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Abstract: In past years, optical lattices have been demonstrated as an excellent platform for making,
understanding, and controlling quantum matters at nonlinear and fundamental quantum levels.
Shrinking experimental observations include matter-wave gap solitons created in ultracold quantum
degenerate gases, such as Bose–Einstein condensates with repulsive interaction. In this paper, we
theoretically and numerically study the formation of one-dimensional gap soliton molecules and
clusters in ultracold coherent atom ensembles under electromagnetically induced transparency
conditions and trapped by an optical lattice. In numerics, both linear stability analysis and direct
perturbed simulations are combined to identify the stability and instability of the localized gap
modes, stressing the wide stability region within the first finite gap. The results predicted here may be
confirmed in ultracold atom experiments, providing detailed insight into the higher-order localized
gap modes of ultracold bosonic atoms under the quantum coherent effect called electromagnetically
induced transparency.

Keywords: electromagnetically induced transparency; Kerr nonlinearity; optical lattices; gap soliton
molecules and clusters; three-level coherent atomic systems

1. Introduction

In the context of optics, it is commonly known that linear diffraction can greatly spread
waves, and dispersion is able to separate the light of colors by refraction or diffraction (with
the appearance or formation of optical frequency spectrum), eliminating and destroying the
propagation of light with well-conserved shapes [1]. In order to overcome such problems,
optical nonlinearities in the forms of Kerr (cubic) nonlinear terms and other higher-order
ones or their combination are usually introduced to the strong laser light propagation,
and in such instances, a graceful balance between the inherent linear diffraction (or dis-
persion) and the material’s nonlinearity like the Kerr one could be reached; therefore,
solitons or localized modes/waves (in a much wider range of circumstances that do not
permit analytical solutions) can be created [2,3]. Solitons are nonlinear waves exhibiting
three unique properties that are only affiliated to nonlinear (physical) dynamical systems:
(i) keeps the same velocity; (ii) the shape conserves; (iii) quasi-elastic collision happen
for two solitons—they keep their original propagating direction and do not change their
shapes and velocities. As a matter of fact, owing to these three unique properties, optical
solitons are widely considered to be ideal candidates for low-loss or lossless nonlinear light
propagation in modern optics communications [4,5]. It is relevant to point out that solitons
are one of the ubiquitous nonlinear emergent phenomena in nonlinear physical systems
and beyond [6–10].
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Within past years, considerable research interest has been focused on periodic po-
tentials, such as photonic crystals/lattices in optics and optical lattices in Bose–Einstein
condensates (BECs), because of their tunable band-gap engineering and the control of light
and matter waves in both linear and nonlinear processes [11–18]. In periodic potentials,
by tuning the strength, periodicity, and structure of the periodic structures, one can obtain
controllable finite forbidden gaps of the underlying linear Bloch-wave spectrum, and par-
ticularly, as far as optics are concerned, the light waves with frequencies lying within such
finite gaps are not allowed to be propagated due to the strong Bragg scattering, while those
waves with frequencies lying inside the linear Bloch bands (but not the finite gaps) can
be freely propagated as a carrier of both energy and information, enabling the versatile
applications in modern optics communications. Diverse localized modes (no matter the
matter waves or classical waves), including fundamental solitons, gap solitons, and vortices,
have been found with the help of periodic potentials and under nonlinear regimes [19–33];
the latter two modes combine the finite gap’s strong localization and materials’s nonlin-
earity, enabling the formation and control of robust localized gap modes. Recently, the
localization of light and matters has been extended to a novel twisted structure named
Moiré superlattices that can be tuned to periodic form under the Pythagorean angle and
an aperiodic one for other angles [34–41]; particularly, soliton formation and gap solitons
and vortical ones have been addressed in such settings [28,39–43]. It is deserved to be
emphasized that twisted structures such as Moiré optical lattices can be made easily in
optics and condensed matter physics experiments, providing a new controllable (twisted
angle) degree of freedom in studying the linear, nonlinear, and quantum properties of light
and matter waves.

In recent years, searching for novel types of localized modes as various solitons is also
a topic gaining intense attention in the nonlinear science domain [3,44]. An interesting ex-
perimental observation in recent years is the discovery of soliton molecules in mode-locked
laser and other fiber lasers under various nonlinear ultrafast transient processes [45,46],
revealing novel ultrafast transient processes and interesting nonlinear emergent soliton
phenomena in real complex nonlinear physical systems. It deserves to be mentioned that
a stable soliton molecule’s birth dynamics were observed and confirmed to experience
five different stages, which are raised relaxation oscillation, beating dynamics, transient
single pulse stage, transient bound state, and lastly the stable bound state, according to
Ref. [45], where it is also found the buildup dynamics of soliton molecules is very sensitive
to two experimental conditions: the intracavity light’s polarization state and the fluctuation
of pump power. In addition to that, it was observed in Ref. [46] that the stable optical
soliton molecular complexes formed by two soliton-pair molecules (the constitution of
two strongly bound optical solitons) can highlight the important differences between the
intramolecular bonds and intermolecular ones of the soliton molecular complexes, stressing
that the strong intramolecular bond may be considered as a dynamical attractor of focus
type with strength being lowly sensitive to external perturbations, and conversely, the
intermolecular bond (a weaker attractor of limit-cycle type that is usually more sensitive
to environmental perturbations) works over a distance thrice larger than that of the in-
tramolecular one and can be characterized by a sliding relative phase. On the theoretical
side, soliton molecules have been found in different nonlinear physical systems, containing
both uniform media and periodic ones [47–50].

Very recently, quantum droplets, a novel liquid state of matter existing under a pre-
cise balance between the competing focusing (attractive) inter- and defocusing (repulsive)
intraspecies forces and beyond-mean-field term called Lee–Huang–Yang corrections, de-
scribing quantum fluctuations of many-body atoms (physics) [51–54], were also found to
be a good system for creating metastable ring-shaped clusters [55]. We would like to point
out that quantum droplets are the self-bound state existing without the help of any external
potentials, and in such droplets, the underlying physical model can be approximated as
a mean-field one in the framework of the Gross–Pitaevskii equation, which, surprisingly,
includes both the nonlinear effect and quantum many-body terms, thus within where
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the quantum nonlinear effects can be researched. In addition, other soliton clusters have
also been predicted in different nonlinear systems [56–63]. One point deserving to be
emphasized is that the internal dynamics of two- and three-soliton bound states (femtosec-
ond soliton molecules) over hundreds of thousands of consecutive cavity round trips was
tracked experimentally in the cavity of a few-cycle mode-locked laser, highlighting the
importance of real-time spectral interferometry detection in resolving internal interactions
in complex nonlinear physical systems, enabling the probe of the transient dynamics of
soliton bound states, breathers, and rogue waves [57]. It is safe to conclude that although
soliton clusters and gap soliton clusters have been widely studied in various nonlinear
physical systems, the gap soliton molecules and clusters in coherent atomic media where
the multilevel atoms are tuned to a electromagnetically induced transparency (EIT) regime
are still missing. In the context of quantum optics, EIT is a quantum interference effect
induced by a control laser field to eliminate the absorption of a probe laser field in a res-
onant atomic system, and previous studies have demonstrated that the EIT effect could
lead to many intriguing physical properties, i.e., the giant reduction of group velocity, a
remarkable enhancement of Kerr nonlinearity with ultra-low-power light fields [64].

We here reveal the existence, property, and dynamics of one-dimensional matter-wave
gap soliton molecules and clusters in optical lattice-trapped coherently ultracold atoms
ensembles with a Λ-type three-level configuration that are tuned to the EIT condition.
Here, the optical lattice (i.e., external potential) is formed by a pair of counter-propagating
far-detuned Stark laser fields. In previous works with similar physical systems, we have
predicted the formations and evolutionary dynamics of one-dimensional (1D) fundamental
matter-wave gap solitons (single mode) and dipole ones [25] and also the gap vortices
in two-dimensional scenarios [26]. In the present work particularly, we show that the
gap soliton clusters could be built as different forms, including one called gap waves,
which have been experimentally confirmed in ultracold Bose–Einstein atoms loaded into
deep optical lattices and in nonlinear optics backgrounds with moderate-depth periodic
potential. The stability and instability of the localized gap modes in the first finite gap are
identified numerically by linear stability analysis and direct perturbed simulations. The
localized gap modes predicted here can be readily confirmed in experiments, providing
an insightful understanding of soliton physics and nonlinear dynamics in ultracold atoms.
It is necessary to note that, although our physical description is based on the three-level
coherently ultracold atoms ensembles, other atomic systems with more complex electronic
level configurations like the four-level one are also good candidates. On the other hand,
in addition to ultracold atoms, hot atoms under room temperature can be operated to the
EIT regime, and thus the nonlinear physics and dynamics revealed here could emerge
too. We would like to state that the predicted gap soliton molecules and clusters could be
implemented in ultracold atom experiments and may lead to promising applications in
modern optical communications and quantum information processing.

The rest of this article is arranged in the following way. In Section 2, we first put
forward the theoretical model under study, and give a detailed description of our numerical
methods for solving such a model. In Section 3, we present our numerical results for the gap
soliton molecules and clusters of two types: equal-height type and dipole one; the shapes,
linear stability eigenvalues, and stability regions of these gap soliton clusters are also shown.
Lastly, in Section 4, we make a conclusion of this article and give a brief prospect.

2. Theoretical Model and Numerical Methods

The physical model under study is a lifetime-broadened and ultracold atomic gas
with a Λ-type three-level configuration interacting resonantly with two laser fields (i.e., the
pulsed weak probe field Ep and the strong continuous-wave control field Ec), and working
at EIT circumstances [64], as shown in Figure 1a. The probe field with frequency ωp/(2π)
drives the transition |1⟩ ↔ |3⟩, and the control field with frequency ωc/(2π) couples |1⟩
and |3⟩. Γ13 and Γ23 are, respectively, the spontaneous emission decay rates of |3⟩ → |1⟩
and |3⟩ → |2⟩ transitions. ∆2 = ωp − ωc − ω21 and ∆3 = ωp − ω31, respectively, denote



Crystals 2024, 14, 36 4 of 11

the two- and one-detunings, where angular frequency difference ωjl = (Ej − El)/h̄ with
Ej being the eigen energy of state |j⟩. The atoms are initially prepared in the ground state
|1⟩ and cooled to an ultracold temperature to eliminate center-of-mass motion. We should
note that the model considered here can generate a giant enhancement of Kerr nonlinearity,
because of the EIT effect, to form optical solitons [65]. In addition, the far-detuned Stark
field, two counter-propagating far-detuned laser fields ES of angular frequency ωs, is
applied into the system to induce the 1D optical lattice (i.e., external potential) to generate
the corresponding band-gap structure and obtain the gap soliton molecules and clusters.

Figure 1. (a) Excitation scheme of the Λ-type three-level atomic system in an optical lattice induced
by two counter-propagating far-detuned laser fields ES (see the brown arrows). The other phys-
ical parameters are described in the main text. (b) The relevant linear band-gap spectrum of the
corresponding optical lattice V(ξ) = −c0 sin2 ξ with c0 = 8. The 1st BG and 2nd BG represent
the first and second band gaps, respectively. (c,d) represent the power P of equal-height type [or
(1, 1, 1, 1)-type] localized gap modes versus propagation constant b with spatial distance ∆ = π and
∆ = 3π, respectively. Stability and instability regions for gap soliton clusters in panels (c,d) are
respectively marked by blue solid and red dashed lines. The profiles of gap soliton clusters marked
by points (A, B) and (C, D) whose corresponding propagation constants b are (4.5, 1.9) and (4.5, 1.9)
will be depicted below.

We would like to point out that the theoretical model taken here can be realized
in realistic physical systems, e.g., for ultracold 87Rb atomic ensembles tuned to D1-line
transition. Then, the atomic energy levels |1⟩, |2⟩, and |3⟩ depicted in Figure 1a can
be selected respectively as 52S1/2(F = 1), 52S1/2(F = 2), and 52P1/2(F = 2) [66]. In
theory, the Maxwell–Bloch equation, depicting the interaction between light laser fields
and atoms, can be obtained under the electric-dipole and rotation wave approximations
in the interaction picture. Therefore, the evolution of the probe field in our model can
be described by dimensionless nonlinear envelope equations (i.e., nonlinear Schrödinger
equation), which is derived and obtained by employing the method of multiple scales
based on Maxwell–Bloch equation [65]. The governing nonlinear envelope equation in
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dimensionless form with defocusing Kerr nonlinearity for probe field amplitude u(τ, ξ),
yields [25]

i
∂u
∂τ

= −1
2

∂2u
∂ξ2 + |u|2u + VOL(ξ)u, (1)

where τ = t/τ0 is time, ξ = x/R is a coordinate in the transverse plane, and VOL(ξ) = −c0 sin2(ξ)
represents the 1D optical lattice induced by the far-detuned Stark fields. τ0 and R are,
respectively, the typical pulse duration and beam radius of the probe field. c0 is the strength
of the optical lattice, and we set c0 = 8 throughout. We stress that detailed theoretical
derivations and descriptions and selected physical parameters of such a model can be
referred to in our previous publication in [25]. According to Ref. [25], we can estimate
that the group velocity of the probe field envelope is around 10−5c (c being the light speed
in vacuum), which is obviously ultraslow. Deserved to be mentioned is the choice of the
physical model (Equation (1)), particularly for nonlinear light propagation in coherent
multilevel atoms loaded onto optical lattices. Such a model is unique since almost all
previous studies talk about ground-state ultracold atoms (which are assumed to be tuned
to ground state) despite still being trapped by optical lattices; we progress earlier soliton
studies with this model to form, consolidate, and establish our particular research contents
and characteristics. It is also relevant to highlight that the physical model (Equation (1))
shares the similarity of the mean-field Gross–Pitaevskii equation describing ultracold atoms
such as BECs loaded onto a 1D optical lattice, and the generalized nonlinear Schrödinger
equation for modeling the nonlinear light propagation in 1D photonic crystal gratings
or photonic lattices, the only difference being the negative sign of the optical lattice in
Equation (1). Therefore, the localized gap soliton molecules and clusters predicted here
could also be observed in the contexts of BECs and conventional nonlinear optics.

To proceed with the outcome of the linear Bloch-wave spectrum of the optical lattice
given in Equation (1), we first describe the numerical method for producing such a spectrum.
In solid-state physics, the atomic lattices possess translational symmetry so that the unit
cell for the lattice can repeat its cycle and shape completely after some spatial displacement.
According to this fact, the linear Bloch theorem could be used to exactly characterize the
band-gap structure of the periodic potentials like atomic lattices. This theorem is then
extended to the optics domain for mapping the optical forbidden gaps and allowed bands
of optical periodic potentials, including the photonic crystals (waveguides and fibers) and
photonic lattices. Upon using such a theorem, we can easily build the linear Bloch band-gap
structure with a discarding Kerr nonlinear effect, which is shown in Figure 1b for an optical
lattice with moderate strength (considering that fact that we have set such strength as
c0 = 8 throughout). In the figure, we can see that the Bloch spectrum has a wide first finite
gap and a narrow second gap. The first BG and second BG in Figure 1 represent the first
and second band gaps, respectively.

We then turn to search stationary solution of field amplitude u = U(ξ) exp(ibτ),
with b being propagation constant. Submitting the form of the stationary solution into
Equation (1), then it becomes

−bU = −1
2

∂2U
∂ξ2 + |U|2U + VOL(ξ)U. (2)

The power of gap soliton clusters is defined as P =
∫ +∞
−∞ |U(ξ)|2dξ versus propagation

constant b, which can be obtained from integrating Equation (2).
Linear stability is a key issue in analyzing the stability property of the stationary

solution (i.e., the localized gap solutions). Therefore, we take the perturbed amplitude
as u = [U + p(ξ) exp (λτ) + q∗(ξ) exp (λ∗τ)] exp (ibτ). It should be noted that U is the
undisturbed field amplitude found from Equation (2) by adopting the modified squared-
operator method (MSOM) [67], and p(ξ) and q∗(ξ) are small perturbations at eigenvalue
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λ. Substituting such expression into Equation (1), we then obtain the following linear
eigenvalue problem: (

L U2

−U∗2 −L

)(
p
q

)
= iλ

(
p
q

)
, (3)

where L = b − 1
2

∂2

∂ξ2 + 2|U|2 + VOL(ξ). By solving the eigenvalue Equation (3) with the
Fourier collocation method [67], we can obtain the eigenvalues λ that determine the stability
of the perturbed localized solutions. Specifically, the solutions are stable when the real
parts of corresponding eigenvalues are zero, i.e., Re(λ) = 0; otherwise, they are unstable
since they are affected by very small perturbations. The stability of these solutions are
rechecked via direct numerical simulations of the perturbed evolution in Equation (1) using
the split-step Fourier method based on fourth-order Runge–Kutta.

3. Numerical Results

This section reports the numerical results of gap soliton clusters of two types, which
we call equal-height type and dipole. The formation, structural property, and dynamics of
these gap soliton clusters are presented. For the sake of discussion, we focus our attention
on just four-peak gap soliton clusters; obviously, the extension to such gap soliton clusters
but with more peaks is natural. On the other hand, while we here only report the numerical
results for optical lattices with moderate strength, it is straightforward to introduce the
deep optical lattices and consider the gap soliton molecules and clusters therein.

3.1. Gap Soliton Clusters of Equal-Height Type

The simplest type of soliton clusters consists of identical solitons with equal height. For
convenience, the structures of identical solitons are called (1, 1, 1, 1)-type solitons, where all
branches of U are located on the upper-half plane of (ξ, U). The adjacent distance ∆ between
the identical solitons is adjustable and tuned to an integer that is a multiple of the lattice
period that is set to π for the given optical lattice V(ξ) = −c0 sin2 ξ with c0 = 8. After
performing a great many numerical simulations, we identify the stability regions, expressed
by power P versus propagation constant b, of such gap soliton clusters with two different
spatial distances ∆ = π and ∆ = 3π in Figure 1c,d, demonstrating the instability of soliton
clusters near the edge of finite gaps and that the former case is always unstable when being
created in the second finite gap, although the stability region for the latter contracts sharply.
Note that the stability and instability regions for (1, 1, 1, 1)-type gap soliton clusters in
Figure 1c,d are, respectively, marked by blue solid and red dashed lines. The shapes of the
stable and unstable (1, 1, 1, 1)-type gap soliton clusters (labeled by A and B in Figure 1c) are
shown in Figure 2a,b by simulating Equation (2) via MSOM, which resemble a novel type
of gap mode called gap waves or truncated nonlinear Bloch waves [22,68–70]. Increasing
the adjacent distance ∆, as depicted in Figure 2c,d (labeled by C and D in Figure 1d), each
soliton of the gap soliton clusters could be considered as a fundamental gap soliton, and
the interaction or tunneling between each soliton becomes weak. The orange solid lines in
Figure 2a–d denote the shape of the optical lattice. The middle line of Figure 2 depicts the
eigenvalue spectra of these four gap soliton clusters obtained by means of linear stability
analysis via solving the eigenvalue problem (Equation (3)). We show that Re(λ) of the
second mode (Figure 2b) with b = 1.9, and ∆ = π is nonzero, which indicates the mode is
unstable. Meanwhile, the other modes (Figure 2a,c,d) are stable due to their corresponding
real parts of eigenvalue being zero. We then turn to utilize the direct perturbed simulation
to integrate Equation (1) for investigating the dynamical propagation of gap modes. The
results displayed in the bottom line of Figure 2 are identical to the eigenvalue problem.
Particularly, the unstable one in Figure 2j diverges and oscillates, and the stable ones in
Figure 2i,k,l keep their shapes unchanged in the course of evolution.
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Figure 2. Profiles, eigenvalues, and perturbed evolutions of equal-height type (or (1, 1, 1, 1)-type) gap
soliton clusters modes. Profiles of (1, 1, 1, 1)-type gap soliton clusters modes obtained by simulating
Equation (2) via MSOM, with different propagation constants b: (a) b = 4.5 and (b) b = 1.9 marked
as (A, B) in Figure 1c, and (c) b = 4.5 and (d) b = 1.9 marked as (C, D) in Figure 1d. The blue solid
lines, red dashed line, and orange solid lines in panels (a–d) respectively denote the stable profiles,
unstable profile, and shape of optical lattice. Panels (e–l) show the corresponding eigenvalues and
perturbed evolutions of the equal-height type gap soliton clusters exhibited in panels (a–d). The
eigenvalue spectra and the perturbed dynamical propagation of these gap soliton clusters modes are
matched well.

3.2. Dipole-Type Gap Soliton Clusters

The second type of gap soliton clusters is the composite pattern consisting of dipole
gap solitons, i.e., two branches of U are located on the down half plane of (ξ, U). In
their forms, the dipole-type gap soliton clusters can be made as (1, 1, −1, −1)-type or
(1, −1, 1, −1)-type ones. The stability regions, dependence P(b), for the dipole-type gap
soliton clusters of both forms with spatial distance ∆ = 3π are displayed in Figure 3a
(for (1, 1, −1, −1)-type mode) and Figure 3d (for (1, −1, 1, −1)-type mode), respectively.
We find that the power P of (1, 1, −1, −1)-type and (1, −1, 1, −1)-type localized gap
modes decrease with propagation constant b, which obey satisfies the well-known anti-
Vakhitov–Kolokolov criterion, dP/db < 0, a necessary but not sufficient condition for stable
solitons supported by defocusing nonlinearity. Here, the blue solid and red dashed lines
in Figure 3a,d, respectively, indicate the stability and instability regions for dipole-type
gap soliton clusters. By adopting MSOM to simulate Equation (2), the stable and unstable
shapes of (1, 1, −1, −1)-type gap soliton clusters are shown in Figure 3b,c, which are labeled
by E and F in Figure 3a, and the profiles of (1, −1, 1, −1)-type gap soliton clusters labeled
by G and H in Figure 3d are shown in Figure 3e,f.

We emphasize that the stable dipole-type gap soliton clusters of both forms could only
be prepared within the first finite gap of the underlying linear Bloch spectra, compared
to their equal-height type in Figure 1d where the existence of stable gap soliton clusters
is also within the second finite gap. In the top line of Figure 4, we have shown the
corresponding linear stability eigenvalue spectra of these four soliton clusters. The real
parts of the eigenvalue, i.e., Re(λ), for stable gap modes of marked points (E, G) with
b = 4.5 are zero, while for unstable gap modes of marked points (F, H) with b = 3.0,
they are nonzero. Utilizing the direct perturbed simulation to integrate Equation (1), the
evolutional dynamical propagation of the corresponding gap modes is depicted in the
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bottom line of Figure 4, where it is seen that an agreement is once again made between the
both. For stable gap soliton clusters, their shapes and amplitudes remain constant during a
long-time evolution, while the unstable ones in Figure 4f,h diverge and oscillate, which
behave as the equal-height type in Figure 2j.

Figure 3. (a,d), respectively, represent the power P of (1, 1, −1, −1)-type and (1, −1, 1, −1)-type
localized gap modes versus propagation constant b with spatial distance ∆ = 3π in the first finite gap.
(b,e) and (c,f) are, respectively, the corresponding profiles of the marked points (E, G) (b = 4.5) and
(F, H) (b = 3.0) by simulating Equation (2) via MSOM. Note that the blue solid and red dashed lines
in all panels, respectively, indicate the stable and unstable dipole-type gap soliton clusters modes.

Figure 4. Eigenvalues and perturbed evolutions of (1, 1, −1, −1)-type and (1, −1, 1, −1)-type gap
soliton clusters modes. (a–d) display the eigenvalues of (1, 1, −1, −1)-type and (1, −1, 1, −1)-type
gap soliton clusters shown in Figure 3b,c,e,f by solving the eigenvalue Equation (3) with the Fourier
collocation method. Panels (e–h) are the corresponding perturbed evolutions by utilizing the direct
perturbed simulation to integrate Equation (1). The stable gap soliton clusters keep their shapes and
amplitudes unchanged during a long-time evolution, while the unstable ones diverge and oscillate.

4. Conclusions

In this article, using numerical ways relying on linear stability analysis and direct
simulations, we have revealed briefly the existence, structural property, and perturbed
dynamics of one-dimensional gap soliton molecules and clusters loaded onto optical
lattice-trapped coherently atoms ensembles working on the electromagnetically induced
transparency regime, and in the framework of generalized nonlinear Schrödinger equation.
We find that both the equal-height and dipole types of gap soliton molecules and clusters
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could be formed in such a physical setting, and they are mostly stable within the first
finite gap of the underlying linear Bloch-wave spectrum. Strikingly, the spatial distance ∆
between each adjacent peak of the soliton clusters could be tuned to an integer multiple
of the spatial period of optical lattices; with a larger distance, the stability expands. Our
linear stability analysis results agree well with the results produced by direct perturbed
simulations. We are optimistic to believe that the gap soliton molecules and clusters
predicted here may be readily observed in ultracold atom experiments, providing detailed
insight into higher-order localized gap modes of coherent atomic gas and laying the
foundation for their promising applications in optical communications and quantum
information processing.

The natural extension of this article includes the consideration of other types of
gap soliton clusters with more peaks or wider spatial distance ∆, and in two-component
coupled equations. It is an obvious theme to investigate the appearance of gap soliton
molecules and clusters as well as gap vortex soliton clusters in a similar model but with two-
dimensional spatial coordinates. For the experimental observation, the one-dimensional
soliton molecules and clusters can also be observed in the context of nonlinear optics for
nonlinear laser light propagation through photonic crystals and fiber Bragg gratings.

Author Contributions: Conceptualization, Z.C. and H.X.; methodology, Z.C. and Q.Z.; software, Z.C.
and J.Z.; validation, Z.C., H.X., Q.Z. and J.Z.; formal analysis, Z.C., H.X., and J.Z.; investigation, Z.C.,
H.X., Q.Z., and J.Z.; resources, Z.C. and J.Z.; data curation, Z.C., Q.Z., and J.Z.; writing—original
draft preparation, Z.C. and J.Z.; writing—review and editing, Z.C., H.X., Q.Z. and J.Z.; visualization,
Z.C. and J.Z.; supervision, J.Z.; project administration, J.Z.; funding acquisition, Z.C., H.X. and J.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (12264002,
12074423, 12074063, and 12264003), the Jiangxi Provincial Natural Science Foundation (20202BABL211013,
20232BAB201041, and 20232ACB211007), and the Young Scholar of Chinese Academy of Sciences in
western China (XAB2021YN18).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Chiao, R.Y.; Garmire, E.; Townes, C.H. Self-trapping of optical beams. Phys. Rev. Lett. 1964, 13, 479–482. [CrossRef]
2. Kivshar, Y.S.; Agrawal, G.P. Optical Solitons: From Fibers to Photonic Crystals; Academic Press: San Diego, CA, USA, 2003.
3. Malomed, B.A. Multidimensional Solitons, 1st ed.; AIP Publishing (Online): New York, NY, USA, 2022.
4. Malomed, B.A.; Mihalache, D. Nonlinear waves in optical and matter-wave media: A topical survey of recent theoretical and

experimental results. Rom. J. Phys. 2019, 64, 106.
5. Mihalache, D. Localized structures in optical and matter-wave media: A selection of recent studies. Rom. Rep. Phys. 2021, 73, 403.
6. Wang, W.; Wang, L.; Zhang, W. Advances in soliton microcomb generation. Adv. Photon. 2020, 2, 034001. [CrossRef]
7. Rozenman, G.G.; Shemer, L.; Arie, A. Observation of accelerating solitary wavepackets. Phys. Rev. E 2020, 101, 050201. [CrossRef]

[PubMed]
8. Lu, Z.; Chen, H.-J.; Wang, W.;Yao, L.; Wang, Y.; Yu, Y.; Little, B.E.; Chu, S.T.; Gong, Q.; Zhao, W.; et al. Synthesized soliton crystals.

Nat. Commun. 2021, 12, 3179. [CrossRef] [PubMed]
9. Qi, Y.; Yang, S.; Wang, J.; Li, L.; Bai, Z.; Wang, Y.; Lv, Z. Recent advance of emerging low-dimensional materials for vector soliton

generation in fiber lasers. Mater. Today Phys. 2022, 23, 100622. [CrossRef]
10. Rozenman, G.G.; Schleich, W.P.; Shemer, L.; Arie, A. Periodic wave trains in nonlinear media: Talbot revivals, Akhmediev

breathers, and asymmetry breaking. Phys. Rev. Lett. 2022, 128, 214101. [CrossRef]
11. Eiermann, B.; Anker, T.; Albiez, M.; Taglieber, M.; Treutlein, P.; Marzlin, K.P.; Oberthaler, M.K. Bright Bose-Einstein gap solitons of

atoms with repulsive interaction. Phys. Rev. Lett. 2004, 92, 230401. [CrossRef]
12. Morsch, O.; Oberthaler, M. Dynamics of Bose-Einstein condensates in optical lattices. Rev. Mod. Phys. 2006, 78, 179–215. [CrossRef]
13. Kartashov, Y.V.; Malomed, B.A.; Torner, L. Solitons in nonlinear lattices. Rev. Mod. Phys. 2011, 83, 247–305. [CrossRef]
14. Garanovich, I.L.; Longhi, S.; Sukhorukov, A.A.; Kivshar, Y.S. Light propagation and localization in modulated photonic lattices

and waveguides. Phys. Rep. 2012, 518, 1–79. [CrossRef]
15. Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 2017, 89, 011004. [CrossRef]

http://doi.org/10.1103/PhysRevLett.13.479
http://dx.doi.org/10.1117/1.AP.2.3.034001
http://dx.doi.org/10.1103/PhysRevE.101.050201
http://www.ncbi.nlm.nih.gov/pubmed/32575227
http://dx.doi.org/10.1038/s41467-021-23172-2
http://www.ncbi.nlm.nih.gov/pubmed/34039968
http://dx.doi.org/10.1016/j.mtphys.2022.100622
http://dx.doi.org/10.1103/PhysRevLett.128.214101
http://dx.doi.org/10.1103/PhysRevLett.92.230401
http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1103/RevModPhys.83.247
http://dx.doi.org/10.1016/j.physrep.2012.03.005
http://dx.doi.org/10.1103/RevModPhys.89.011004


Crystals 2024, 14, 36 10 of 11

16. Kartashov, Y.V.; Astrakharchik, G.E.; Malomed, B.A.; Torner, L. Frontiers in multidimensional self-trapping of nonlinear fields
and matter. Nat. Rev. Phys. 2019, 1, 185–197. [CrossRef]

17. Panajotov, K.; Tlidi, M.; Song, Y.; Zhang, H. Discrete vector light bullets in coupled nonlinear cavities. Chaos Solitons Fractals 2022,
163, 112532. [CrossRef]

18. Kengne, E.; Liu, W.-M.; Malomed, B.A. Spatiotemporal engineering of matter-wave solitons in Bose-Einstein condensates. Phys.
Rep. 2021, 899, 1–62. [CrossRef]

19. Huang, C.; Dong, L. Gap solitons in the nonlinear fractional Schrödinger equation with an optical lattice. Opt. Lett. 2016, 41,
5636–5639. [CrossRef]

20. Huang, C.; Li, C.; Deng, H.; Dong, L. Gap Solitons in fractional dimensions with a quasi-periodic lattice. Ann. Phys. 2019,
531, 1900056. [CrossRef]

21. Xie, J.; Zhu, X.; He, Y. Vector solitons in nonlinear fractional Schrödinger equations with parity-time-symmetric optical lattices.
Nonlinear Dyn. 2019, 97, 1287–1294. [CrossRef]

22. Zeng, L.; Zeng, J. Gap-type dark localized modes in a Bose-Einstein condensate with optical lattices. Adv. Photon. 2019, 1, 046004.
[CrossRef]

23. Zeng, L.; Zeng, J. Preventing critical collapse of higher-order solitons by tailoring unconventional optical diffraction and
nonlinearities. Commun. Phys. 2020, 3, 26. [CrossRef]

24. Li, J.; Zhang, Y.; Zeng, J. Matter-wave gap solitons and vortices in three-dimensional parity-time-symmetric optical lattices.
iScience 2022, 25, 104026. [CrossRef] [PubMed]

25. Chen, Z.; Zeng, J. Localized gap modes of coherently trapped atoms in an optical lattice. Opt. Express 2021, 29, 3011–3025.
[CrossRef] [PubMed]

26. Chen, Z.; Zeng, J. Two-dimensional optical gap solitons and vortices in a coherent atomic ensemble loaded on optical lattices.
Commun. Nonlinear Sci. Numer. Simulat. 2021, 102, 105911. [CrossRef]

27. Chen, Z.; Zeng, J. Nonlinear localized modes in onedimensional nanoscale dark-state optical lattices. Nanophotonics 2022, 11,
3465–3474. [CrossRef]

28. Kartashov, Y.V. Light bullets in moiré lattices. Opt. Lett. 2022, 47, 4528–4531. [CrossRef] [PubMed]
29. Chen, Z.; Wu, Z.; Zeng, J. Light gap bullets in defocusing media with optical lattices. Chaos Solitons Fractals 2023, 174, 113785.

[CrossRef]
30. Ye, F.; Kartashov, Y.V.; Hu, B.; Torner, L. Light bullets in Bessel optical lattices with spatially modulated nonlinearity. Opt. Express

2009, 17, 11328. [CrossRef]
31. Hang, C.; Huang, G. Stern-Gerlach effect of weak-light ultraslow vector solitons. Phys. Rev. A 2012, 86, 043809. [CrossRef]
32. Hang, C.; Konotop, V.V.; Huang, G. Spatial solitons and instabilities of light beams in a three-level atomic medium with a

standing-wave control field. Phys. Rev. A 2009, 79, 033826. [CrossRef]
33. Dong, L.; Kartashov, Y.V.; Torner, L.; Ferrando, A. Vortex Solitons in Twisted Circular Waveguide Arrays. Phys. Rev. Lett. 2022,

129, 123903. [CrossRef]
34. Huang, C.; Ye, F.; Chen, X.; Kartashov, Y.V.; Konotop, V.V.; Torner, L. Localization-delocalization wavepacket transition in

Pythagorean aperiodic potentials. Sci. Rep. 2016, 6, 32546. [CrossRef]
35. Wang, P.; Zheng, Y.; Chen, X.; Huang, C.; Kartashov, Y.V.; Torner, L.; Konotop, V.V.; Ye, F. Localization and delocalization of light

in photonic moiré lattices. Nature 2020, 577, 42–46. [CrossRef]
36. Chen, Z.; Liu, X.; Zeng, J. Electromagnetically induced moire optical lattices in a coherent atomic gas. Front. Phys. 2022, 17, 42508.

[CrossRef]
37. Mao, X.R.; Shao, Z.K.; Luan, H.Y.; Wang, S.L.; Ma, R.M. Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol.

2021, 16, 1099. [CrossRef]
38. González-Tudela, A.; Cirac, J.I. Cold atoms in twistedbilayer optical potentials. Phys. Rev. A 2019, 100, 053604. [CrossRef]
39. Fu, Q.; Wang, P.; Huang, C.; Kartashov, Y.V.; Torner, L.; Konotop, V.V.; Ye, F. Optical soliton formation controlled by angle twisting

in photonic moiré lattices. Nat. Photon. 2020, 14, 663–668. [CrossRef]
40. Kartashov, Y.V.; Ye, F.; Konotop, V.V.; Torner, L. Multifrequency Solitons in Commensurate-Incommensurate Photonic Moiré

Lattices. Phys. Rev. Lett. 2021, 127, 163902. [CrossRef]
41. Arkhipova, A.A.; Kartashov, Y.V.; Ivanov, S.K.; Zhuravitskii, S.A.; Skryabin, N.N.; Dyakonov, I.V.; Kalinkin, A.A.; Kulik, S.P.;

Kompanets, V.O.; Chekalin, S.V.; et al. Observation of Linear and Nonlinear Light Localization at the Edges of Moiré Arrays.
Phys. Rev. Lett. 2023, 130, 083801. [CrossRef]

42. Ivanov, S.K.; Konotop, V.V.; Kartashov, Y.V.; Torner, L. Vortex solitons in moire optical lattices. Opt. Lett. 2023, 48, 3797–3800.
[CrossRef] [PubMed]

43. Liu, X.; Zeng, J. Gap solitons in parity-time symmetric moiré optical lattices. Photonics Res. 2023, 11, 196–202. [CrossRef]
44. Malomed, B.A. Optical Solitons and Vortices in Fractional Media: A Mini-Review of Recent Results. Photonics 2021, 8, 353.

[CrossRef]
45. Liu, X.; Yao, X.; Cui, Y. Real-Time Observation of the Buildup of Soliton Molecules. Phys. Rev. Lett. 2018, 121, 023905. [CrossRef]
46. Wang, Z.Q.; Nithyanandan, K.; Coillet, A.; Tchofo-Dinda, P.; Grelu, P. Optical soliton molecular complexes in a passively

mode-locked fibre laser. Nat. Commun. 2019, 10, 830. [CrossRef]

http://dx.doi.org/10.1038/s42254-019-0025-7
http://dx.doi.org/10.1016/j.chaos.2022.112532
http://dx.doi.org/10.1016/j.physrep.2020.11.001
http://dx.doi.org/10.1364/OL.41.005636
http://dx.doi.org/10.1002/andp.201900056
http://dx.doi.org/10.1007/s11071-019-05048-9
http://dx.doi.org/10.1117/1.AP.1.4.046004
http://dx.doi.org/10.1038/s42005-020-0291-9
http://dx.doi.org/10.1016/j.isci.2022.104026
http://www.ncbi.nlm.nih.gov/pubmed/35345461
http://dx.doi.org/10.1364/OE.412554
http://www.ncbi.nlm.nih.gov/pubmed/33770909
http://dx.doi.org/10.1016/j.cnsns.2021.105911
http://dx.doi.org/10.1515/nanoph-2022-0213
http://dx.doi.org/10.1364/OL.471022
http://www.ncbi.nlm.nih.gov/pubmed/36048696
http://dx.doi.org/10.1016/j.chaos.2023.113785
http://dx.doi.org/10.1364/OE.17.011328
http://dx.doi.org/10.1103/PhysRevA.86.043809
http://dx.doi.org/10.1103/PhysRevA.79.033826
http://dx.doi.org/10.1103/PhysRevLett.129.123903
http://dx.doi.org/10.1038/srep32546
http://dx.doi.org/10.1038/s41586-019-1851-6
http://dx.doi.org/10.1007/s11467-022-1153-6
http://dx.doi.org/10.1038/s41565-021-00956-7
http://dx.doi.org/10.1103/PhysRevA.100.053604
http://dx.doi.org/10.1038/s41566-020-0679-9
http://dx.doi.org/10.1103/PhysRevLett.127.163902
http://dx.doi.org/10.1103/PhysRevLett.130.083801
http://dx.doi.org/10.1364/OL.494681
http://www.ncbi.nlm.nih.gov/pubmed/37450753
http://dx.doi.org/10.1364/PRJ.474527
http://dx.doi.org/10.3390/photonics8090353
http://dx.doi.org/10.1103/PhysRevLett.121.023905
http://dx.doi.org/10.1038/s41467-019-08755-4


Crystals 2024, 14, 36 11 of 11

47. Zhu, W.; He, Y.; Malomed, B.A.; Mihalache, D. Two-dimensional solitons and clusters in dissipative lattices. J. Opt. Soc. Am. B
2014, 31, A1–A5. [CrossRef]

48. Zeng, L.; Zeng, J. Modulated solitons, soliton and vortex clusters in purely nonlinear defocusing media. Ann. Phys. 2020,
421, 168284. [CrossRef]

49. Qin, L.; Hang, C.; Malomed, B.A.; Huang, G. Stable High-Dimensional Weak-Light Soliton Molecules and Their Active Control.
Laser Photon. Rev. 2022, 16, 2100297. [CrossRef]

50. Zhong, M.; Yan, Z. Formation of multi-peak gap solitons and stable excitations for double-Lévy-index and mixed fractional NLS
equations with optical lattice potentials. Proc. R. Soc. A 2023, 479, 20230222. [CrossRef]

51. Lee, T.D.; Huang, K.; Yang, C.N. Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature
Properties. Phys. Rev. 1957, 106, 1135–1145. [CrossRef]

52. Petrov, D.S. Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture. Phys. Rev. Lett. 2015, 115, 155302. [CrossRef]
53. Dong, L.; Kartashov, Y.V. Rotating Multidimensional Quantum Droplets. Phys. Rev. Lett. 2021, 126, 244101. [CrossRef]
54. Ma, Y.; Peng, C.; Cui, X. Borromean Droplet in Three-Component Ultracold Bose Gases. Phys. Rev. Lett. 2021, 127, 043002.

[CrossRef]
55. Kartashov, Y.V.; Malomed, B.A.; Torner, L. Metastability of Quantum Droplet Clusters. Phys. Rev. Lett. 2019, 122, 193902.

[CrossRef]
56. Desyatnikov, A.S.; Kivshar, Y.S. Rotating Optical Soliton Clusters. Phys. Rev. Lett. 2002, 88, 053901. [CrossRef]
57. Herink, G.; Kurtz, F.; Jalali, B.; Solli, D.R.; Ropers, C. Real-time spectral interferometry probes the internal dynamics of

femtosecond soliton molecules. Science 2017, 356, 50. [CrossRef]
58. Song, L.; Yang, Z.; Li, X.; Zhang, S. Controllable Gaussian-shaped soliton clusters in strongly nonlocal media. Opt. Express 2018,

26, 19182–19198. [CrossRef]
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