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Abstract: During our nanomineralogical investigation of melt inclusions in corundum xenocrysts
from the Mount Carmel area, Israel, seven new oxide and alloy minerals have been discovered
since 2021. Herein, we report toledoite (TiFeSi; IMA 2022-036), a new alloy mineral. Toledoite
occurs as irregular crystals 2–16 µm in size, with gupeiite (Fe3Si), jingsuiite (TiB2), ziroite (ZrO2),
osbornite (TiN), xifengite (Fe5Si3), and naquite (FeSi) in corundum Grain WG1124E-1. Toledoite has
an empirical formula (Ti0.83Cr0.07Mn0.06V0.02)(Fe0.96Mn0.04)(Si0.99P0.04) and an orthorhombic Ima2
TiFeSi-type structure with the following cell parameters: a = 7.00(1) Å, b = 10.83(1) Å, c = 6.29(1) Å,
V = 477(1) Å3, Z = 12. Toledoite is a high-temperature alloy phase, formed under extremely reduced
conditions in melt pockets in corundum xenocrysts derived from the upper mantle beneath Mount
Carmel in Israel. The name was given in honor of Vered Toledo, of Shefa Gems Ltd. for her support
and for providing corundum xenocrysts from the Mount Carmel region for this investigation of
new minerals.

Keywords: toledoite; TiFeSi; new mineral; corundum; Mount Carmel; Israel

1. Introduction

Mineral assemblages containing super-reduced phases (formed in low oxygen fugaci-
ties below the iron–wüstite buffer) are commonly associated with explosive volcanic events.
These include kimberlites, alkali basalts, and tholeiitic basalts, as well as in ophiolites linked
to deep subduction along continental plate margins [1–4]. In volcanic localities, super-
reduced phases are frequently found as inclusions within xenoliths composed of corundum
aggregates. The relationships between these different phases within melt inclusions have
been crucial in comprehending the genesis of super-reduced magma-fluid systems [4].

We have studied the mineralogy of crystals down to nanoscale in melt inclusions in
corundum xenocrysts coming from volcanic centers and associated alluvial deposits in
the Mount Carmel area, Israel. Since 2021, we have identified seven IMA-approved new
minerals: griffinite (Al2TiO5), magnéliite (Ti3+

2Ti4+
2O7), ziroite (ZrO2), sassite (Ti3+

2Ti4+O5),
mizraite-(Ce) (Ce(Al11Mg)O19), toledoite (TiFeSi), and yeite (TiSi) [5]. Reported here is
toledoite; we will also provide additional information on the origin and stability of reduced
high-temperature minerals from the upper mantle.

Natural iron silicides are found as components of fulgurites, planetary materials, in
meterorites and interstellar dust. For example, xifengite (Fe5Si3) is found with the reduced-
oxide minerals tistarite (Ti2O3) and kaitianite (Ti3+

2Ti4+O5) in the matrix of the Allende
meteorite—the largest known carbonaceous chondrite, which formed under reducing
conditions in the solar nebula [6].
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Toledoite (IMA 2022-036) is a new mineral. Its chemical formula is TiFeSi, and it
exhibits an Ima2 TiFeSi-type structure. The name is in honor of Vered Toledo (b. 1968), of
Shefa Gems Ltd. for her support and for providing corundum xenocrysts from the Mount
Carmel region for this investigation of new minerals. The type of toledoite is included in
corundum grain WG1124E-1, which is part of Mount Carmel mount WG1124E. The mount
was deposited in the mineralogy collection of the Università degli Studi di Milano, Via
Mangiagalli, 34 - 20133 Milano, Italy under registration number MCMGPG-H2021-006.

2. Materials and Methods

The samples of this study are corundum xenoliths found to occur in the pyroclastic
ejecta coming from small cretaceous basaltic volcanoes exposed on Mount Carmel (Figure 1)
and in placer gemstone deposits in the terraces of the Paleocene to Pleistocene proto-Kishon
river. The modern Kishon River and its tributary Mizra river now drain Mount Carmel
and the adjacent Yisre’el Valley, and the Kishon River enters the sea near Haifa in northern
Israel. U-Pb dating of super-reduced minerals in the corundum aggregates [4] indicates
that much of the xenolith material in the paleoterrace placer deposits was derived from
Miocene to Paleocene basalts outcropping in the Yisre’el Valley.
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meltazite and other super-reduced phases in the corundum aggregates, which shows a 
pa ern of age distribution (Paleocene to Miocene, Cretaceous and older) that is consistent 
with zircon dating [14] of the volcanic rocks thought to be the immediate sources of the 
super-reduced phases [5]. It is clear from these data, as well as the geological context, that 
the Mount Carmel material was not produced by human beings. 
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Figure 1. (a) Black massive pyroclastic rocks cropping out in Vent #1 of the Rakefet magmatic complex
on Mount Carmel; a geological hammer used for scale. Country rock limestones are occasionally
included as white clasts. (b) A closer view of massive pyroclastics in the Rakefet magmatic complex;
a knife used for scale.

The studied grain was separated from a 400-tonne bulk sample of a basal paleo-
placer deposit of the Paleocene–Pleistocene paleo-Kishon River (BS1124; coordinates:
35.106E/32.685N). The xenoliths can be described as aggregates of skeletal corundum
crystals containing melt pockets in which the reduced mineral assemblages are found [4].

Recently, the genesis of the super-reduced phases has been the subject of discussion,
with several authors arguing for an anthropogenic origin [7–11]. Unfortunately, the authors
of these papers have chosen to ignore the extensive geological and geochemical evidence
for the natural origin of the Mount Carmel xenolith material. This evidence has been
summarized in detail in [12,13]. The latter reference presents U-Pb dating of carmeltazite
and other super-reduced phases in the corundum aggregates, which shows a pattern of age
distribution (Paleocene to Miocene, Cretaceous and older) that is consistent with zircon
dating [14] of the volcanic rocks thought to be the immediate sources of the super-reduced
phases [5]. It is clear from these data, as well as the geological context, that the Mount
Carmel material was not produced by human beings.

For the characterization of the sample, we used an electron probe microanalyzer
(EPMA) and a field-emission scanning electron microscope (SEM) equipped with an X-ray
energy-dispersive spectrometer (EDS) and a detector for electron backscatter diffraction
(EBSD), which allowed us to characterize both the composition and the structure of toledoite
and associated phases. The instruments used for these analyses were a ZEISS 1550VP Field-
Emission SEM (ZEISS Group, Oberkochen, Germany) equipped with an Oxford X-Max
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EDS, which was used for back-scatter electron (BSE) imaging and fast elemental analysis.
For quantitative WDS elemental microanalyses of toledoite, we used a JEOL 8200 EPMA
(JEOL Ltd., Tokyo, Japan) (15 kV and 10 nA, focused beam) interfaced with the Probe for
EPMA program from Probe Software, Inc. (Eugene, OR, USA). The focused electron beam
was ~150 nm in diameter. Quantitative WDS analyses were processed with the CITZAF
matrix correction procedure. Analytical results are given in Table 1.

Table 1. EPMA analytical results (in wt%, n = 12) for toledoite.

Constituent Mean Range SD Probe Standard

Fe 40.47 39.92–41.17 0.37 Fe metal

Ti 29.94 29.39–30.84 0.47 Ti metal

Si 20.83 20.29–21.29 0.25 Si metal

Mn 3.96 3.69–4.14 0.11 Mn2SiO4

Cr 2.73 2.54–2.91 0.10 Cr metal

V 0.77 0.71–0.85 0.04 V metal

P 0.82 0.71–1.24 0.17 GaP

Total 99.52

Due to the small size of the crystal, conventional X-ray studies could not be carried out.
Therefore, EBSD analyses at a submicrometer scale were carried out, as in other previous
studies of new minerals [5], by using an HKL EBSD system mounted on the ZEISS 1550VP
SEM. Operation conditions were 20 kV and 6 nA in focused-beam mode using a 70◦ tilted
stage, and in variable-pressure mode (25 Pa). A single crystal of silicon was used for
calibration of the EBSD system. Structural correspondence was obtained and cell constants
were derived by matching the experimental EBSD patterns with those obtained from the
structures of synthetic Ti-Fe-Si, Ti-Si, and Fe-Si phases available in the ICSD.

Because of the very small size of the crystals, the determination of most of the physical
properties (optical, hardness, fracture, cleavage, habit, density, etc.) was impracticable
without risking destruction of the material.

3. Results

Toledoite occurs with gupeiite (Fe3Si) [15], jingsuiite (TiB2) [16], ziroite (ZrO2) [5],
osbornite (TiN) [17], xifengite (Fe5Si3) [15], and naquite (FeSi) [18] in melt inclusions in
corundum grain WG1124E-1 (Figure 2). Ti-bearing xifengite and osbornite are also present
in the Allende meteorite [6]. Other inclusions in this corundum grain contain an Allende-
like Ti,Al,Zr-oxide [6], khamrabaevite (TiC), spinel, grossmanite-kushiroite-diopside, and
Ce-silicate. Toledoite has been found as anhedral crystals (size: 2–16 µm). It is opaque and
black in color.

Chemical data (Table 1—electron probe microanalyses) point to the empirical formula
(based on three atoms’ pfu) of (Ti0.83Cr0.07Mn0.06V0.02)(Fe0.96Mn0.04)(Si0.99P0.04). The sim-
plified formula can be written as (Ti,Cr,Mn)(Fe,Mn)Si. The ideal formula is TiFeSi, which
requires Ti 36.32, Fe 42.37, Si 21.31, and a total 100 wt%.

The EBSD patterns obtained for toledoite are best indexed by using the orthorhombic
Ima2 TiFeSi-type structure and match the cell known for synthetic TiFeSi [19] (Figure 3),
with a mean angular deviation of 0.33–0.36◦. The following cell parameters have been
obtained: a = 7.00(1) Å, b = 10.83(1) Å, c = 6.29(1) Å, V = 477(1) Å3, Z = 12. A calculated
density of 5.53 g·cm−3 is obtained by using the empirical formula and the unit cell volume
estimated from EBSD data. Powder Cell version 2.4 was used to calculate X-ray powder
diffraction data (Table 2, in Å for CuKα1, Bragg–Brentano geometry) from the unit cell
parameters reported above, the crystallographic data of synthetic TiFeSi [19], and the
empirical formula.
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Figure 3. (left) EBSD patterns of two toledoite crystals in Figure 2, and (right) the patterns indexed
with the Ima2 TiFeSi-type structure. The blue cross is pattern center. The diffraction bands in the
green circle were used for indexing.

Table 2. Calculated X-ray powder diffraction data for toledoite (Irel > 1). The strongest lines in the
powder X-ray diffraction pattern are in bold.

h k l d [Å] Irel

1 1 0 5.8789 1
0 1 1 5.4392 6
0 2 0 5.4150 3
1 2 1 3.5402 1
2 0 0 3.5000 5
0 0 2 3.1450 3
0 3 1 3.1310 5
2 1 1 2.9433 7
2 2 0 2.9394 4
0 2 2 2.7196 3
0 4 0 2.7075 1
1 4 1 2.3434 1
2 0 2 2.3393 44
2 3 1 2.3335 100
3 1 0 2.2810 4
1 3 2 2.2460 3
2 2 2 2.1475 89
2 4 0 2.1415 38
1 5 0 2.0692 4
0 1 3 2.0585 36
0 4 2 2.0519 33
0 5 1 2.0480 34
3 2 1 2.0284 8
3 3 0 1.9596 2
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Table 2. Cont.

h k l d [Å] Irel

1 2 3 1.8831 2
3 1 2 1.8465 4
0 3 3 1.8131 17
0 6 0 1.8050 8
2 1 3 1.7743 12
2 4 2 1.7701 12
2 5 1 1.7676 11
4 0 0 1.7500 36
3 4 1 1.7016 1
1 6 1 1.6840 1
3 3 2 1.6632 2

In the structure of toledoite, each Fe atom forms four bonds with adjacent Si atoms
creating layers of two different FeSi4 distorted tetrahedra (<Fe1-Si> = 2.374 Å, distortion
parameter in the sense of [20], D = 0.01342, and <Fe2-Si> = 2.405 Å, D = 0.00628) with Ti
atoms present in the empty cavities between them (Figure 4a,b). Ti is five-fold coordinated
with Si atoms, forming three different TiSi5 distorted square pyramids (<Ti1-Si> = 2.606 Å,
D = 0.02593, <Ti2-Si> = 2.572 Å, D = 0.00459 and <Ti3-Si> = 2.575 Å, D = 0.00620) that
share edges among them and with FeSi4 tetrahedra. The FeSi4 tetrahedra share edges and
apexes, thus forming (Fe6Si14)∞ chains extending along [100] (Figure 4c). The union of
these chains by sharing apexes builds a three-dimensional framework. Toledoite has a
very different structural topology than the other natural titanium ferro-silicide, zangboite
(TiFeSi2 [21]), found in Luobusha, Tibet, China. In zangboite, iron is bonded to 6 Si atoms
in very distorted FeSi6 octahedron (<Fe1-Si> = 2.3646 Å, distortion parameter D = 0.01009,
and <Fe2-Si> = 2.3854 Å, distortion parameter D = 0.02728), while Ti is seven-fold coordi-
nated with Si in distorted TiSi7 caped octahedra (<Ti1-Si> = 2.691 Å, distortion parameter
D = 0.01806, and <Ti2-Si> = 2.6534 Å, distortion parameter D = 0.01397). In zangboite,
FeSi6 octahedra share a face and edges and form three-octahedra-wide ribbons along [001],
which share vertices with adjacent ribbons. The spaces among the ribbons are filled by
TiSi7-capped octahedra sharing faces.

Electron backscattering diffraction coupled with electron microprobe analyses allowed
us to identify gupeiite—(Fe2.28Mn0.28Ti0.19Cr0.15V0.01)Si1.09, xifengite—(Fe3.54Ti0.60Mn0.45
Cr0.25V0.03)Si3.13, and naquite—(Fe0.64Ti0.27Mn0.08Cr0.07V0.01)Si0.94 as associated phases.
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Toledoite is natural TiFeSi with an Ima2 TiFeSi-type structure. Synthetic TiFeSi is
well known [19,23–25]. Toledoite is not related to other minerals to our knowledge. The
structure is a superstructure of the hexagonal ordered Fe2P-type [19]. Synthetic TiFeSi
may also show the hexagonal P-62m β-form polymorph (a = 6.257(2), c = 3.497(1) (Å),
V = 118.55(9) Å3 [24]), which is stable at high-T, but inverts to the orthorhombic phase after
annealing at 1273 K for seven days.

4. Discussion

The alloy phases studied herein occur as inclusions in aggregates of corundum crystals.
They represent a variety of trapped melts, melts and crystals, and subsolidus assemblages.
Melts and crystals form upon cooling, both prior to eruption and during quenching upon
eruption of the basalts that host the xenoliths [26]. The crystallization of Fe-free phases
from silicate melt(s) is due to the immiscible separation of melts from the coexisting silicate
melt under highly reducing conditions. Multiple stages of immiscibility, as well as the
chemistry and evolution of these melts, are reported in [26]; like yeite (TiSi [5]), toledoite
adds more detail to this picture.

Toledoite (TiFeSi) corresponds to the τ2 phase of [24] in their description of the Fe-Ti-Si
system at atmospheric pressures. It melts congruently above 1923 K, but crystallizes from a
wide range of melts over a large T range; the temperatures on the Fe-Si side of the ternary
are lower than those on the Ti-Si side (Figure 5). This makes toledoite a key phase in the
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evolution of low-Si Fe-Ti-Si melts. It can coexist with numerous solid and melt phases and
controls the initial fractional crystallization of much of the Fe-Ti-Si system; it is responsible
for much mineralogical diversity in the examples from Mount Carmel.
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Toledoite can occur in two associations (Figure 2): (1) with osbornite (Ti(N,O)), jingsuite
(TiB2), and gupeiite (Fe3Si); and (2) in spheroidal melt inclusions intimately intergrown with
xifengite, naquite, and khamrabaevite (TiC). The first association seems to have formed from
a boron-rich silicide melt in equilibrium with an osbornite melt favoring the crystallization
of toledoite, gupeiite and jingsuite. Gupeiite does not form directly from a melt in the Fe-
Ti-Si ternary but appears in a peritectic reaction (L+Fe2Ti = τ2+Fe3Si; 1433 K) and coexists
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with toledoite in the subsolidus below 1373 K. This could indicate that the original melt
first crystallized Fe2Ti, and the present assemblage reflects the peritectic assemblage.

The relationships among phases in assemblage (2) suggest that TiC crystallized from a
complex Fe-Ti-Si melt, which first crystallized TiC, then broke down into the three silicide
phases. However, the assemblage τ2+Fe5Si3+FeSi does not appear in the liquid lines of
descent in the Fe-Ti-Si ternary of [24]. In the subsolidus system at 1173–1273 K, toledoite
can coexist in equilibrium with either xifengite or naquite, but not with both, and xifengite
and naquite do not coexist. The detailed history of this assemblage is therefore not clear.

The wide range of immiscible melt compositions and crystallization conditions cap-
tured in the xenoliths from Mount Carmel is shown by these alloy minerals. Therefore, they
add some new insights into the processes occurring in a highly reduced magmatic system.
Far from being a one-locality oddity, this highly reduced corundum-related assemblage
is very similar to other associations that have been already reported from chromitites
described in the Luobusa ophiolite in SE Tibet [27,28], and from many other localities in in-
traplate and subduction-zone tectonic settings [4,26]. A significant role for mantle-derived
CH4+H2 fluids in magmatic processes is deduced from these occurrences.

Icosahedral quasicrystalline alloys have been described in the Ti-Fe-Si system [29].
The icosahedral phase in this system is stable in a narrow compositional range around
Ti70Fe24Si6. For comparison to the icosahedral quasicrystal, the composition of toledoite
based on 100 atoms is Ti28Fe32Si33 with minor Mn, Cr, V and P, making it quite far from the
theoretical composition of an icosahedral quasicrystal. Nonetheless, it should be kept in
mind that a wide relative variation in the Ti/(Fe+Si) ratio has been observed among the
reduced alloy phases in the corundum grains from Mount Carmel [4]. This implies that the
Israeli rocks could be the right place to search for the first quasicrystal of terrestrial origin.

5. Conclusions

Toledoite (TiFeSi) is a new alloy mineral that has been discovered in melt inclusions in
corundum xenocrysts coming from the Mount Carmel area, Israel. Its chemical composition
and crystal structure match those of the synthetic analogue identified by EPMA and EBSD
data. Many physical properties cannot be obtained because of its small size, although the
data here reported are sufficient to support the correct identification. Toledoite formed
under extremely reduced conditions occurring in the upper mantle. It is found in several
distinct mineral assemblages and provides more insights into the natural origin of super-
reduced mineral phases. The overall mineral associations imply that the low oxygen
fugacity of its formation was produced by the interaction of mantle-derived CH4-H2 fluids
with syenitic melts produced by extreme fraction of mantle-derived mafic melts.
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