in Section 4. To increase computing speed and reduce storage
capacity, the dimensionless form of field quantities and frequencies are defined as

* Ui * Wy % ___ $emax x _ Yij * Hmj x _ D
ui " Lmax’ Wy = Lmax”’ (P - Lmaxcmax’2 ij " Cmax’ Hm] " Cmax’ i emax’ (43)
a-C -G e
pr = Prfax’ &* = R = B o= gcrrr;t;, Q = WLmax/ v/ Pmax/ Cmax,

where Lmax, Cmax, émax, and pmax are the maximum values of the side length, phonon
elastic coefficients, phonon piezoelectric coefficients, and densities of the 2D PQC laminate,
respectively. We assume that the laminate consists of three layers, each with the geometry
ratio L:Lp:h = 1:1:0.1. The QC material used is Al-Ni-Co alloy, and the crystalline material
is BaTiO3. The parameters of these two materials are given in Table 1, where Ry = Ry = R3 =
Rs = Rg. The discrete points in all examples in this section are taken as Ny = Ny, = 13 to meet
the computational accuracy and convergence requirements.

Table 1. Material Parameters [39] (C;;, K;, R1 (10° N/m?), &jj (C/m?), &; 1072 C2/(N-m?)), 0 (kg/m3)).

ijs

Cnt Ci2 Cis Cs3 Cy Ky K> Ky
QC1 234.33 57.41 66.63 232.22 70.19 122 24 12
QC2 166 77 78 162 43 0 0 0

el5 e31 €33 ¢ G2 ¢33 P Rq
QC1 5.8 —2.2 9.3 22.4 22.4 25.2 4186 8.846
QC2 11.6 —4.4 18.6 11.2 11.2 12.6 5800 0
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Example 1. Effect of the interface compliance 6* on the static bending of the QC laminates.

We assume that the laminate is homogeneous and that the mechanical load acting on
the top surface is

033 = oy sin(pxy) sin(gx2), (44)

where o = —1 N/m?.

For fixed (x, y) = (0.25L1, 0.25L,), Figures 3 and 4 show the changes in displacements
(electric potential) and stresses (electric displacements) along the thickness direction in
sandwich QC/Q/QC laminates with SSSS lateral conditions and subjected to mechanical
loads. Namely, the top and bottom surfaces of the laminate are, respectively, subjected to
tensile pressure. The imperfect interface is dielectrically weakly conducting. When 6* =0,
the interface becomes perfectly connected. It can be seen from Figure 3 that u;, u3 and
¢ are continuous when 6* = 0, and the displacement (electric potential) at the interface
will undergo a sudden change when 6* # 0. Furthermore, it can be seen from Figure 3a,b
that the overall stiffness weakens when J* rises. The magnitude of w; decreases with
increasing interface imperfection, indicating that an imperfect interface could affect the
local rearrangement of atoms. Figure 4a,b show that a mechanical load would generate a
larger stress in the phonon field as compared with the stress in the phason field in Figure 4c.
Furthermore, when the imperfect interface factor J* increases, the maximum magnitude
of the stress increases, leading to possible damage to the laminate being easily damaged.
Figure 4d shows that the magnitude of the electric displacement D3 can be very small when
considering the effect of the imperfect interface.
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w 02F— / A w02F—— .
% o 4
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S f/ o
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Eolp o wE s Fop ot et
—A— =5 —a—5=5
/} =75 §=15
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Figure 3. Variation of the displacements and electric potential along thickness direction in QC/C/QC
laminates subjected to mechanical load, under dielectrically weakly conducting conditions with
different interface compliances 6*: (a) uf, (b) u3, (c) wj, (d) ¢*. Coordinates (x, y) = (0.25L1, 0.25L;).
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Figure 4. Variation of the stresses and electric displacement along thickness direction in QC/C/QC
laminates subjected to mechanical load under dielectrically weakly conducting conditions with
different interface compliances ¢*: (a) 073, (b) 033, (c) Hj3, (d) D3. Coordinates (x,y) = (0.25L1, 0.25L5).

We consider now the case of a dielectrically highly conducting interface. Figure 5a-c
show the variation of the phonon and phason displacements. By comparing it with the
weakly conducting interface (Figure 3), we observe that these displacements are nearly
the same, indicating that the dielectric interface condition has nearly no effect, no matter
if it is highly or weakly conducting. However, the variations of the electric potential
are completely different under different dielectric conditions (Figure 5d vs. Figure 3d).
Similarly, while the imperfect interface condition has nearly no effect on the stress, its
impact on the electric displacement Dj is obvious (Figure 6b vs. Figure 4d). For instance,
while Dj is small under weakly conducting conditions (Figure 4d), it is large and increases
its magnitude with increasing interface imperfection under the high conduction case.

Example 2. Effect of the functional gradient factor 1 on the static bending of the QC laminates.

This section mainly studies the influence of the functional gradient factor on the static
bending of CCCC PQC FG laminates under dielectrically weakly conducting conditions.
The QC laminate is made of three FG layers, with their pre-exponential properties (i.e., the
ones before the exponential factor in Equation (3)) the same as QC/C/QC in Example 1,
i.e., with three major layers. In this FG example, each major layer is uniformly divided into
ten sublayers. We also assume that while the middle C layer is homogeneous, the top and
bottom QC layer is FG with symmetric exponential distribution along the middle C layer.
The mechanical load acting on the upper surface is the same as in Example 1 with §* = 5.
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Figure 5. Variation of displacements and electric potential along thickness direction in QC/C/QC
laminates subjected to mechanical load under dielectrically highly conducting conditions with
different interface compliances 6*: (a) uj, (b) u3, (c) wj, (d) ¢*. Coordinates (x,y) = (0.25L7, 0.25L,).
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Figure 6. Variation of stresses and electric displacement along thickness direction in QC/C/QC
laminates subjected to mechanical load under dielectrically highly conducting conditions with

different interface compliances 6*: (a) 073, (b) D3. Coordinates (x,y) = (0.25L, 0.25L,).

Figure 7 shows the distribution of displacements and electric potential along the
thickness direction of FG laminates with different gradient factors. It can be seen from
Figure 7 that these quantities vary significantly as # ranges from —0.5 to 0.5. When 7 = —0.5,
the displacements on the top and bottom surfaces reach their maximum magnitude. Notice
further that all these field quantities are discontinuous on the interfaces due to the assumed
imperfection there. Figure 7d shows the electric potential ¢ has the largest magnitude in the
middle layer and its value is more sensitive than those in the top and bottom layers, even
though the middle layer is homogeneous. Figure 8 shows the distribution of stress and
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electric displacement along the thickness direction in FG laminates with different gradient
factors. It is observed from Figure 8 that with increasing thickness from the bottom layer
surface, the influence of the FG factor 7 increases. This feature could be related to the fact

that the mechanical load is applied on the top surface.
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Figure 7. Variation of displacements and electric potential along thickness direction in FG QC/C/QC
laminates subjected to mechanical load, with different functional gradient factors: (a) uj, (b) u3,
(c) wy, (d) ¢*. Coordinates (x,y) = (0.25L1, 0.25L;).
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Figure 8. Variation of stress and electric displacement along thickness direction in FG QC/C/QC
laminates subjected to mechanical load, with different functional gradient factors: (a) o33, (b) Hj;.
Coordinates (x,y) = (0.25L1, 0.25L5).

Example 3. Effect of electric load on the static bending of the QC laminates.
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In this example, we assume that an electric load is applied on the top surface of a
PQC laminate with a fixed gradient factor 77 = 0.5 and varying interface compliance 6*. The
electric load is the vertical electric displacement assumed as

D33 = Dy sin(pxl) Sin(qu), (45)

where Dy =1 C/m?.

Figures 9 and 10 show the variation of displacement (electric potential) and stress
(electric displacement) along the thickness direction of the FG QC/C/QC laminate, induced
by the surface electric displacement with different interface compliances (dielectrically
weakly conducting). It is observed from Figure 9 that the responses under the perfect
and imperfect interface conditions are completely different and that the effect of different
interface compliances is insignificant. Similar features can be also seen in Figure 10, where

the phonon and phason stresses are plotted.
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Figure 9. Variation of displacement and electric potential along the thickness direction of the FG

QC/C/QC laminates under the electric load with different interface compliances §* (dielectrically
weakly conducting) (a) u7, (b) ¢*. Coordinates (x,y) = (0.25L1, 0.25L5).
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Figure 10. Variation of phonon and phason stresses along the thickness direction of the FG QC/C/QC
laminates under the electric load with different interface compliances 6* (dielectrically weakly
conducting) (a) 073, (b) Hj3. Coordinates (x,y) = (0.25L1, 0.25L).

Example 4. Free and forced vibrations of the QC laminates.

The natural frequency is particularly important for the study of vibration problems.
Here we consider SSSS FG PQC laminates made of QC/C/QC with interface imperfection
characterized by the interface compliance * and functional gradience characterized by the
factor #. Similar to Example 2, the middle C layer is homogeneous, and the top /bottom
layers are FG with symmetric property distribution with respect to the middle plane of the
sandwich laminate. Table 2 lists the dimensionless natural frequency for different # and J*.
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It is observed from Table 2 that while the natural frequency is insensitive to # (increases
slightly with increasing ), it obviously decreases with increasing interface compliance 5*.

Table 2. Dimensionless natural frequencies of the sandwich SSSS FG PQC QC/C/QC for different
interface compliances J* and functional gradient factors 7.

6*=0 0*=25 6*=5 0*=75 6*=10

n=-05 1.3510 0.8549 0.7392 0.6865 0.6560
n=-025 1.3563 0.8564 0.7408 0.6883 0.6580
n=0 1.3616 0.8580 0.7425 0.6902 0.6599

7 =0.25 1.3670 0.8596 0.7442 0.6920 0.6619

n =05 1.3723 0.8612 0.7460 0.6940 0.6639

We now consider the forced vibration of the same PQC laminate but with fixed 77 = 0.5,
6* = 5. The mechanical dynamic load applied on the top surface is

033 = o sin(pxy) cos(qxy) exp(iwt), (46)

where o = —1 N/m?2.

Figure 11 shows the variation of the displacements and the eigenmodes along the
thickness direction of the sandwich laminate. While Figure 11a,c are for different loading
frequencies, Figure 11b,d are the corresponding dimensionless eigenmodes at the fixed
dimensionless natural frequency () = 0.7460. From Figure 11, the following features can
be observed: (1) the displacement variation is roughly antisymmetric with respect to
the middle plane of the sandwich; (2) at a fixed thickness value, the magnitude of the
displacement increases with increasing loading frequency in the top and bottom layers
when the loading frequency is less than the corresponding natural frequency. However,
these displacements change their signs when the loading frequency is larger than the
natural frequency; (3) the shape of the displacement at (2 = 0.8 is similar to that of the
eigenmode in Figure 11b,d.
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Figure 11. Variation of displacements along the thickness direction of the FG QC/C/QC FG laminates
under different loading frequencies (a,c), and dimensionless displacements at the natural frequency
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Q =0.7460 (b,d): (a) uj, (b) uj (natural frequency), (c) wy, (d) wj (natural frequency). Coordinates
(X,y) = (0.25L1, 025L2)

Figure 12 shows the variation of the stresses along the thickness direction, with
Figure 12a,c for different loading frequencies, Figure 11b,d for the corresponding dimen-
sionless eigenmodes at the fixed dimensionless natural frequency () = 0.7460. Comparing
Figure 12 with Figure 11, we observe that the variation trend for the stresses is similar to
that of the displacements. Namely, the three features listed for the displacement apply here
for the stress. Similar features can be also seen for the variation of the electric potential and
electric displacement along the thickness direction, as shown in Figure 13.
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Figure 12. Variation of stresses along the thickness direction of the FG QC/C/QC FG laminates under
different loading frequencies (a,c), and dimensionless stresses at the natural frequency Q2 = 0.7460 (b,d): (a)
0713, (b) 035 (natural frequency), (c) Hy;, (d) H3; (natural frequency). Coordinates (x,y) = (0.25L1, 0.25L).
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Figure 13. Cont.
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Figure 13. Variation of the electric potential and electric displacement along the thickness direction of
the FG QC/C/QC FG laminates under different loading frequencies (a,c), and dimensionless electric
potential and electric displacement at the natural frequency () = 0.7460 (b,d): (a) ¢*, (b) ¢* (natural
frequency), (c) D3, (d) D5 (natural frequency). Coordinates (x,y) = (0.25L1, 0.25L5).

6. Conclusions

In this paper, we have derived the static and dynamic response of a layered FG PQC
rectangular laminate with imperfect interfaces. SS-DQM is superior in modeling for QC
laminates with clamped or simply supported boundary conditions. Numerical examples
are presented to illustrate the impact of the interface compliance, functional gradient factor,
and load types on the responses of the QC laminate. The proposed analytical model can be
further extended to other QCs or piezoelectric materials. Our parametric studies show the
following features:

1. As the degree of imperfect connection at the interface increases, some physical quanti-
ties become discontinuous at the interface, such as displacements.

2. As the functional gradient factor changes, each physical quantity only changes its
numerical magnitude while keeping its variation trend.

3. An increase in the interface compliance would reduce the overall stiffness of the
laminates while an increase in functional gradient factor would enhance the stiffness.
The free vibration frequency will gradually increase as the interface compliance
decreases and the functional gradient factor increases.

4. The variation trends of the field quantities under different loading frequencies are
similar to that of the eigenmode shape at the natural frequency, which is near the
loading frequency.
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Appendix A
Appendix A.1. The State Equations in the Partial Differential Form Are

For the static problem, by substituting Equations (1) and (2) into Equation (4), we
obtained the specific form of the state equations, which are given in Equation (A1l). Then,
the state matrix D for static problem can be obtained by using Equation (6) in the text,
where all the coefficients used here can be found in Equation (A3).
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Appendix A.2. The State Equations for the Dynamic Problem

For the dynamic problem, by using the same procedue with the static one, substituting
Equations (1) and (2) into Equation (5), we obtained the specific form of the state equa-
tions, which are given in Equation(A2). And the state matrix D can be obtained by using
Equation (6) in the text, where all the coefficients used here can be found in Equation (A3).

ou; ___ dug

= ox, M ax + ax073,
% = au% a a,‘f + 12073,
duy _ _ayou _ ayduy a5 ag
gX3 - az 0xq asz dxp + a3au3 D3’
w
§x31 = ayHy3,
w:
. = a7Has,
B(P __ ag alll ag auz ag a9
3o = asom * oy T alnby
[0 [0 071
g = —pwiuy — GB — G, , , ,
31723_ mi au] _ auz _ au2
xy W “2+( “12 M3 ) Gxron, — 375,32 V)53 (A2)
Pwy 3 wz a4 9033 jL
+2014 355, —a? o2 a0 9%, T a3 om
oo _ _ ”1 m _ 3 ”1 1110 _ uy
o pw? ul a13 a + a1 + — 112 — M3 ) 3x70%,
_ wy &13‘733 ag 9D3
ﬂ14 a + ll14 a 2[114 axlaXZ ll3 ax1 as o0x1’
aH23 _ _ a l2 a wy a g~wy
= pw?w, — 2a14 axlaxz ﬂ14 o +a, T ax —M5GE T M55,
JoH 921 2w 2w
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E)D3 _ 60'23 81713

32
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Appendix A.3. The Exported Components and the Coefficients in Equations (A1) and (A2)

o = (a1 — 2 3% + (a2 — 32 ?ﬂg + a14 axl +ﬂ14%f22 + ko33 — 32 Ds,

o = (a1 — 2 3‘7‘} + (a1 — 72 Sﬁ; - 9114%x —ﬂ14%§]22 + o33 — g2 Ds,

012 = 011332 +0133Zf 0114?31,2 +a 4%%

Hy = 1114371 — a4 3x2 + 159 8x1 + a1 ?;Z;;

Hpp = ayy gx}) a4 3§§§ +aig %x; +a15 32’22

Hip = —6114E - 314E ta155,, 3X2 — a1 %ff (A3)
Hy = 4142 BXz + a1 Sil — a8 %xz + a5 %xl

Dy = — (a6 + 217) 32 + 1013,

Dy = —(a16 + a19) 9 + a102,

e 12 _ — _
m = g, 02 = ;.03 = e33 + C33833, a4 = ezres3 + Ci3(33, a5 = (33,6 = €33,

i _ _ 2 2 _
a7 = g;,a8 = Cazes1 — Cizess, a9 = Cz3, 10 = 2Cizeze33 + Ci3833 — Cazegy, ann = Cuy,

2
[
a1 = Cip,a13 = Cep, 114 = Ry, 015 = Ky, 416 = &2, a17 = G11, g = Ko, 419 = 82a.

Appendix A.4. The State Equations in the Partial Differential Form

For the static case, substituting general solutions Equation (9) into Equation (A1), we
obtain the state equations in the partial differential form as follows. For the dynamic case,

similarly, substituting Equation (9) into Equation (A2), the state equations for dynamic
problem can be obtained.

3%; = ng ﬂlaf + ax03,

gﬁg = —quz — a19¢ + ax023,

o= T Bgup + ZosDs,

%f; = ayHys,

%ng a7Hps,

a% = Z—gg% — quy + 2202 D3,

aa33 =qo23 — a?f )

0 (30— =) 3 — B — (20 - )44 (A9

+2a14qm — a1 aax — a14q° w2 — =qos3 + 22qDs,
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82 8w2 ay 3733 ag E)D3
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oHys _ ?%u 2,2 %w 2.2
= —2111451m — a1y ax% — A14q°U5 — 415 axz + a159°w3,
0His - d%up 2,2 duy
%, — Mg T U 20140 5 a15 4L a L+ ay5w3,
aD; __

9%¢ 2 9013
o = (16 + 017)@ — (a16 + a17)q°¢* + 111!1023 —a g

Appendix A.5. The State Equations under SSSS Boundary Conditions with Opposite Edge
Discretization

The state equations under SSSS boundary conditions with opposite edge discretization
are as follows, where the coefficients are given in Equation (A7).
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Appendix A.6. The State Equations under CCCC Boundary Conditions with Opposite Edge
Discretization

The state equations under CCCC boundary conditions with opposite edge discretiza-
tion are as follows, where the coefficients are given in Equation (A7).
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Appendix A.7. The Coefficients in Equations (A5) and (A6)

a1 = 35,0y = o, a3 = 33 + Caa8zs, a4 = eziess + Ciadas, a5 = a3, 46 = €33,

ay = 1<14,ﬂ8 Cases1 — Cisess, a9 = Caz, a10 = 2Ci3es1633 + C24833 — Caze3,,

a11 = Cy1,a12 = Cr2,m13 = Cep, 14 = Ry, 815 = Ky, 416 = %1017 =G11,m8 =G, (A7)
ay9 = Cy3, a20 = €31, Py jx = X(l)Xﬁ)rPN ik = Xl-(i;)xz(;,zrpik = Ppix + Pnjix,

Qujk = Yj(ll)Yl(;), Qnjk = Y](N Nk), Qjk = Qujk + Qnjk-
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