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Abstract: Zirconium-doped ceria is a promising and extensively researched catalytic material with
notable use in three-way catalytic converters, the oxidation of volatile organic compounds and solid
oxide fuel cells. In this work, pure and zirconium-doped ceria nanoparticles (Ce1−xZrxO2, where
x = 0, 0.1, 0.2, and 0.3) were prepared by combustion synthesis using glycine as the fuel and cerium
and zirconium nitrate as oxidants. The obtained powders were characterized using X-ray pow-
der diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, differential
thermal and thermogravimetric analysis, UV–Vis diffuse reflectance spectroscopy, and X-ray photo-
electron spectroscopy. The combustion temperature increases with the increase in zirconium content
in the samples, but the XRD patterns exclusively show ceria diffraction peaks. The crystallite sizes are
in the range from 25.2 to 11.7 nm, and do not vary substantially after thermal treatment, indicating the
good thermal stability of the prepared nanocatalysts. XPS analysis showed that the surface amount
of zirconium is lower than the nominal and that the ceria sample with 10 mol. % of zirconium has a
higher amount of oxygen vacancies than the 30 mol. % Zr-doped sample. The 10 mol. % Zr-doped
sample displays the best catalytic activity in the BTEX (benzene, toluene, ethylbenzene, and o-xylene)
oxidation process.

Keywords: ceria; nanocatalysts; combustion synthesis; solid solution; zirconium

1. Introduction

Ceria (CeO2) is an auspicious and widely applied catalytic material, owing to its
oxygen storage and release capacity originating from the reversible redox reaction between
Ce3+ and Ce4+ ions inside the ceria crystal lattice, as well as its thermal and mechanical
stability and reasonable price. The physicochemical properties of ceria can be further im-
proved by the introduction of defects, i.e., by replacing the cerium atom in the crystal lattice
of ceria with an atom of different radius or valence, which is known as doping. The doping
elements can be various transition or rare earth elements [1], among which zirconium
stands out as one of the most common and most researched dopants [2,3]. Zirconium-
doped ceria (CexZr1−xO2) solid solution shows improved oxygen mobility and oxygen
storage capacity, better thermal stability, and enhanced catalytic activity [2]. Therefore,
Zr-doped ceria has been extensively investigated for its application in supercapacitors [4],
where it was proven that Zr doping enhances the pseudocapacitive behavior of ceria; in
sensors [5]; as anticorrosion pigments in waterborne epoxy–polymer coatings [3]; and, most
importantly, in catalysis [6–11]. Comprehensive reviews of the various possible catalytic
applications of doped cerium oxide are given in the works of Trovarelli et al. [9,10] and
Montini et al. [11]. The well-established catalytic uses of CexZr1−xO2 are as a promoter in
three-way catalytic converters for the removal of pollutants stemming from the incomplete
combustion of gasoline in automobile engines and a catalyst for the oxidation of soot and
reduction of NOx in diesel engines [9,11]. Among the emerging catalytic applications, the

Crystals 2024, 14, 108. https://doi.org/10.3390/cryst14020108 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst14020108
https://doi.org/10.3390/cryst14020108
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0003-3773-000X
https://orcid.org/0009-0001-5496-5102
https://doi.org/10.3390/cryst14020108
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst14020108?type=check_update&version=1


Crystals 2024, 14, 108 2 of 16

catalytic oxidation of volatile organic compounds presents an important area of research
from the perspectives of environmental and human health protection [11,12]. Ceria is
usually used in combination with noble metals or in the form of mixed oxides. In case of,
e.g., methane, which is considered to be the most difficult to oxidize, pure ceria and mixed
oxides, such as CeO2-ZrO2 systems, displayed satisfactory conversion in the medium to
high temperature range, while the addition of noble metals shifted the conversion to lower
temperatures [11]. However, the goal is to achieve high conversion at lower temperatures
without the addition of noble metals or, at least, the addition of as little as possible. In other
words, the final goal is to make the abatement of VOCs an energy efficient and low-cost
process. Therefore, the choice of the correct catalyst, with a high specific surface area, good
catalytic activity, and thermal and mechanical stability, is crucial. The desired properties
can be achieved by choosing the right dopant, reducing the particle size to the nanoscopic
scale, and tuning the morphology of the prepared catalyst, which is directly linked to the
choice of the correct preparation method.

There are many available methods for the preparation of ceria nanoparticles, including
hydrothermal and solvothermal synthesis, the sol–gel method, mechanochemical synthesis,
precipitation method, spray pyrolysis, etc. [13]. Solution combustion synthesis (SCS) has
become a very attractive method for the preparation of nanomaterials in the last few
years because it involves a very simple and fast process that does not require complicated
equipment or expensive chemicals. Essentially, SCS is a self-sustained reaction between
oxidants (usually metal nitrates) and a fuel (such as urea, citric acid, different amino acids,
etc.), which are dissolved in water to form a saturated solution and heated until all the
water evaporates and the mixture self-ignites. This method enables the preparation of
nanosized metal oxide materials, often without the need for subsequent thermal treatment;
a uniform addition of small amounts of the doping agent; and a good control of the reaction
parameters, mainly through the fuel to oxidant ratio (F/O), which has a significant effect
on the properties (crystallite size, morphology, specific surface area, etc.) of the final
product [14]. The fuel to oxidant ratio is established by balancing reducing elements, with
valences that are considered positive, and oxidizing elements with negative valences. The
fuel and the oxidant both consist of oxidizing and reducing elements, which is why the
fuel to oxidant ratio is conveyed by elemental stoichiometric coefficients as the equivalence
ratio (φ), defined by the following equation:

φ =
nfuel ∑ stoichiometric coefficient × valence

−noxidant∑ stoichiometric coefficient × valence
(1)

where nfuel is the molar fraction of the chosen fuel and noxidant is the molar fraction of
metal salts used as oxidants. Metal cations, carbon, and hydrogen are regarded as reducing
elements with their respective valences, oxygen as an oxidizing element with a valence
of −2, and nitrogen as a neutral element with zero valence. When the equivalence ratio is
equal to 1, the mixture is stoichiometric and maximal energy is released; when it is <1, the
mixture is fuel lean; and when φ > 1, the mixture is fuel rich [15].

Even though zirconium-doped ceria is not a novel material, but rather a well-researched
and valuable catalyst, the improvement of its properties in order to match various appli-
cations is of utmost importance. Our group has perfected the combustion synthesis of
extremely porous and catalytically active nanomaterials, as well as catalyst supports using
glycine as the fuel and metal nitrates as oxidants [15,16]. Additionally, extensive work has
examined ceria-based nanocatalysts doped with various transition metals and prepared by
different synthesis methods, aimed at the oxidation of volatile organic compounds [17,18].
The present work is the result of this combined knowledge and is a thorough study of
nanocrystalline ceria catalysts doped with 10, 20, and 30 mol. % of zirconium prepared by
a simple and affordable solution combustion synthesis method. The prepared nanocata-
lysts, as well as samples thermally treated at 500 ◦C for 2 h, are characterized by various
techniques. Their catalytic activity is tested on the benzene, toluene, ethylbenzene, and
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o-xylene (BTEX) oxidation process. The results of this study provide new insights into the
morphology, thermal stability, and catalytic activity of zirconium-doped ceria nanocatalysts.

2. Materials and Methods
2.1. Synthesis

Pure ceria sample and ceria samples doped with 10, 20, and 30 mol. % of zirconium,
denoted CeO2, 10Zr:CeO2, 20Zr:CeO2, and 30Zr:CeO2, respectively, were prepared using
combustion synthesis with cerium nitrate hexahydrate, Ce(NO3)3·6H2O (p.a., Acros Or-
ganics, Geel, Belgium) and zirconium oxynitrate n-hydrate, ZrO(NO3)2·nH2O (p.a., Merck,
Germany) as oxidants, and glycine (p.a., Lachner, Neratovice, Czech Republic) as fuel. The
appropriate amounts of precursors were calculated based on equation 1 and placed in a
porcelain bowl with 10 mL of demineralized water. The aqueous mixture of precursors was
stirred at 300 rpm and 60 ◦C until the water evaporated and a viscous sludge remained.
The mixture was then relocated into a sand bath inside a fume hood; the temperature of the
sand bath was set to maximum (700 ◦C) and the temperature of the reaction mixture was
monitored with an IR pyrometer. After the combustion reaction, evidenced by an intense
yellow flame and the release of a large amount of gases, a fine yellow powder product of
low density remained. The yellow color became brighter as the amount of added zirconium
increases. The as-prepared samples were thermally treated at 500 ◦C for 2 h in order to gain
insight in the thermal stability of the samples and potential crystallization of impurities
or zirconium-based phases, as well as to prepare them for the catalytic activity test, since
500 ◦C is the maximum temperature expected to be reached during the tests, based on our
previous research regarding VOCs oxidation with the use of ceria-based nanocatalysts [18].

2.2. Characterization

The phase composition was determined by X-ray diffraction analysis (XRD) on a
Shimadzu XRD 6000 (Shimadzu, Tokyo, Japan) with CuKα irradiation, accelerating voltage
of 40 kV, and current of 30 mA. The XRD patterns were obtained in step scan mode in the
range between 10 and 105◦ 2θ, with 0.02◦ 2θ step and retention time of 0.6 s. The crystallite
size was calculated using the Scherrer equation based on the Bragg angle of the (220) ceria
diffraction peak, as described in reference [17]. The unit cell constant (a) of ceria cubic
structure was determined using the UnitCell program.

Fourier transform infrared spectroscopy (FTIR) was applied with the aim of identifying
phases and precursor residues that are not visible by XRD analysis. IR spectra were obtained
using the Bruker Vertex 70 FTIR spectrometer (Bruker Optics, Karlsruhe, Germany) in
attenuated total reflectance (ATR) mode in the range 4000–400 cm−1 with spectral resolution
of 2 cm−1 and an average of 32 scans.

Simultaneous differential thermal and thermogravimetric analyses (DTA-TGA) were
performed on a NETZSCH STA 409C thermal analyzer (Netzsch-Gerätebau GmbH, Selb,
Germany) by placing ~10 mg of the sample in a corundum crucible and heating it to 1000 ◦C
with a heating rate of 10 ◦C min−1 in a synthetic air flow of 30 cm3 min−1. Corundum was
used as a reference.

UV–Vis reflectance spectra (UV-Vis DRS) used for the determination of band gap val-
ues of prepared samples were acquired using an Ocean Insight QE Pro High-Performance
Spectrometer (Ocean Insight, Orlando, FL, USA)equipped with an integrating sphere for
reflectance. The Kubelka–Munk function, F(R), was calculated based on the obtained spec-
tra and further used in Tauc’s plot, [F(R)hν]1/2 vs. photon energy (hν), where ½ indicates
the indirect band gap, h is Planck’s constant, and ν represents the light frequency [19]. The
band gap values were determined by extrapolating the linear region of the attained curves
onto the abscissa.

The insight into morphology and elemental composition of the prepared samples
was obtained using the scanning electron microscope (SEM) Tescan Vega 3 Easyprobe
(Tescan, Brno, Czech Republic) with accelerating voltage of 10 kV equipped with an energy
dispersive X-ray spectroscopy (EDS) detector Bruker B-Quantax. Prior to analysis, the
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samples were fixed onto aluminum sample holders with double-sided carbon conductive
tape and coated with gold and palladium using Quorum SC 7620 sputter coater.

X-ray photoelectron spectroscopy (XPS) performed on a SPECS spectrometer (Specs-
group, Berlin, Germany) equipped with an Al monochromatized X-ray source emitting at
1486.74 eV (AlKα line) and a Phoibos MCD 100 electron analyzer was used to determine the
amounts of zirconium, cerium, and oxygen ions in the samples along with their oxidation
states. Mixed Gaussian–Lorentzian functions with Shirley background subtraction were
applied for the deconvolution of experimental curves in Fityk 1.3.1 software.

Physisorption data were acquired on a Micromeritics ASAP-2000 instrument (Mi-
cromeritics, Atlanta, GA, USA) at 77 K. The samples were degassed at 100 ◦C in a dynamic
vacuum of 7 mPa before the analysis to remove potential surface-adsorbed species. The
Barrett–Joyner–Halenda (BJH) method was used to calculate the pore size, while the specific
surface area was determined by the Brunauer–Emmett–Teller (BET) method.

The catalytic activity tests were performed in an integral up-flow fixed bed reactor
(I.D: 7 mm) at atmospheric pressure. A gas mixture of benzene, toluene, ethylbenzene,
and o-xylene (BTEX) in nitrogen (52.1 ppm of benzene, 52.4 ppm of toluene, 49.9 ppm of
ethylbenzene, and 55.4 ppm of o-xylene in nitrogen, Messer Croatia Plin d.o.o., Zaprešic,
Croatia) with a gas flow rate of 12 cm3 min−1 was used for model VOCs for the catalytic
oxidation process. First, 50 mg of the nanocatalyst powder was placed inside the reactor
between two quartz wool plugs with inert quartz inserts, which serve to preheat the gas
mixture before it enters the catalyst layer. The gas flow rates were adjusted by mass flow
controllers (MFC 4800 Series, Brooks, Hatfield, PA, USA), while the reactor temperature was
regulated by a thermo-controller (TC208 Series). An on-line gas chromatograph (GC-2014,
Shimadzu, Tokyo, Japan) with a flame ionization detector (FID) and an RTX-WAX column
(1 µm) was employed for ascertaining the BTEX concentration in the reactor.

3. Results and Discussion

As was mentioned, the reaction mixture temperature was monitored with an IR
pyrometer and the results are shown in Figure 1. When the temperature is high enough
to initiate a spontaneous combustion reaction, an intense increase in temperature can be
observed. It can also be seen that the maximum temperature of the combustion process
increases with an increase in the amount of zirconium doping, and the highest combustion
temperature (896 ◦C) is recorded for the reaction mixture containing 30 mol. % Zr. The
reaction is highly exothermic and very fast, as evidenced by the sudden drop in temperature
after the maximum is reached, which signifies the completion of the reaction. Oscillations
in the temperature before the start of the combustion reaction are caused by directing the
targeting beam of the IR pyrometer at the bubbles that are formed during the heating of the
reaction mixture. Regarding the ignition time, it is not possible to observe a trend because
the ignition depends on the amount of residual water at the moment when the mixing is
stopped, the reaction mixture transferred to the sand bath, the position of the porcelain
bowl in the sand bath, and the configuration of the foil with which the container is covered
in order to prevent excessive sample loss. The synthesis of the pure ceria sample seemed
the most violent, with an intense flame, even though the maximum temperature was the
smallest, and the final product consisted of yellow, light, and porous flakes that were
crushed into powder. The combustion reactions of zirconium-doped samples were less
intense, but the final product was similar in appearance, except for the sample 30Zr:CeO2,
which consisted of light-yellow sheets.
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indicates a change in unit cell constant values with the addition of zirconium. Figure 2b 
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zirconium doping amount. An almost-perfect linear dependence indicates that the 
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Figure 1. Temperature vs. time curves for all samples.

Due to the extreme similarity of XRD patterns of as-prepared and thermally treated
samples, only XRD patterns of thermally treated samples are shown in Figure 2a. It can be
seen that they consist solely of ceria diffraction peaks (ICDD PDF-2 34-0394). No zirconium-
based phases are visible, even at the highest doping amount, neither for the as-prepared
nor thermally treated samples, indicating that zirconium is incorporated into the ceria
crystal lattice, forming a solid solution. The crystallite sizes listed in Table 1 show a clear
decreasing trend with increasing zirconium doping amount, signifying a positive influence
of zirconium on this property of ceria nanocatalysts. The reduction in crystallite size is
particularly pronounced when comparing the undoped ceria sample with the 10 mol. %
Zr-doped sample, while the differences between the doped samples are much smaller. This
indicates that the increase in Zr amount after 10 mol. % does not dramatically affect the
crystallite size.
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Table 1. Crystallite sizes (L) and band gap values (Eg) of as-prepared samples, as well as crystallite
sizes (L500◦C/2h), unit cell constants (a), specific surface areas (SBET), average pore diameters, and
cumulative adsorption pore volumes of thermally treated samples.

CeO2 10Zr:CeO2 20Zr:CeO2 30Zr:CeO2

L, nm 25.2 ± 0.9 13.7 ± 0.3 12.4 ± 0.3 11.7 ± 0.3
Eg, eV 2.59 2.62 2.52 2.43

L500◦C/2h, nm 30.5 ± 1.2 14.2 ± 0.4 14.3 ± 0.4 11.4 ± 0.3
a, Å 5.40 ± 0.0001 5.38 ± 0.0001 5.36 ± 0.0001 5.34 ± 0.0001

SBET, m2 g−1 30.1 36.8 36.6 29.3
Average pore diameter, nm 10.9 11.4 12.3 13.1

Cumulative adsorption pore volume, cm3 g−1 0.092 0.134 0.125 0.110

Another occurrence observed on the XRD patterns is a small but noticeable shift in the
peaks to higher angles with the increase in the zirconium doping amount, which indicates
a change in unit cell constant values with the addition of zirconium. Figure 2b shows the
dependence of the unit cell constant (a) of ceria cubic crystal structure, calculated based
on the fitting results of all obtained peaks in the XRD spectra, on the zirconium doping
amount. An almost-perfect linear dependence indicates that the obtained samples abide by
Vegard’s law, an empirical rule according to which the unit cell constant of a solid solution
of two components is approximately equal to the weight average of the unit cell constants
of the specified components at the same temperature [20]. This is a proof of a solid solution
formation, or more precisely, of substitutional doping of Zr in the ceria crystal lattice, since
the replacement of larger Ce4+ (97 pm) with smaller Zr4+ (84 pm) is expected to cause a
reduction in the crystal lattice [7].

The crystallite sizes of thermally treated samples are very similar to the as-prepared
samples, pointing out the positive influence of zirconium on ceria thermal stability. This
is especially true for the 30 mol. % Zr-doped sample, for which the crystallite size, when
including the error of the Scherrer method, stays practically the same after thermal treat-
ment. The thermal stability of a catalyst is a very important factor in catalytic processes,
because it directly affects its catalytic activity and specific surface area; thus, these results
are very auspicious.

The FTIR spectroscopy results of as-prepared samples displayed in Figure 3 show
bands corresponding to vibrations in metal–oxygen bonds present in all samples in the
fingerprint region to 600 cm−1. The bands between 1300 and 1700 cm−1 encompass
the bands for nitrate residues, as well as glycine and organic residues, indicating that
the reaction is not complete, i.e., that there are remnants of precursors and combustion
products present in the samples. However, these bands are not pronounced, but rather
broad and faint, which suggests that these remnants are present in a small amount. The
indistinct band at around 2300 cm−1 belongs to carbon dioxide adsorbed on the surface
of the samples, while the faint, broad band between 3200 and 3700 cm−1 is characteristic
of the stretching of O-H bonds in water molecules [21,22]. Samples obtained through
combustion synthesis usually have considerable specific surface area, so the presence of
adsorbed species, such as water and carbon dioxide, is quite common. The FTIR spectra of
thermally treated samples (not shown in this paper) are quite similar to the as-prepared
samples, but with decreased intensity of nitrate, organic, and water-related bands, which is
to be expected as a consequence of thermal treatment.
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Figure 3. FTIR spectra all as-prepared samples.

Differential thermal and thermogravimetric analyses were performed to shed light
on thermal properties and stability of prepared samples. The results are presented in
Figure 4a,b. The pure ceria sample and 20Zr:CeO2 sample show the largest total mass
losses, of ~2.85%. The 10Zr:CeO2 exhibits a slightly smaller total mass loss of 2%, while
the sample 30Zr:CeO2 exhibits a small mass loss (~0.37%) below 100 ◦C, which is followed
by continuous mass gain (~2.25%) to 1000 ◦C. A small mass loss below 100 ◦C, present
in all samples (Figure 4a) and followed by a small endothermic peak on the DTA curve
(Figure 4b), corresponds to the loss of water and other volatile adsorbed species [23–25].
All samples except 30Zr:CeO2 show the greatest mass loss in the range between 150 and
350 ◦C, after which the mass remains unchanged. The pure ceria sample shows two
exothermic peaks in this region centred at ~170 and ~274 ◦C, while 10 and 20 mol. %
Zr-doped samples display only one peak at ~310 ◦C. According to literature [24], this
mass loss can be attributed to the decomposition of organic matter, the decomposition
of reactants that did not react during combustion synthesis, and the burning of gaseous
decomposition products.
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The 30 mol. % Zr-doped ceria sample differs from pure and other doped samples.
Namely, the combustion process of that sample was the least intense and resembled
smouldering rather than burning. A powder of extremely low density was also obtained,
and the very morphology of that sample is different compared to the others, as will be
shown below. The preparation of the 30Zr:CeO2 sample for thermal analysis was a problem
precisely due to the low density, and the sample had to be well pressed into the crucible so
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that it would not fly out during the analysis. Mass increase during DTA-TGA analysis in
the air atmosphere is most often a consequence of an oxidation process; however, in this
case, the only possible process is the oxidation of Ce3+ to Ce4+, and the XPS analysis shows
that the sample with 10 mol. % Zr has more Ce3+ ions on the surface and still does not show
an increase in mass. Therefore, a different explanation had to be sought. Repeated analyses
showed that the more the sample is pressed into the crucible, the smaller the increase in
mass, which indicates that the mass gain is most likely a consequence of buoyancy. When
gas is introduced into the chamber, the sample experiences a buoyant lift according to
Archimedes’ principle. As the temperature rises, the gas becomes less dense, making the
buoyant lift less pronounced, and the sample starts moving downward, which is registered
as weight gain [26].

SEM images of all as-prepared samples are shown in Figure 5. It can be observed
that the samples CeO2, 10Zr:CeO2, and 20Zr:CeO2 contain particle agglomerates with
a sea-wave foam-like, extremely porous morphology. Sample 30Zr:CeO2 also exhibits a
porous morphology, but with sponge-like particle agglomerates. The porous microstructure
is caused by the formation of gases during the synthesis.
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Figure 6 shows the distribution of individual elements in the zirconium-doped as-
prepared samples, as well as sample 30Zr:CeO2 that was thermally treated at 500 ◦C for
2 h. The distribution of Ce, O, and Zr ions is mostly homogeneous throughout the samples,
especially taking into account the porosity of the samples, which makes the EDS map
appear disordered. It can also be observed that the amount of Zr increases with the increase
in the nominal amount.

The UV-Vis DRS spectra (Figure 7) show that all samples exhibit high reflectance in the
visible region, a decrease in reflectance at the transition from the visible to the UV region,
and high absorbance in the UV region. It can be seen that the reflectance values in the
visible region exceed 100%, which should be impossible. There are several possible reasons:
contamination of the standard, a too-smooth sample surface resulting in a noticeable
proportion of specular reflection, and the fact that cerium is a lanthanide that can exhibit
luminescence. In our case, the latter two reasons are the most likely.

Even though ceria is usually considered a direct semiconductor, the Tauc plot for direct
transitions did not result in a linear region that could enable a valid determination of the
band gap. Therefore, only indirect band gap values obtained from the Tauc plot are listed
in Table 1. The band gap value listed in the literature for both direct and indirect transitions
is ~3.19 eV for bulk ceria and is slightly increased in the case of CeO2 nanoparticles due to
the quantum confinement effect [27,28]. The band gap values of all samples in this work
are much smaller than the literature value (Table 1): the band gaps of pure and 10 mol.
% Zr-doped CeO2 are very similar, and then a decline is observed with an increase in
zirconium doping amount. The redshift instead of a blueshift in the band gap of pure ceria
nanoparticles is most likely the consequence of Ce3+ ions on the surface of the nanoparticles,
as well as oxygen defects, which instil defect energy states between the valence and the
conduction band [29,30]. In case of zirconium-doped samples, a decrease in band gap with
an increase in zirconium doping is often reported in the literature and explained by the
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hybridization of empty Zr4d orbital with the Ce4f orbital, which results in a broadening
of the conduction band and a narrowing of the band gap [2,7,31]. Nevertheless, the
band gap values of zirconium-doped ceria samples are unprecedentedly small, which is
beneficial for a potential use in photocatalysis since visible light could be used for excitation.
However, the activity of a photocatalyst depends on multiple factors, which is why further
experiments are necessary to assess their suitability for photocatalytic application.

XPS analysis was performed on two representative samples (10Zr:CeO2 and 30Zr:CeO2)
with the aim of determining the relative abundance of the elements on the surface of the
samples, their chemical states, and surface oxygen species. The Ce 3d spectra of both
samples with assigned deconvoluted peaks are displayed on Figure 8. The spectra show the
presence of cerium in two oxidation states: the peaks denoted as v0, v′, u0, and u′ belong to
the Ce3+ ion, while the peaks marked as v, v′′, v′′′, u, u′′, and u′′′ are associated with Ce4+.
The letters u and v designate the spin–orbit coupling 3d3/2 and 3d5/2, respectively [32].
The intensity of Ce3+ peaks is higher in the 10Zr:CeO2 spectrum, which is reflected in the
Ce3+ and Ce4+ shares calculated from the deconvoluted peaks areas (Table 2). As can be
seen in Table 2, the Ce3+ share in the sample with 10 mol. % Zr is twice as high as the share
of the same ion in the sample with 30 mol. % Zr. This complements the DTA-TGA results
well, because the final mass gain in the 10Zr:CeO2 can be assigned to the oxidation of Ce3+

into Ce4+.
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Table 2. Molar fractions of cerium, oxygen, and zirconium at the surface of investigated as-prepared
samples, as determined from XPS spectra.

10Zr:CeO2 30Zr:CeO2

Ce3+ (mol. %) 24.5 11.2
Ce4+ (mol. %) 75.5 88.8

Lattice oxygen (mol. %) 89.9 93.6
Low coordination oxygen

(mol. %) 11.1 6.4

Zr (mol. %) 3.9 13.0

The O 1s XPS spectra of the analyzed samples are shown in Figure 9. Two peaks can
be observed on the spectra of both samples: the first, main peak at 530 eV and the second,
shoulder peak at ~533 eV. The main peak is assigned to ceria lattice oxygen, while the
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shoulder is attributed to low coordination oxygen, i.e., oxygen adsorbed on the surface
or present in surface hydroxyl groups or carbonate species, as well as oxygen ions in the
oxygen-deficient regions near oxygen vacancies [33–35]. The intensity of both peaks is
again higher for the 10 mol. % Zr-doped ceria sample. The higher share of low coordination
oxygen, as given in Table 2 and calculated from respective peak areas, indicates a higher
share of oxygen defects in this sample, which is beneficial from the point of view of potential
catalytic applications.
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The Zr 3d spectra are presented in Figure 10. Two peaks can be observed for both
samples: the first at ~182 eV and the second at ~184.5 eV, which correspond to Zr 3d5/2 and
Zr 3d3/2, respectively [36]. Both peaks are attributed to Zr4+ ions. The amount of zirconium
on surface of the samples (Table 2) is lower than nominal and amounts to about 40% of the
nominal share for both analyzed samples. Such a discrepancy between the nominal and
actual amount of Zr on the surface of the samples is proposed by Koleva et al. [37] to be the
consequence of the preference of zirconium ions to elude surface positions in ceria systems.
This can originate from the difference in the ionic radius of Ce4+ and Zr4+ cations. The
smaller Zr4+ ions tend to avoid the outer layer of ceria nanoparticles and instead occupy
inner positions in a manner similar to smaller metal atoms preferring internal positions in
bimetallic alloys. Additionally, the smaller ionic radius of the zirconium cation results in
a stronger electrostatic field around it, so the zirconium cations are preferentially located
inside where they can be better saturated, while the cerium ions with a weaker electrostatic
field prevail at the surface where they are less surrounded by oxygen ions [37]. A similar
effect arising from the difference in ionic radius was observed by Vari et al. in their study
on the growth of cobalt on an ultrathin CeO2(111) film; the results of the XPS analysis show
that the diffusion of smaller Co2+ ions into the ceria lattice occurs, and that it is even more
pronounced at higher temperatures [38].
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The nitrogen adsorption–desorption isotherms of all thermally treated samples are
displayed in Figure 11. According to IUPAC classification, the isotherms of all samples
belong to type IV with H3 hysteresis loops, which are usually associated with mesoporous
materials with pore sizes between 2 and 50 nm, implying the formation of particulate
aggregates [39,40]. The average pore sizes listed in Table 1 confirm that these are indeed
mesoporous materials. The average pore diameter increases with an increase in the amount
of the zirconium doping. Conversely, the specific surface area values do not follow a
particular trend, but can rather be divided into two groups: samples CeO2 and 30Zr:CeO2
have similar, smaller SBET values around 30.0 m2 g−1, while samples 10Zr:CeO2 and
20Zr:CeO2 have higher specific surface areas around 36.7 m2 g−1. The specific surface
area values are in the typical range for metal oxides prepared by solution combustion
synthesis [41]. The cumulative pore volumes listed in Table 1 might serve as an explanation
to the unusual grouping of the samples regarding SBET values. The cumulative pore
volumes for samples 10Zr:CeO2 and 20Zr:CeO2 are noticeably higher than for samples
CeO2 and 30Zr:CeO2, indicating a higher porosity of these samples, which results in a
higher specific surface area. In turn, higher specific surface area signifies that there are
more catalytically active sites available for reaction, so the catalytic activity of these samples
should be higher [42].

The thermally treated catalysts were tested in the process of the catalytic oxidation
of VOCs. The mixture of benzene, toluene, ethylbenzene, and o-xylene was chosen as
a model of VOCs. The reaction was carried out up to a temperature of 400 ◦C. The
temperatures corresponding to 90% conversion for each of the samples and volatile organic
compounds are shown in Figure 12. The 10Zr:CeO2 sample is undoubtedly the most
catalytically active, achieving 90% conversion of all volatile organic compounds at the
lowest temperatures. It is followed by the 20Zr:CeO2 sample, which also achieves the
conversion of all analyzed compounds, but at higher temperatures. In the case of the
undoped and 30 mol. % Zr-doped sample, 90% conversion of benzene could not be
achieved in the studied temperature range. The undoped sample reaches 86% conversion
at 400 ◦C, while the 30 mol. % Zr-doped sample barely reaches 40% conversion at the same
temperature. Furthermore, the 30Zr:CeO2 sample shows the lowest catalytic activity in
the BTEX oxidation process, requiring significantly higher 90% conversion temperatures
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than for any other sample. As for the conversion of individual volatile organic compounds,
the catalytic activity of the studied catalysts increases in the order of benzene < toluene <
ethylbenzene < o-xylene, which can be attributed to the decreasing stability of the benzene
ring with the addition of substituents. Namely, the benzene ring is very difficult to oxidize
due to its high symmetry and stability. The addition of substituents like methyl and
ethyl groups has a considerable influence on the π electronic structure, as well as charge
density distribution, thereby disrupting the aforementioned stability and symmetry, and
facilitating the oxidation of such molecules at lower temperatures [43]. The oxidation of
volatile organic compounds is a complex process, with various possible intermediate phases,
and would require measurements of the concentration of possible products in the output
stream. Unfortunately, our system can only measure the concentration of the reactants in
the output stream, so further discussion on this matter is futile. However, what can be
discussed is the properties of the prepared catalysts in regards to their catalytic activity. The
catalytic activity of a catalyst depends on multiple factors, such as its structure, chemical
composition, specific surface area, porosity, presence of defects, etc. [44]. Throughout this
investigation, the 10Zr:CeO2 sample has shown the most promising characteristics of a
good catalyst: small crystallite size, good thermal stability, largest specific surface area,
porous morphology, high share of Ce3+ ions, and low coordination oxygen indicating the
presence of oxygen vacancies, which indeed resulted in the best catalytic activity among all
of the prepared catalysts. Ramos-Fernandez et al. studied the CO2 reduction process on
doped cerium oxide as a catalyst, and they found out that CeO2 doped with 10 mol. % of
Zr has a higher rate of oxygen release due to the lower activation energy of this process
(162 kJ mol−1) compared to pure CeO2 (235 kJ mol−1) [45]. However, it would seem that
a nominal Zr doping amount higher than 10 mol. % results in the gradual decrease in
catalytic activity, meaning that 10 mol. % is the optimal zirconium doping amount.
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extremely porous morphology. The XRD, EDS, and XPS results confirm that substitutional
doping of Zr in the ceria crystal lattice, i.e., the formation of a solid solution, occurs
for all of the doped samples. Furthermore, zirconium-doped samples show superior
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oxidation process, exhibiting the lowest 90% conversion temperatures for all analyzed
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