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Abstract: Topological states of matter have attracted significant attention due to their intrinsic wave-
guiding and localization capabilities robust against disorders and defects in electronic, photonic,
and phononic systems. Despite the above topological features that phononic crystals share with
their electronic and photonic counterparts, finite-frequency topological states in phononic crys-
tals may not always survive. In this work, we discuss the survivability of topological states in
Su–Schrieffer–Heeger models with both local and non-local interactions and larger symmetry pertur-
bation. Although such a discussion is still about ideal mass-spring models, the insights from this
study set the expectations for continuum phononic crystals, which can further instruct the application
of phononic crystals for practical purposes.

Keywords: topological states; phononic crystals; chiral symmetry; phonon bandgap

1. Introduction

Topological insulators (TIs) are intrinsically electrical insulators with conducting
surfaces/edges/corners when interfaced with trivial insulators, including vacuum. These
surface/edge/corner states result from TI bulk properties, i.e., topological invariants, and
are thus robust against local perturbations and disorders [1], making them ideal candidates
for various promising applications in electronics with strict dissipation, especially quantum-
computing systems [2]. They have thus attracted significant attention. Moreover, in recent
years, these topologically protected non-dissipative localized states have inspired studies of
classical analogs of TIs in photonic [3–7], magnetic [8–10], and mechanical [11–17] systems.

In mechanical systems, a similar topological invariant can also be derived from the
spectral evolution of eigenvectors of the dynamical matrix (or the compatibility matrix) from
a unit cell analysis. The integer topological invariant can then inform the numbers and types
of topologically protected surface/edge/corner states confining static deformation [18–22]
or vibration [11,13–17,23–25] within a bulk bandgap (which is a frequency range with no
eigenfrequency solutions, i.e., bulk wave propagation) when a material/structure with
a non-zero topological invariant, i.e., a topologically non-trivial phase, forms a domain
wall with another domain characterized by a zero-topological invariant, i.e., a topologically
trivial phase, including vacuum. Such a bulk property reflected as surface/edge/corner
states at a domain wall or edge is usually referred to as the bulk–edge correspondence.

A commonly used example to illustrate this bulk–edge correspondence is the one-
dimensional (1D) Su–Schrieffer–Heeger (SSH) lattice, as shown in Figure 1a. With alter-
nating spring constants connecting identical masses, m, a bulk bandgap can be opened
as shown in Figure 1b. It has been well established that the larger the difference in these
spring constants, the wider the bandgap we can obtain. In the existing literature, finite-
frequency in-gap topological modes are commonly created by seaming two domains with
a difference in topology (here, we refer to these as topologically protected domain-wall
states (TPDWSs)) [15,17,26], or by simply placing a lattice with a free or fixed edge [27,28],

Crystals 2024, 14, 102. https://doi.org/10.3390/cryst14010102 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst14010102
https://doi.org/10.3390/cryst14010102
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0001-9142-8528
https://doi.org/10.3390/cryst14010102
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst14010102?type=check_update&version=1


Crystals 2024, 14, 102 2 of 15

sometimes cited as “topologically protected edge states” (TPESs) [29–33]. However, as dis-
cussed in Refs. [30,31], the existence of these edge states and their frequencies (in case they
exist) depend heavily on the boundary conditions in finite lattices, making these edge states
less robust. This is because such boundaries perturb the chiral symmetry of the system’s
dynamical matrix. Strictly speaking, these edge states are no longer topologically protected
due to the loss of chiral symmetry. In fact, this is also the case if a domain boundary is
formed between two domains with different topologies when a large perturbation to the
unit cell symmetry is introduced. However, this has received much less attention, since
most discussions on TPDWSs introduce a small perturbation in spring stiffness to open
the bandgap in order to preserve the chiral symmetry to some extent. Nonetheless, a large
bandgap is usually desirable in many applications requiring vibration mitigation within a
certain frequency range [34–37]. Hence, it is important to identify the conditions for the
survivability of the in-gap states. Since these in-gap states are deviations from TPESs or
TPDWSs, some topological features at these boundaries still exist even with a large chiral
symmetry perturbation.

Unit Cell p

k1 k2m m

k1=k2

(d)

k1>k2

a

k1<k2
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(b)

(c) aa

a a a
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Figure 1. (a) Unit cell (circled in a dashed line) of a chain of identical masses, m, with alternating
springs possessing spring constants k1 (green bars) and k2 (yellow bars). The unit cell length is
a. (b) Phonon dispersion curves. (c) Eigenvalue plots of D̃(q) denoted as ω2 (both normalized by
ω0 =

√
(k1 + k2)/2m). (d) Winding paths for k1 > k2 (e.g., k1 = 1.2 and k2 = 0.8, left); k1 = k2 (e.g.,

k1 = k2 = 1, middle); and k1 < k2 (e.g., k1 = 0.8 and k2 = 1.2, right) in the unit cell.

In this work, we will delve into SSH systems with large symmetry perturbations at the
domain boundary and the unit cell. Simple SSH chains with nearest-neighbor interactions
only and more complex SSH networks with beyond-nearest neighbors (BNNs) will both be
taken into account, the latter of which has recently gained increasing attention due to their



Crystals 2024, 14, 102 3 of 15

roton-like dispersion relations similar to those in correlated quantum systems [38–43], as
well as their unconventional topological states associated with BNN coupling [17,44–46].
The survivability of the in-gap states will be analyzed, which will further instruct the design
of large-bandgap structures in the continuum regime.

2. Results and Discussion
2.1. Su–Schrieffer–Heeger Systems with Nearest-Neighbor Interactions

To simplify the illustration, we only consider displacements of identical masses, m,
connected by alternating nearest-neighbor springs with spring constants k1 and k2 along
the chain, as shown in Figure 1a. The governing equations of a lattice unit cell can be
expressed as

mẍp
1 = k1(xp

2 − xp
1 )− k2(xp

1 − xp−1
2 ), (1)

mẍp
2 = k2(xp+1

1 − xp
2 )− k1(xp

2 − xp
1 ), (2)

where displacements of the two masses in the p-th cell are denoted as xp
1 and xp

2 , respectively.
The displacements of masses in any unit cell p at time t can be expressed by those within a
reference unit cell using a plane-wave solution in combination with Bloch–Floquet periodic
boundary conditions:

xp(t) = x̃(q)ei(pqa−ωt), (3)

where ω is the vibration frequency; xp is the displacements of the p-th cell with xp = [xp
1 , xp

2 ];
q is the wave number, which is inversely proportional to the wavelength λ, i.e., q = 2π/λ;
a denotes the lattice constant; and x̃(q) is displacements within the reference unit cell.
Substituting this expression into Equations (1) and (2) gives

[D(q)− ω2m]x̃(q) = 0, (4)

where D(q) is the stiffness (or dynamical) matrix of the periodic system

D(q) =
[

k1 + k2 −k1 − k2e−iqa

−k1 − k2eiqa k1 + k2

]
. (5)

The square root of the eigenvalues of D(q) gives the phonon band diagram, as pre-
sented in Figure 1b. With k1 = k2, there is no bandgap between the two bands. When
k1 ̸= k2, a bandgap is created between the two phonon bands due to the breaking of the
unit cell space-inversion symmetry (SIS). Although the bandgap does not change if k1 > k2
or vice versa, the two choices of gauge result in two different topological states since the
transition from one to another unavoidably passes the non-gap state, i.e., non-gapped
transition, as shown in the middle panels of Figure 1b–d. To characterize the topology of
such a 1D system, the Zak phase [47] measuring the rotation of eigenvectors in the unit cell,
or the winding number n are often evaluated, as shown in Figure 1d. The latter of these is
defined as

n =
∫ π/a

−π/a

1
4πi

tr[σzD̃∂qD̃]dq, (6)

where σz is the unitary matrix, and D̃ is the chiral matrix D(q) after subtracting all diagonal
elements:

D̃(q) = D(q)− (k1 + k2)I, (7)

where I is the identity matrix. The eigenvalues of D̃(q) appear to be symmetric about the
x-axis, as shown in Figure 1c.

As we can see, when k1 > k2, n = 0, indicating a trivial intra-cell-hopping phase. On
the contrary, when k1 < k2, n = 1, suggesting a topologically non-trivial inter-cell-hopping
phase. Such a difference in topology due to gauge choice suggests that when connecting
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two domains with these two different topologies, there exists a localized mode with a
frequency located within the bandgap at the domain wall.

In this section, we will discuss the effect of the boundary conditions on the existence
of in-gap states when the simple mass-spring lattice shown in Figure 1a is interfaced with a
vacuum (Section 2.1.1, In-Gap Edge States in Finite Lattices) and with a domain possessing
an opposite gauge in the unit cell (Section 2.1.2, In-Gap Domain-Wall States in Infinite
Lattices) with various δk values characterizing the difference between k1 and k2, defined
as k1 = 1 − δk and k2 = 1 + δk. Here, we consider a wide range of δk values, up to ±0.9,
which is 90% of the average spring stiffness (we set k1+k2

2 = 1). Such a big difference in the
spring constants will create a large bulk bandgap, which, as mentioned in the Introduction,
is desirable for many applications. However, the survivability of the in-gap states depends
on the specific boundary condition.

2.1.1. In-Gap Edge States in Finite Lattices

Although the number of unit cells should be approximate to infinity in the finite lattice
or supercell to allow for sufficient spatial decay from the edge/domain wall for an in-gap
state, in our previous study of the effect of third-nearest neighbors (TNNs) on TPDWSs, we
were able to identify TPDWSs with only eight unit cells in each domain in our 3D model
and experiments [17]. Since, in this work, we are interested in observing finite lattices or
supercells with domain walls not too far apart, we take the finite lattice containing 20 unit
cells presented in Figure 1a with free boundaries, as shown in Figure 2a. The stiffness
matrix of such a finite system is

D(q) =



k1 −k1 0 0 0 0
−k1 k1 + k2 −k2 . . . 0 0 0

0 −k2 k1 + k2 0 0 0
...

. . .
...

0 0 0 k1 + k2 −k2 0
0 0 0 . . . −k2 k1 + k2 −k1
−0 0 0 0 −k1 k1


. (8)

As we can see, D(q) is not a chiral matrix due to the non-identical diagonal elements at
the two free boundaries. Hence, no in-gap states exist, as shown in Figure 2a–d, regardless
of δk.

The in-gap edge states can be easily acquired by fixing the two ending masses with a
spring, k f ix = k2, connected to a wall, as shown in Figure 2e, making the D(q) chiral:

D(q) =



k1 + k2 −k1 0 0 0 0
−k1 k1 + k2 −k2 . . . 0 0 0

0 −k2 k1 + k2 0 0 0
...

. . .
...

0 0 0 k1 + k2 −k2 0
0 0 0 . . . −k2 k1 + k2 −k1
−0 0 0 0 −k1 k1 + k2


. (9)

Subtracting the diagonal elements as in Equation (7) also gives us a chiral matrix D̃(q). In
this case, as long as the SSH terminating cells present a non-trivial gauge, i.e., k1 < k2 or
δk > 0, and are interfaced with a vacuum—a trivial domain—the in-gap edge states are
guaranteed to exist regardless of the magnitude of δk, as evident in Figure 2f–h. Moreover,
due to the strict chiral symmetry Equation (9) presents, all the in-gap edge states are located
exactly at ω/ω0 =

√
(k1 + k2)/m in the eigenfrequency plot in Figure 2f, or ω2/ω2

0 = 0
in the D̃(q) eigenvalue plot in Figure 2g, which we refer to as the mid-gap state in our
discussion. These in-gap edge states completely follow the definition of TPESs, also known
as the Jackiw–Rebbi zero modes [48].
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Figure 2. (a) A finite lattice containing 20 unit cells of identical masses, m, with alternating springs
possessing spring constants k1 (green bars) and k2 (yellow bars). k1 = 1 − δk and k2 = 1 + δk.
(b) Normalized eigenfrequencies of the finite lattice in (a). (c) Normalized eigenvalues of the stiffness
matrix of (a) after subtracting 2 · I, i.e., D̃(q) = D(q)− (k1 + k2) · I, to better evaluate the deviation
of the in-gap states from the midgap if they exist. (d) Twentieth (yellow circles) and twenty-first
(green triangles) eigenmodes when δk = 0.9. (e) Connecting the two ends of the finite lattice to a
wall by springs with a constant k f ix = k2. (f) Normalized eigenfrequencies of the finite lattice in
(e). (g) Normalized eigenvalues of the stiffness matrix of (e) after subtracting 2 · I. (h) Twentieth
(yellow circles) and twenty-first (green triangles) eigenmodes when δk = 0.9. (i) Normalized
eigenfrequencies of the stiffness matrix of (e) with varying k f ix and fixed k1 and k2 (yellow—δk = 0.5,
green—δk = −0.5). (j) In-gap eigenmodes of δk = 0.5 (yellow circles and triangles) and δk = −0.5
(green squares) when k f ix = 2. (k) Spatial Fourier transform of mode shapes of the lattice with
δk = 0.5 and k f ix = k2 (solid green), δk = 0.5 and k f ix = 2 (dashed yellow), and δk = −0.5 and
k f ix = 2 (dashed green).

However, despite being topologically protected, these TPESs are prone to boundary
conditions. A small perturbation at the edges will make the TPESs drift away from the
mid-gap state, or even disappear, as shown in Figure 2i. Thus, topology alone can no longer
guarantee the existence of TPESs. The chiral symmetry of the entire system is crucial to
achieve TPESs. On the other hand, even when the chain terminates with topologically
trivial unit cells on both ends, one in-gap state on both ends may still emerge with a
sufficiently large k f ix, as presented in Figure 2i. This in-gap state, nonetheless, is merely
a trivial edge state due to the termination of periodicity. As can be seen from the spatial
Fourier transform (SFT) of these edge states, when it is a strict TPES, the SFT of the mode
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shape when δk = 0.5 and k f ix = k2 presents the widest peak at qa = π. With the same δk,
which ensures the same topology, despite significantly increasing k f ix to 2, which deviates
the edge state from the mid-gap frequency, its SFT is only slightly narrower than that of the
strict TPES. In contrast, when making the lattice topology trivial by reversing δk to −0.5,
although an in-gap state emerges with a large k f ix, the SFT is significantly (approximately
60%) narrower than that of the TPES, indicating a much slower spatial decay (or a stronger
leakage into the bulk) than the TPES. Here, we use the mid-peak widths of the SFT to
calibrate the spatial decay speed. The wider these peaks are, the faster the spatial decay
of the edge/domain-wall modes into the bulk, and vice versa. Hence, the topological-like
in-gap state, even with a large perturbation, is more robust in localizing edge states than
the trivial in-gap state.

2.1.2. In-Gap Domain-Wall States in Infinite Lattices

When seaming two topologically different domains, as shown in Figure 3a, to obtain
TPDWSs, the chiral symmetry of the dynamical matrix, D(q), of the entire system must
also be maintained. Without any modification, the D(q) of the supercell shown in Figure 3a,
in which the Bloch–Floquet boundary conditions are applied to the top and bottom masses,
is written as

D(q) =



k1 + k2 −k1 0 0 0 −k2e−iqa

−k1 k1 + k2 −k2 . . . 0 0 0
0 −k2 k1 + k2 0 0 0

. . .
... −k1 2k1 −k1

...
. . .

0 0 0 k1 + k2 −k2 0
0 0 0 . . . −k2 k1 + k2 −k1

−k2eiqa 0 0 0 −k1 k1 + k2


, (10)

which is not a chiral matrix due to the domain-wall mass connected to k1 on both sides.
Although we can achieve a chiral matrix by pinning the domain-wall mass, it is not realistic
in practice and highly challenging when k1 > k2.

k1

k2

m

m

(a) (b) (c) (d) (e)

-0.5 0 0.5

20

40

60

80

100

0.5 1
0

2

4

6

Figure 3. (a) An infinite lattice with a supercell containing 101 identical masses, m, with alternating
springs possessing spring constants k1 (green bars) and k2 (yellow bars) forming an interface at the
central mass, about which is connected k1 on both sides. k1 = 1 − δk and k2 = 1 + δk. (b) Normalized
eigenfrequencies of the finite lattice in (a). (c) Normalized eigenvalues of the stiffness matrix of (a)
after subtracting 2 · I. (d) Supercell eigenmodes when δk = −0.9 (green triangles) and δk = 0.9
(yellow circles). (e) Spatial Fourier transform of the mode shapes in (d).

When the difference between k1 and k2, or |δk|, is small, D(q) does not significantly
deviate from a chiral matrix; thus, the in-gap state is still adjacent to the middle of the
bandgap, as shown in Figure 3b,c. However, when k1 and k2 are largely different, D(q) can
no longer be approximated as a chiral matrix. Interestingly, when δk < 0, i.e., k1 > k2, the
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in-gap state is intact. The breaking of the chiral symmetry of D(q) results in an additional
trivial edge mode arising above the upper limit of the bulk mode. On the contrary, when
δk > 0, the in-gap state drops quickly near the lower bulk mode as δk increases. Although
unlike in finite lattices, such an in-gap state always survives, it is not easy to detect due to
its proximity to the bulk mode. Mode shapes when δk = ±0.9 are presented in Figure 3d.
The mid-gap state when δk = −0.9 decays rapidly due to a large bandgap. In contrast,
when δk = 0.9, the domain-wall state decays slowly into the bulk since its frequency is
merely slightly above the bulk mode. A quantitative comparison of the spatial decay speed
can be obtained from the SFT of these mode shapes from the domain-wall mass into the
bulk presented in Figure 3e, which shows a much wider peak when δk = −0.9 since the
domain-wall state resides in the middle of a large bandgap due to severe perturbation in k,
while a narrower peak is shown when δk = 0.9, indicating a slower spatial decay into the
bulk since the in-gap state is close to the lower bulk bands.

2.2. Su–Schrieffer–Heeger Systems with Beyond-Nearest-Neighbor Interactions

Introducing non-local or BNN interactions further complicates the discussion. In this
section, we will discuss systems with identical TNNs where the nearest neighbors are
non-identical, i.e., k′1 = k′2 and k1 ̸= k2, and vice versa, as shown in Figure 4.

The additional TNNs connect the current cell, p, with the one beyond its immediate
neighbors, i.e., p ± 2, modifying the governing equations as follows:

mẍp
1 = k1(xp

2 − xn
1 )− k2(xp

1 − xp−1
2 ) + k′1(xp+1

2 − xp
1 )− k′2(xp

1 − xp−2
2 ), (11)

mẍp
2 = k2(xp+1

1 − xp
2 )− c1(xp

2 − xp
1 ) + k′2(xp+2

1 − xp
2 )− k′1(xp

2 − xp−1
1 ). (12)

Plugging in Equation (3), we obtain the following stiffness matrix:

D(q) =
[

k1 + k2 + k′1 + k′2 −k1 − k2e−iqa − k′1eiqa − k′2e−2iqa

−k1 − k2eiqa − k′1e−iqa − k′2e2iqa k1 + k2 + k′1 + k′2

]
. (13)

The chiral matrix D̃(q) can then be obtained from

D̃(q) = D(q)− (k1 + k2 + k′1 + k′2)I. (14)

The additional exponential terms in Equations (11) and (12), or the off-diagonal terms
in D(q) Equation (13) due to TNNs yield the bending of the dispersion curves in the
irreducible Brillouin zone (IBZ), as shown in Figure 4b,c, also known as roton-like acoustic
dispersions, similar to those discovered at cryogenic temperatures in correlated quantum
systems [38–43].

Although phonon dispersions due to different nearest neighbors and TNNs are almost
identical, their winding paths differ significantly. When k1 > k2 and k′1 = k′2, n = 0 with
two extra local loops formed along the path, while when k1 = k2 and k′1 > k′2, n = −1 since
the circuit winds about the origin in the opposite direction (clockwise) to that of the main
path. Such a difference in winding number indicates that the former lattice is topologically
trivial, while the latter is non-trivial. On the contrary, when k1 < k2 and k′1 = k′2, n = 1
with three local loops formed along the path, while when k1 = k2 and k′1 < k′2, the circuit
winds about the origin twice counterclockwise; thus, n = 2, indicating that both are
non-trivial. This suggests that when interfacing the lattice of n ̸= 0 with a vacuum or a
topologically trivial domain, n edge/domain-wall states should exist. However, previously,
we demonstrated that this is not necessarily correct. We mathematically demonstrated that
the number of domain-wall states when seaming two topologically different domains is
determined by the number of band crossings when k1 = k2 and k′1 = k′2 within the IBZ, or
Dirac points, which is the phonon realization of the Jackiw–Rebbi theory [48]. We found
that the actual number of TPDWSs can be characterized by the Berry connection calculated
from the integrant of Equation (6), or local winding numbers, instead of the total winding
numbers over the IBZ [17]. Nonetheless, the total winding numbers across the whole IBZ as
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shown in Figure 4d may still inform the number of edge states when a lattice is terminated
and interfaced with a vacuum.

Unit Cell p

k1

k1'k2'

k2m m

k1=k2
k1>k2

or k1'>k2' and k1'=k2' or k1'<k2'

k1<k2

(a)

(b)

(c)

(d)
Im

Re

Im

Re

Im

Re

Figure 4. (a) Unit cell (circled in a dashed line) of a chain of identical masses, m, with alternating
springs possessing spring constants k1 (green bars) and k2 (yellow bars) connecting the nearest
neighbors, and k′1 (blue dashed lines) and k′2 (red dashed lines) connecting the third-nearest neighbors.
The unit cell length is a. (b) Phonon dispersion curves. (c) Eigenvalue plots of D̃(q) denoted as
ω2 (both normalized by ω0 =

√
(k1 + k2)/2m). (d) Winding paths for k1 > k2 (e.g., k1 = 1.2 and

k2 = 0.8) and k′1 = k′2 = 1 (yellow curves in the left panel); k1 = k2 = 1 and k′1 > k′2 (e.g., k′1 = 1.2
and k′2 = 0.8) (red curves in the left panel); k1 = k2 = k′1 = k′2 = 1 (black curves in the middle panel);
k1 < k2 and k′1 = k′2 (green curves in the right panel); and k1 = k2 and k′1 < k′2 (blue curves in the
right panel).

In this section, we will discuss the effect of a combination of the spring difference (both
δk and δk′, the latter of which is defined as k′1 = 1 + δk′ and k′2 = 1 − δk′) and the boundary
conditions on the existence of in-gap states when the mass-spring lattice with TNNs shown
in Figure 4a is interfaced with a vacuum (Section 2.2.1) and with a topologically different
domain (Section 2.2.2). We consider the scenarios across a wide range of both δk and δk′,
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up to 0.9, which opens up a large bandgap. The conditions of maintaining the in-gap states
will be explored.

2.2.1. In-Gap Edge States in Finite Lattices with Third-Nearest Neighbors

Taking a finite lattice containing 20 unit cells with free boundaries, as shown in
Figure 5a, yields the following stiffness matrix:

D(q) =



k1 + k′1 −k1 0 0 0 0
−k1 k1 + k2 + k′2 −k2 . . . 0 0 0

0 −k2 k1 + k2 + k′1 0 0 0
...

. . .
...

0 0 0 k1 + k2 + k′1 −k2 0
0 0 0 . . . −k2 k1 + k2 + k′2 −k1
−0 0 0 0 −k1 k1 + k′1


. (15)

Again, D(q) is not a chiral matrix due to non-identical diagonal elements close to the two
free boundaries. Therefore, we expect there to be no in-gap states. However, this is not
the case when k1 ̸= k2 and k′1 = k′2 = 1, as shown in Figure 5b–d. On the other hand,
when k1 = k2 = 1 and k′1 ̸= k′2, there are no in-gap states (Figure 6a–d), consistent with the
observation when masses are only connected by nearest neighbors, as in Figure 2a–d. In the
former scenario, although these in-gap states are indeed edge states, the two in-gap mode
numbers are 22 and 23 when δk > 0, and 21 and 22 when δk < 0. In the case of topological
in-gap states, the mode numbers should be 20 and 21 for a finite chain containing 20 unit
cells. In addition, there is more leakage of the edge modes into the bulk compared to
those shown in Figure 5h when the edges are fixed so that D(q) and D̃(q) (as defined in
Equation (14)) are chiral:

D̃(q) =



0 −k1 0 −k′1 0 0 0 0
−k1 0 −k2 0 . . . 0 0 0 0

0 −k2 0 −k1 0 0 0 0
...

. . .
...

0 0 0 0 −k1 0 −k2 0
0 0 0 0 . . . 0 −k2 0 −k1
0 0 0 0 −k′1 0 −k1 0


, (16)

as shown in Figure 5e. Hence, the two in-gap edge states in the lattice with free boundaries
shown in Figure 5a–d are trivial edge modes, whose existence is independent of its topology.

On the other hand, when fixing the masses near the two edges with appropriate
springs to the ground/wall to make D̃(q) chiral as in Equation (16), the number of TPESs
appear exactly as predicted by their corresponding winding numbers. When k1 > k2 and
k′1 = k′2, there are no in-gap states since n = 0, while when k1 < k2 and k′1 = k′2, one in-gap
state exists at each edge, matching n = 1, as shown in Figure 5f,g, and they are thus TPESs.
The SFT of these edge states from the edge to the bulk shown in Figure 5i reveals that the
edge modes shown in Figure 5d present over 30% more leakage into the bulk than the
TPES in Figure 5h according to the mid-peak widths of the SFT, further demonstrating
the vibration localization capabilities of TPESs compared to trivial edge states. Similarly,
when k′1 > k′2 and k1 = k2, n = −1, corresponding to the two mid-gap states when δk′ < 0
(Figure 6g). The opposite arrangement of TNNs, i.e., δk′ > 0 yields two edge states at each
end, as shown in Figure 6h, matching its topological invariant, n = 2. The SFTs of all the
TPESs visualized in Figure 6g,h are shown in Figure 6i, presenting much wider peaks than
their counterparts in lattices with free ends shown in Figure 6c,d, indicating that all these
TPESs are indeed localized on the edges even with a large δk′. It is also worth noting that
the SFTs of both edge and bulk modes with TNNs show major peaks at qa = 2π/3 and
5π/3, instead of at qa = π, as demonstrated in Figure 2k. This is because when introducing
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TNNs with k′ > 1/3k, extra Dirac points emerge within the IBZ. With δk ̸= 0 or δk′ ̸= 0,
the bandgap at these additional Dirac points opens more slowly than those at qa = π.
Thus, the phonon bands close to this bandgap are more associated with these Dirac points,
resulting in SFT peak positions matching their wavenumbers.

k1

k1'

k2'

k2

m

m

(e)

(a)
(b) (c) (d)

(f) (g) (h) (i)

0.5 1
0

2

4

6

Figure 5. (a) A finite lattice containing 20 unit cells of identical masses, m, with alternating springs
possessing spring constants k1 (green bars) and k2 (yellow bars) connecting the nearest neighbors, and
k′1 (blue dashed lines) and k′2 (red dashed lines) connecting the third-nearest neighbors. δk is defined as
k1 = 1− δk and k2 = 1+ δk. Here, we consider k′1 = k′2. (b) Normalized eigenfrequencies of the finite
lattice in (a). (c) Normalized eigenvalues of the stiffness matrix of (a) after subtracting 4 · I. (d) Twenty-
second (yellow circles) and twenty-third (green triangles) eigenmodes when δk = 0.9. (e) Connecting
the two ends of the finite lattice to a wall by springs with spring constants k2 + k′2, k′1, and k′2 to the
first, second, and third masses from the edges, respectively. (f) Normalized eigenfrequencies of the
finite lattice in (e). (g) Normalized eigenvalues of the stiffness matrix of (e) after subtracting 4 · I.
(h) Twentieth (yellow circles) and twenty-first (green triangles) eigenmodes when δk = 0.9. (i) Spatial
Fourier transform of the mode shapes shown in (d) (yellow dashed) and (h) (green solid) from the
edge to the bulk.

(a)

(e)

(b) (c) (d)

(f) (g) (h) (i)

0.5 1
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2

4
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Figure 6. (a) Normalized eigenfrequencies of the finite lattice in Figure 5a with k1 = k2, k′1 = 1 − δk′,
and k′2 = 1 + δk′. (b) Normalized eigenvalues of the stiffness matrix from the same setup as in (a)
after subtracting 4 · I. (c,d) Twentieth to twenty-third mode shapes (yellow circles, green triangles,
blue squares, and red crosses, respectively) when (c) δk′ = −0.9 (only twentieth and twenty-first
modes are shown) and (d) δk′ = 0.9. (e) Normalized eigenfrequencies of the finite lattice in Figure 5e
with k1 = k2, k′1 = 1 − δk, and k′2 = 1 + δk. (f) Normalized eigenvalues of the stiffness matrix from



Crystals 2024, 14, 102 11 of 15

the same setup as (e) after subtracting 4 · I. (g,h) Twentieth to twenty-third mode shapes (yellow
circles, green triangles, blue squares, and red crosses, respectively) when (c) δk′ = −0.9 (only
twentieth and twenty-first modes are shown) and (d) δk′ = 0.9. (i) Spatial Fourier transform of the
mode shapes shown in (c) (green dashed), (d) (blue dashed), (g) (yellow solid), and (h) (red solid)
from the edge to the bulk.

2.2.2. In-Gap Domain-Wall States in Infinite Lattices with Third-Nearest Neighbors

By seaming two domains of lattices with different winding numbers, we can, again,
form a domain wall, as shown in Figure 7a. Nonetheless, with the incorporation of TNNs,
the domain wall is not a single mass as shown in Figure 3a. Here, the interfacial mass
connected by k1 on both sides serves as the domain-wall mass for the nearest neighbors.
This domain-wall mass is also connected by k′1 on both sides. One additional mass on each
side of this domain-wall mass is connected by k′2 on both sides. Hence, these three masses,
altogether, serve as the domain-wall mass for the TNNs. D̃(q) is then written as

D̃(q) =



0 −k1 0 −k′2e−iqa 0 −k2e−iqa

−k1 0 −k2 . . . 0 −k′1e−iqa 0
0 −k2 0 0 0 −k′2e−iqa

. . .
k′2 − k′1 −k1 0

... −k1 k1 − k2 + k′1 − k′2 −k1
...

0 −k1 k′2 − k′1
. . .

−k′2eiqa 0 0 0 −k2 0
0 −k′1eiqa 0 . . . −k2 0 −k1

−k2eiqa 0 −k′2eiqa 0 −k1 0



. (17)

As we can see, the spring arrangements at the three domain-wall masses prevent D̃(q)
from being chiral. Unless they are connected by extra springs to a fixed wall to remove the
three non-zero diagonal elements in Equation (17), which is not practical, especially when
k′2 > k′1 or k1 + k′1 > k2 + k′2, we expect to observe the strong deviation of the in-gap states
from the mid-gap.

In the case of k′1 = k′2 = 1, we previously demonstrated that the winding numbers
shown in Figure 4d can no longer correctly predict the number of TPDWSs. Instead, local
winding numbers derived from the Berry connection inform us of three TPDWSs if D̃(q)
is set to be chiral [17]. Without any modification around the domain wall, as δk increases,
although the three in-gap states still exist, as shown in Figure 7b,c, when δk < 0, only
one in-gap state remains at the mid-gap, and two of them become extremely close to the
bulk modes, resulting in more leakage of the domain-wall states into the bulk, as shown in
Figure 7d. When δk > 0, all three in-gap states survive in the bandgap, but with a large
deviation from the mid-gap. Thus, the domain-wall states still leak into the bulk, as shown
in Figure 7e, compared to those with a small δk. The SFT of these in-gap states in Figure 7f
shows that, indeed, the mid-gap mode when δk = −0.9 has two wider peaks at qa = 2π/3
and 5π/3, indicating faster spatial decay than other in-gap states. Note that despite the
large deviation from the mid-gap frequency, all three domain-wall states remain within
the bandgap, matching the local winding number prediction we proposed in our previous
work [17].
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Figure 7. (a) An infinite lattice with a supercell containing 101 identical masses, m, with alternating
nearest-neighbor springs possessing spring constants k1 (green bars) and k2 (yellow bars) (k1 = 1− δk
and k2 = 1 + δk), and third-nearest-neighbor springs k′1 (blue dashed lines) and k′2 (red dashed lines)
(k′1 = 1− δk′ and k′2 = 1+ δk′). A domain wall is formed at the central mass, about which is connected
k1 + k′1 on both sides. The two masses about the domain wall are connected by k1 + k2 + 2 ∗ k′2.
(b) Normalized eigenfrequencies of the finite lattice in (a) when k′1 = k′2. (c) Normalized eigenvalues
of the stiffness matrix of (a) when k′1 = k′2 after subtracting 4 · I. (d,e) Fiftieth to fifty-second modes
shown as green triangles, yellow circles, and blue squares, respectively, when (d) δk = −0.9 and (e)
δk = 0.9. (f) Spatial Fourier transform of the in-gap 50th (yellow), 51st (green), and 52nd (blue) modes
in (d) (solid) and (e) (dashed). Note that the yellow dashed curve overlaps with the blue dashed
curve. (g) Normalized eigenfrequencies of the finite lattice in (a) when k1 = k2. (h) Normalized
eigenvalues of the stiffness matrix of (a) when k1 = k2 after subtracting 4 · I. (i,j) Fifty-first and
fifty-second modes shown as green triangles and yellow circles, respectively, when (i) δk = −0.9 and
(j) δk = 0.9. (k) Spatial Fourier transform of the in-gap 51st (green) and 52nd (yellow) modes shown
in (i) (solid) and (j) (dashed).

As we vary δk′ while keeping k1 = k2 = 1, both the winding number and Berry
connection calculation predict that there should be three in-gap states at the domain wall.
However, according to Figure 7g,h, this is only the case when δk′ → 0. As |δk′| increases,
when δk′ < 0, only one mode remains mid-gap; another becomes extremely close to the
lower bulk band, resulting in slow spatial decay from the domain boundary; and the third
completely disappears, as shown in Figure 7i. Meanwhile, when δk′ > 0, the two surviving
in-gap states are located at the mid-gap state, with rapid spatial decay (Figure 7j), and the
third in-gap mode no longer exists within the bulk bandgap. Instead, it migrates to above
the top bulk band. The SFT in Figure 7k further proves that only the in-gap mode adjacent
to the bulk when δk′ = −0.9 is narrower than the other SFT peaks, suggesting more leakage
into the bulk than in the other case, which is evident in Figure 7i.

3. Conclusions

In this work, we used Su–Schrieffer–Heeger models to thoroughly compare the effect
of various boundary conditions on the survivability of in-gap states within bulk bandgaps
and their relationship with topologically protected edge/domain-wall states. We found that
the in-gap edge states never exist when lattice boundaries are free since the stiffness matrix
largely deviates from being chiral. The occasional observed localized edge modes only
occur by accident due to specific spring arrangements. They are not topologically protected
and leak extensively into the bulk and are therefore vulnerable to disturbances such as
manufacturing flaws and impurities, making them difficult to implement in applications.
On the other hand, fixing the free ends to the ground with proper spring constants to ensure
the chirality of the stiffness matrix guarantees the topologically protected edge states when
the lattice arrangement is topological. The edge states are also strongly localized on the
edges. Meanwhile, the in-gap domain-wall states formed by two topologically different



Crystals 2024, 14, 102 13 of 15

domains are much more tolerant to the non-chirality of the stiffness matrix, although not all
in-gap states will survive with a large difference in the third-nearest neighbors. Interestingly,
when the domain-wall mass is connected by stiffer springs, the mid-gap states are always
retained and preserve most of the topological features, such as rapid spatial decay, which is
not the case when the domain-wall mass is connected by softer springs. These topological-
like in-gap states, although no longer topological in strict terms, are mostly robust against
large perturbations and are henceforth more applicable in engineering designs where the
localization of vibration within a narrow spectrum is desired, such as drug delivery [49,50]
and quantum information processing using phonons [51].

Although we used discrete mass-spring models in our study, the conclusions may
offer insights into the truncation effect on vibration in continuum periodic systems [30,52]
or functionally graded materials [53] for more practical engineering applications.
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