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Abstract: One of the classes of the kinetic phase-field model in the form of the two-mode hyperbolic
phase-field crystal model (modified PFC model) is used for the study of the noise effect of the
crystalline structure. Special attention is paid to the origin of the defect’s microstructure in the
crystalline honeycomb lattice due to induced colored noise. It shows that the noise–time correlation
coefficient τζ , comparable to the diffusion time, enhances the grain boundary mobilities. Instead,
a small spatial correlation coefficient, λζ , close to the first lattice parameter of the honeycomb
crystal, stabilizes the structure. The finite non-zero value of the relaxation time τ for the atomic flux
significantly slows the local relaxation of the fluctuated field and leads to the grains’ fragmentation
and formation of the disordered phases. The obtained results are applicable to the hexagonal atomic
structures and, in particular, to honeycomb crystals, such as boron nitride, in which the lattice defects
might be simulated through the induced colored noise.

Keywords: crystal lattice; atomic structure; colored noise; phase-field crystal; model

1. Introduction

Material properties, such as plasticity, (micro)hardness, and thermal and electrical
conductivity are directly determined by the perfect crystalline structure and, accordingly,
the presence of defects in the crystals. Therefore, in the mid-past century, particular
attention was paid to the occurrence of crystal lattice defects due to their influence on the
properties of the material [1].

Generally, one can distinguish among various types of crystal lattice defects, such
as pointed defects (vacancies, vesicles), spatially extended violations of lattice ideality
(dislocations and disclinations), grain boundaries with imperfections, and cracks. All
classes of defects can arise during the process of natural relaxation of a sample, for example,
when it is cooled from a high-temperature region to a given temperature with thermal
shrinkage, as well as with removing the pressure and loading.

One of the modern and necessary methods for solving problems seems to be to find
ways to strengthen materials operating under heavy loads and under exposure to aggressive
environments. The latter is due to chemical or radiation effects on the surface of the sample
with its penetration into the volume of the material. Distortion of the lattice, including
disruption of the continuity of the crystallite with its subsequent destruction, can be a
consequence of the radiation penetration of active neutrons onto the working surface and
into the volume of the chemical and atomic reactors. Because these defects originate under
irradiative interaction, special investigations are carried out on different spatial lengths
and different temporal scales [2].
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Recently, honeycomb crystals have been studied using the phase-field crystal model
(PFC model) and its modifications. A modification of PFC for two-dimensional heterostruc-
tures was presented in work [3]. The model concludes by extending the binary single-mode
PFC with a Gaussian smoothing kernel in correlation terms, implementing an idea closely
related to the Structural PFC (XPFC) that includes excess terms for free energies. A study of
the transitions between quadratic and hexagonal lattices in two-mode PFC under elevated
pressure was performed in Ref. [4]. A number of ideas, including the detailed study and
extended description of grain boundary migration, solid–solid transitions, and defects’
motion, were published in work [5]. These works were devoted to studies of squared/cubic
lattices; therefore, the focus of the present study is the evolution of honeycomb crystals
under the influence of noise. For this study, the two-mode phase-field crystal equation
is chosen. Efficient and energy-stable numerical schemes for the two-mode phase-field
crystal equation have been suggested in Ref. [6]. These schemes can be compared with
the numerical scheme performed in the direct space of the present work. In particular, the
present work extends the investigation of the growth and formation of two-dimensional
hexagonal lattices based on the one- and two-mode binary modified PFC model (MPFC-
model) [7–9]. For modeling of the initially ideal honeycomb lattice, we use two-triangular
reciprocal lattices, for details, see Ref. [8].

The present work is also devoted to examining changes in the crystal lattice under
the influence of external factors, one of which may be the exposure of the material to
irradiation. Using a theoretical approach, this irradiation may be modeled by correlated
colored noise [10,11] The colored noise is applied to the honeycomb to study the defects in
a crystalline lattice induced by radiation. We model distortion as well as the originating
boundaries between grains that appear as a result of noise-induced action on the initial
ideal honeycomb lattice of a two-dimensional crystal. To investigate noise-induced lattice
defects, we use the phase-field crystal model with colored noise formally described in
the work [12]. Because the parameters of the colored noise are responsible for defects
origination, we tried to quantify the values of space–time correlation factors that influence
the imperfections appearing in the honeycomb crystalline lattice.

2. Two-Mode PFC Model with Noise

The kinetic phase field takes into account both the slow and fast regimes of phase
transitions occurring under relatively small and large driving forces, respectively [13]. One
of the versions of the kinetic phase-field model is known as the hyperbolic version of
phase-field models [14,15], which, in the context of of PFC models, has been distributed
as the PFC model with memory [16] or the modified phase-field crystal model (MPFC
model) [17,18]. In its initial formulation, the MPFC model incorporates both fast elastic
relaxation and slower mass diffusion [19,20]. Similar models may appear in other branches
of science. For example, the consideration of particle diffusion in molecular liquids may
yield such a model coming from the dynamical density functional theory [21].

In the present work, we state the MPFC model for the description of the relaxation of
the average atomic concentration field n and the relaxation of the atomic density flux by
the partial differential equation (PDE) of the hyperbolic type:

τ
∂2n
∂t2 +

∂n
∂t

= M∇ ·
[
∇ δF

δn
+ Aζ⃗

]
, (1)

where τ is the relaxation time of the atomic density flux, M is the mobility that sets the time
scale for the relaxation of the conserved order parameter n, and δF/δn = µ(n) represents
the functional derivative in a form of the chemical potential as the driving force. The PDE (1)
is a consequence of the Lyapunov requirement that the free energy of the entire domain is
not increased during its relaxation to global equilibrium [22,23].
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The last term on the right-hand side of PDE (1) appears as the noise ζ with the am-
plitude A. The spatial and temporal noise correlations are given by the reaction–diffusion
equation [24]:

τζ
∂ζ⃗

∂t
= −

(
1 − λ2

ζ∇2
)

ζ⃗ + ξ⃗ (⃗r, t), (2)

where ξ (⃗r, t) is a pure, white, delta-correlated noise with the parameters ⟨ξ (⃗r, t)⟩ = 0,
⟨ξ (⃗r, t)ξ (⃗r′, t′)⟩ = 2δ(⃗r − r⃗′)δ(t − t′). The solution of Equation (2) gives the parameters of
the colored noise source ζ [24]:

C⃗r (⃗r − r⃗′) = (
√

2πλζ)
−d exp

[
− |⃗r − r⃗′|2

2λ2
ζ

]
; Ct(t − t′) = τ−1

ζ exp
[
−|t − t′|

τζ

]
. (3)

A special investigation of the system of Equations (1)–(3) was performed in [25] under the
description of spinodal decomposition.

The dimensional case of the free energy functional F can be obtained using the density
functional theory with the fitting of the coefficients for accurate accounting of the elastic
coefficients [26,27]. Following previous works [15,23], the dimensionless equilibrium the
free energy contribution Feq as a function of n can be written as

Feq[n] =
∫ [n

2
LRn − a

3
n3 +

v
4

n4
]
d⃗r, (4)

In particular, the phenomenological parameters a and v in Equation (4) can be fitted to
various physical properties as discussed in the literature [26–29]. The operator LR in the
single-mode approximation R = 1 is given by

L1 ≡ ∆B0 + Bx
0 (∇2 + q2

0)
2. (5)

The form of the PFC free energy Equation (4) in the single-mode approximation Equation (5)
is strongly related to the energy of the periodic phase in the weak crystallization theory of
liquid crystals [30,31].

For FCC or honeycomb crystal lattices (as well as for more complicated structures),
the operator LR can be derived via the two-mode approximation R = 2, as in [28,32,33]:

L2 ≡ ∆B0 + Bx
0 (r0 + (∇2 + q2

0)
2)(r1 + (∇2 + q2

1)
2). (6)

Here, the coefficients r0, r1, q0, and q1 allow one to fit the peak of the pair correlation
function to the experimental one or to that obtained via molecular dynamics [34]. Using
operator (6), the two-mode approximation of the MPFC equation (1) allows one to predict
the results of atomistic simulation on front kinetics essentially better than its single-mode
representation of the free energy through operator (5) in the whole range of driving forces
accessible in the computational experiments; see Ref. [34]. The coefficients q0 and q1
correspond to the equilibrium lattice parameters of the first and second coordination
spheres, respectively. r0 and r1 are stabilizing coefficients [33–35]. The gradient expansion
of the correlation function introduces melting and crystallization in two-dimensional and
three-dimensional periodic systems [36,37].

Operators (5) and (6) include ∆B0 = Bℓ
0 − Bx

0 as the driving force defined by the
difference between the dimensionless liquid-state bulk modulus Bℓ

0 and the elastic modulus
Bx

0 . ∆B0 is a control parameter similar to the quenching depth. To determine the scales
for the temperatures during the transition, one can use the driving force in the PFC-
type model as the dimensionless quenching depth below the melting temperature [15,34].
The dimensionless quenching depth is ε = ∆T/Tm, where ∆T = Tm − T is the undercooling
and Tm is the melting temperature. As a result, one can define undercooling as

∆T = Tm(∆B0 − ∆B∗
0 )/∆B∗

0 ; and ε = (∆B0 − ∆B∗
0 )/∆B∗

0 . (7)
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Here, ∆B0 is a specific driving force adopted for the considered structure, and ∆B∗
0 =

2a2/(9v) is the driving force corresponding to the melting temperature [34]. The coefficients
a and v present the generalized form of the free energy and the governing equation of
motion independently of the particular values (see Equation (4) and Ref. [34]).

Even in the case of delta-like white noise, one can describe the nucleation of a new
phase and model the dynamics of phase transformations [38] similarly to the weak crystal-
lization given by the Landau–Brazovskii theory [30,31]. In the general case of colored noise,
introducing the fluctuations (2) and (3) into Equation (1) leads to nontrivial pathways of
transformation [12].

3. Details of the Numerical Simulation

The numerical solution of Equation (1) with the two-mode operator (6) has been per-
formed in direct space using the finite element method (FEM) in COMSOL Multiphysics [39].
The numeric discrete approximation has been made using triangular second-order La-
grangian finite elements. Using the direct solver PARDISO of COMSOL Multiphysics
software, the solutions have been performed by a dual-processor server-based AMD EPYC
7302 machine.

3.1. The Governing System of Equations for Numerical Simulation

To reduce the spatial derivative order of Equation (1), the new variables P2, P4, P6, and
P8 were introduced according to Refs. [23,40]:

τ
∂2n
∂t2 +

∂n
∂t

= M∇ ·
[
∇µ + Aζ⃗

]
,

δF
δn

= µ =
(
∆B0 + Bx

0 Q1
)
n − an2 + vn3

+Bx
0∇2(2Q2n + Q3P2 + 2Q4P4 + P6),

P2 = ∇2n,

P4 = ∇2P2,

P6 = ∇2P4,

τζ
∂ζ⃗

∂t
= −

(
1 − λ2

ζ∇2
)

ζ⃗ + ξ⃗.

(8)

Here, the variable vector ξ⃗ is an uncorrelated and normally distributed (σ = 1) random vari-
able that produces the colored noise variable vector ζ⃗ via Equations (2) and (3). The noise
amplitude A was initiated at t = 300, so the initial hexagonal crystal was first relaxed, and
then the noise source was applied. The noise was generated using a pseudorandom source
with the same seed for all parameters to control the regions of grain formation.

The constants Q1–Q4 include the parameters q0, q1, r0, and r1 as follows:

Q1= q4
0q4

1 + q4
0r1 + q4

1r0 + r0r1, Q2= q2
0(q

4
1 + q2

0q2
1 + r1) + q2

1r0,

Q3= q4
0 + 4q2

0q2
1 + q4

1 + r0 + r1, Q4= q2
0 + q2

1.
(9)

The second-order time derivative was calculated by the fifth-order backwards-differential
formula. To obtain the structure factor S(k), we use the similar normalization coefficient
equal to 2 × 10−3. The Fourier transform F(n) of the atomic density field n was performed
using the COMSOL integration operator of the fourth order.
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3.2. Honeycomb Lattice and Nonequilibrium Contribution to the Free Energy

The numerical solution of Equation (8) in a two-dimensional domain was initiated
with the periodical crystal obtained by the analytical representation of the hexagonal
honeycomb crystal [8]:

nhon = n0+ηA

(
cos(qx) + cos

( qx
2

+
√

3
qy
2

)
+ cos

( qx
2

−
√

3
qy
2

))
−ηB

3
2

(
cos

(
qx +

qy√
3

)
+ cos

(
qx − qy√

3

)
+ cos

(
2

qy√
3

))
, (10)

where n0 is the average dimensionless honeycomb density; ηA and ηB are the density wave
amplitudes for the first and second sublattices, respectively; and q = 1. The numerical
parameters used in the calculations are presented in Table 1.

Table 1. The computational parameters of the two-mode MPFC model.

Property Value Property Value

M (-) 1 τ (-) 1 × 10−2

a (-) 0 ∆B0 (-) −0.95
v (-) 1 Bx

0 (-) 1
r0 (-) −0.2 q0 (-) 1
r1 (-) 0.1 q1 (-) 1
n0 (-) −0.55

The free energy calculation F[n, J⃗] = Feq[n] + Fneq [⃗J] with the local equilibrium (4) and
the nonequilibrium contribution Fneq [⃗J] requires the computation of the flux variable J⃗ at
each numerical time step [12,23]:

τ
∂⃗J
∂t

= − J⃗ − ∇⃗µ + Aζ⃗ (⃗r, t); and Fneq [⃗J] =
τ

2

∫
Ω

J⃗ · J⃗dΩ, τ > 0. (11)

As a result, Equation (11) was solved with Equation (8) by time integration with a fixed
time step δt = 10−3. The two-dimensional computational domain consists of 200 × 200
dimensionless units with a mesh size ℓ of up to 1.1 along the side. The convergence on each
time step was controlled with a relative tolerance of δE = 10−7.

3.3. Calculation of the Noise-Induced Defects

In the present simulation, calculations of defects are performed from the initially ideal
honeycomb lattice, which begins to change due to imposed noise of different intensities,
i.e., different temporal and spatial dispersion. More specifically, in the case of a correlated
noise source, the initial stable honeycomb crystal is exposed to noise sources with different
amplitudes A (temperature) and spatial and temporal characteristics λζ and τζ . To investi-
gate the effect of noise on defect formation, we performed the following simulations:

• Uncorrelated white noise, i.e., when the last equation of Equation (8) is terminated
and one has ζ⃗ = ξ⃗;

• Spatio-temporal correlated noise, for a full system of Equation (8);
• Separate simulations with or without relaxation of the atomic density flux, i.e., with

τ ̸= 0 or τ = 0, respectively, in Equation (8).

The simulations provide results for different free energy profiles and relaxed atomic
density n distributions. All of the simulations were performed in the region of the param-
eters (see Table 1) corresponding to the stable honeycomb phase [8,9]. As a qualitative
outcome of the simulations, one can distinguish the following types of honeycomb lattice
changes obtained due to the imposed noise of various types of dispersion:

• Distortions and rotations in the crystal lattice;
• The appearance of grains and boundaries between them.
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4. Results and Discussion
4.1. Initial Distribution

The initial stable honeycomb crystal was constructed using Equation (10). The corre-
sponding atomic density n and its Fourier distribution F(n) are presented in Figure 1a,b.
After the initial relaxation, this structure was saved as the honeycomb crystal in the absence
of noise (Figure 1c,d) when the noise amplitude coefficient was set to A = 0 in Equation (8).
The resulting slightly distorted honeycomb crystal with no defects is represented by the
blurred reflections in the Fourier image (see the blurred points in Figure 1d and the rela-
tively sharp points shown in Figure 1b). The appearance of the blurred points and peaks
(see Figure 2) during the relaxation without noise, occurs due to the periodic boundary
conditions of the square domain, which act as a distortion actuator when the layering of an
even number of lattice parameters is impossible along the domain. Such a problem occurs
in many cases during the two-mode PFC simulations [9,41] due to the presence of two
lattice parameters, however, such a problem is absent in the case of the single-mode PFC
approximation in which only the lattice parameter is accepted for calculations.

(a) (b) (c) (d)

Figure 1. Snapshots of the density field n (a,c), and corresponding Fourier transforms F(n) (b,d).
(a,b) Initial distribution of honeycomb crystal after short relaxation at t = 100. (c,d) after the relaxation
in the absence of noise at t = 10,000.
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Figure 2. The normalized structure factor S(k) was calculated for wavenumber k using the data
obtained from the Fourier transform F(n). The corresponding crystals can be found in Figure 1. Here,
t = 100 corresponds to the initial n-distribution, and t = 10, 000 represents the structural relaxation
in the absence of noise.

Figure 2 shows the structure factor S(k) as a function of the wave-number k for the
ideal honeycomb after the short time t = 100 (see Figure 1a,b) and the slightly distorted
crystal with blurred peaks of the atomic density n after the long relaxation t = 10, 000; see
Figure 1c,d. As shown by the black curve in Figure 2, the low-frequency (first) peak at
k ≈ 0.08 corresponds to the long-range order preserved during relaxation. The secondary
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peaks at k ≈ 0.12 and k ≈ 0.16, also given by the black line in Figure 2, represent the
appearance of two kinds of strain: (i) the shift in the maximum is associated with uniform
strain; (ii) the blurring corresponds to the nonuniform strain and possible appearance of
defects. We will use the position and width of the relaxed structure as a reference state for
the study of defect induction.

4.2. Influence of the Uncorrelated Noise

The atomic density distribution n for the case of uncorrelated noise is presented in
Figure 3. In this case, the last equation of Equation (8) is absent, and the noise term was set
to the uncorrelated term ζ⃗ = ξ⃗. The long-wave contribution near k = 0 was analogous to
the Rayleigh peak, which appeared when the hydrodynamic mode increased [12,42]. This
peak degenerates with the high-frequency correlated fluctuations and growth of periodical
structure modes. The significant blurring of the first split peak in Figure 3c is caused by the
massive appearance of defects and degradation of the long-range order of the honeycomb
crystal. The secondary peak (short-range order at k ≈ 0.17) becomes broader due to the
growth of the deformed honeycomb phase. The free energy of the system is not conserved,
and a significant part of the domain volume is transferred to the quadratic phase, which
can be associated with a shift in the melting curve [9] due to an increase in local density.
As shown in Figure 3a, the honeycomb lattice experiences a significant number of defects
and distortions, which can be interpreted in some cases as the appearance of a disordered
phase (which is also observed from the wide first peak at k ≈ 0.11 in Figure 3c) that is caused
by a solid–solid transition. The sequence of the phases in the two-mode PFC model for a
given q0, q1, r0, and r1 (see Table 1) is the triangle–honeycomb–square–striped phase [9].
Thus, due to the energy supplied by the delta-correlated white noise, we achieved the non-
conservation of free energy. The details of these results were discussed in Refs. [12,43,44] in
the form of hypotheses.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05 0.1 0.15 0.2 0.25 0.3

Structure factor, S(k)

(a) (b) (c)

Figure 3. Uncorrelated noise at t = 10,000, noise amplitude A = 1, flux relaxation time τ = 0. (a) Density
distribution of n; the yellow lines correspond to the indicative grain boundaries. (b) Fourier transform
F(n). (c) Normalized structure factor S(k), as function of wavenumber k.

4.3. Influence of the Parameters of Correlated Noise

The introduction of correlated noise by Equation (8) leads to the stabilization of the
honeycomb structure for several values of the spatial noise correlation parameter λζ ; see
Figures 4 and 5. One can observe the formation of two large grains in Figures 4a and 5a,
but, in the first case where λζ = 3, one can find a more stable honeycomb structure.
The bulk honeycomb structure is indicated by the peak corresponding to sixth-order
symmetry in Figure 4b. The wide twin first peak in Figure 4c indicates the occurrence of
the deformed honeycomb phase merging with the peak of the quadratic phase. One can
find that deformed elongated honeycombs can generate a peak corresponding to the quasi-
quadratic phase at k ≈ 0.11, which can be clearly observed in Figure 5c. The broadening of
the peaks represents multiple defects on the grain boundaries, in the domain around the
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boundaries and in the case of vacancies with λζ = 7, as shown in Figure 5a. If significant
statistics are gathered together with the Fourier analysis, one can quantitatively quantify
the relative volume of defects and grain boundaries [45,46].
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 0  0.05 0.1 0.15 0.2 0.25 0.3

Structure factor, S(k)

(a) (b) (c)

Figure 4. Stabilization of the honeycomb structure in the presence of correlated noise: λζ = 3, τζ = 1,
τ = 0. (a) Density distribution of n; the yellow lines correspond to the indicative grain boundaries.
(b) Fourier transform F(n). (c) Normalized structure factor S(k) as function of the wavenumber k.
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Figure 5. Appearance of bulk defects induced by correlated noise: λζ = 7, τζ = 1, τ = 0. (a) Density
distribution of n; the yellow lines correspond to the indicative grain boundaries. (b) Fourier transform
F(n). (c) Normalized structure factor S(k) as function of the wavenumber k.

As seen from the comparison of Figures 4 and 5, the gradual approach to the secondary
lattice parameter q ≈ 6.7 for the two-mode PFC leads to the accumulation of the noise-
induced defects in the bulk. This contradicts the results of the formation of body-centered
cubic crystals (BCC-crystals) for the single-mode PFC with amplification of the correlated
noise [12], where λζ ≈ q leads to the effective stabilization of the periodic structure (here, q
is the lattice parameter of the single-mode PFC model). However, in the present work, we
investigated significantly larger grains and observed the formation of secondary phases
in a very sensitive two-mode PFC model. As we observed in the computational results,
the value λζ = 7 stabilizes mostly the quadratic phase.

The time correlation coefficient τζ in the range of 1 ≤ τζ ≤ 10 has no essential influence
on the formation of the defect structure of the honeycomb lattice. We assumed that the short
temporal values of τζ were caused by the fact that the characteristic time for defect migration
and boundary motion was much longer than the noise–time correlation scale τζ . In the
physical sense, naturally, such times are comparable to the diffusion times τdi f f = L2/D0,
where L is the characteristic length scale and D0 is the diffusion coefficient (which, for
our dimensionless case, is equal to the mobility coefficient M). For the slow correlations
of τζ = 100, one can observe, however, the grinding of the grains, intense destruction
of the bulk crystal, and simultaneous formation of the quadratic phase, which can be



Crystals 2024, 14, 38 9 of 12

observed by the increasing peak of the quadratic phase in Figure 6a,d and corresponding
broadening of structure factor in Figure 6b,c. Correlations in time fluctuations cause
coherent vibrations on the diffusive time scale, which leads to increased mobility of the
grain boundaries. The presence of the bright peak in Figure 6b at τζ = 1–3 corresponds to
the pseudo-quadratic phase linked with the stabilized honeycomb phase.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3

S
tr

u
ct

u
re

 f
ac

to
r,

 S
(k

)

Wavenumber, k

�ζ=1

�ζ=3

�ζ=10

�ζ=100

Spatial correlation coefficient, λζ=1

 0  0.05  0.1  0.15  0.2  0.25  0.3
Wavenumber, k

�ζ=1

�ζ=3

�ζ=10

�ζ=100

λζ=3

 0  0.05  0.1  0.15  0.2  0.25  0.3
Wavenumber, k

�ζ=1

�ζ=3

�ζ=10

�ζ=100

λζ=7

 0  0.05  0.1  0.15  0.2  0.25  0.3
Wavenumber, k

�ζ=1

�ζ=3

�ζ=10

�ζ=100

λζ=10

(a) (b) (c) (d)

Figure 6. Normalized structure factors S(k) were calculated for wavenumber k using the data
obtained from Fourier transform F(n) for different time correlation coefficients τζ = 1–100 marked in
color. Spatial-correlation coefficients: (a) λζ = 1; (b) λζ = 3; (c) λζ = 7; (b) λζ = 10.

Figure 7 shows the destruction of the bulk crystals and growth of the quadratic phase
at τζ = 100, which is also supported by the thermal-like influence of the short spatial
correlation λζ = 1. The Fourier image and the structure factor S(k) in Figure 7b,c show
the presence of a distinct honeycomb and merged quadratic and quasi-quadratic phases.
The broadening of the peaks occurred due to the disordered stripes of atomic density on
the domain boundaries and the appearance of grain boundaries.
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Figure 7. Destruction of the grains and massive appearance of the quadratic phase: λζ = 1, τζ = 100,
τ = 0. (a) Density distribution of n; the yellow lines correspond to the indicative grain boundaries.
(b) Fourier transform F(n). (c) Normalized structure factor S(k) as function of the wavenumber k.

The finite value of the atomic density flux relaxation, τ = 0.01, leads to the limitation
of the propagation of the velocity of disturbances, which causes substantial deceleration of
the relaxation dynamics; see Figure 8. One can observe the formation of multiple grains
with honeycomb, quadratic, and amorphous phases in Figure 8a, which is very similar to
the defect patterns obtained in previous works [47,48]. Intensive destruction of the bulk of
the ideal crystal occurs due to the inability of the computational domain to respond quickly
to high-frequency spatio-temporal temperature fluctuations. Moreover, the increase in the
value of the time correlation leads to collective fluctuations with lower frequency, which, for
high τζ and with the nonzero value of the relaxation time τ, leads to some grain coarsening.
As a result of the computations, the disordered amorphous phases are clearly indicated
in Figure 8b. The merging of low-density peaks can be observed in Figure 8c, which



Crystals 2024, 14, 38 10 of 12

demonstrates the mixing of the honeycomb and pseudo-quadratic phases. In conclusion,
the finite nonzero value of the relaxation time τ for the atomic flux significantly slows the
local relaxation of the fluctuating field and leads to grain fragmentation and the formation
of disordered phases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05 0.1 0.15 0.2 0.25 0.3

Structure factor, S(k)

(a) (b) (c)

Figure 8. Grain refinement due to the finite value of flux relaxation time: λζ = 1, τζ = 1, τ = 0.01.
(a) Density distribution of n; the yellow lines correspond to the indicative grain boundaries. (b) Fourier
transform F(n). (c) Normalized structure factor S(k) as function of wavenumber k.

5. Conclusions

As one of the kinds of kinetic phase-field models, the modified phase-field crystal
model (MPFC), described by the hyperbolic governing equation, has been used. The two-
mode MPFC model has been advanced by the introduction of the correlated noise term.
Periodic boundary conditions in the two-mode PFC model create the diffuse reflexes on the
Fourier image of the atomic density after the relaxation of the initial honeycomb lattice. This
effect occurs due to the presence of two lattice parameters in the two-mode approximation
of the PFC equation. Indeed, the problem of the slight influence of the boundary conditions
on the atomic density is absent in the single-mode approximation of the PFC equation with
the only lattice parameter. With the introduction of white noise as an additive term in the
governing PFC equation, the full energy of the computational domain is not conserved.

The time correlation coefficient τζ in the colored noise:

• Acts as white (delta-correlated) noise at relatively small values of τζ and within the
short time intervals;

• Can lead to an increase in the boundary grain mobility and to the final refinement of
the structure at a relatively large value of τζ , comparable with the diffusion time.

The spatially correlated noise with the correlation coefficient λζ leads to:

• The stabilization of the honeycomb structure at moderate values of the spatial noise
correlation parameter λζ ≈ 3;

• The observation of the origination of bulk defects at large values of λζ ≈ 10.

The defects can be quantified and estimated using the free energy change in time for
the entire computational domain. It would be enough to follow the evolution from an
initially ideal lattice to a deformed/rotated/destroyed lattice with the calculation of the
free energy. Such methodology may be developed in a future work.

One of the key perspectives in the development of the present work is also seen in the
reproduction of the cooled noise adequately to the experimental/computation influence of
the transformation in the sample under study. The finding of the ranges of colored noise
parameters, which can imitate external processing and be consistent with the influence of
an external field (such as irradiation) or internal processes (such as corrosion), seems to be
a natural advancement of the present methodology.
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