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Abstract: Aluminum metal matrix composites (AMMCs) have become increasingly ubiquitous in the
fields of aerospace and automobile businesses due to their lightweight properties. Their machining
is a challenging task because of the presence of supplemented particles, also called reinforcements.
As the wt% of the supplemented particles changes, the morphological and machining behaviors of
the AMMCs change. The present work is focused on exploring the thermo-mechanical properties of
AMMCs which would help in AMMC applications in the aerospace industry with a new collection of
composites containing silicon carbide (SiC) and zircon/zirconium silicate (ZrSiO4) as supplements in
wt% of 5%, 20%, 30%, and 40%. Uniform binary and hybrid sample pallets are prepared by powder
metallurgy (PM). The said samples are sintered and then machined using wire electric discharge
machining (WEDM) employing brass wire with a feed rate of 2 to 3 mm/min. Also, analysis of
porosity and recast layer formation is performed via the microstructure, scanning electron microscopy
(SEM), and energy dispersive spectroscopy (EDS). Some interesting and useful findings are obtained
which can extend the applications of AMMCs in automobiles and the aerospace industry. The
results reveal that temperature and wt% are playing their significant roles in the changes in the
thermo-mechanical properties of AMMCs. Mathematical equations via regression analysis using
Minitab 17 and Excel are developed for the congruence of experimental data. Analysis of Variance
(ANOVA) is also performed. Hence, the most optimized relationships for the best machining output
are established and presented in this proposed study.

Keywords: aluminum metal matrix composites; analysis of variance; electric discharge machining;
regression analysis; scanning electron microscopy

1. Introduction

Aluminum has a significant and pervasive use in both industrial and consumer ap-
plications due to its advantageous properties as a lightweight, nonmagnetic, malleable,
and ductile element [1]. In recent applications, aluminum is used in combination metals,
ceramics, or organic components by making them as aluminum metal matrix composites
(AMMCs) to improve the physical and mechanical properties of the base metal, like hard-
ness, quality, resistance to wear, conductivity, stiffness, etc., in order to trigger attention
towards their most advanced applications in the aerospace and automobile industries [2].
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Composite materials reinforced with materials imparting good mechanical properties
have taken a wider place in industry for their high material efficiencies. The methods of
preparation for such composites are also very important, as they contribute towards the
thermo-mechanical properties of the composites [3,4]. The reinforcements must be non-
reactive and stable enough at working temperatures and also possess superior mechanical
properties [5]. Among many supplemented materials like carbides and nitrides, silicon
carbide (SiC) has an added advantage over others due to its low density, better heat
conductivity, and high elastic modulus, along with its easy availability. It is also inexpensive
when compared to the others [6]. AMMCs with varying wt% of SiC also revealed that
hardness and tensile strength increases, along with the reduction in percentage elongation,
when increasing the wt% of SiC up to 25% [7]. It was also observed that AMMCs with
10% SiC were more favorable for applications in industries like aerospace, automobile, and
military parts due to their supercilious mechanical properties. Few properties are directly
affected by the addition of supplementary materials, like hardness, roughness, and wear,
especially [4,5].

Hardness, tensile strengths, and impact strengths of AMMCs supplemented with SiC
increase when increasing the wt% of reinforcement [8–10]. In the preparations of AMMCs
with SiC as supplements, micro hardness, clustered regions, and porosities increase as
the wt% of supplements increase along with the reduction in the particle size of the
reinforcement [11]. As far as their machining is concerned, non-traditional or advanced
mechanisms are required for the accurate machining of AMMCs, e.g., laser beam machining
(LBM) and water jet machining (WJM). But these machining methods are limited to linear
machining only [3].

Despite other non-traditional machining methods, the electrical discharge machining
(EDM) process was found to be the most promising one for the removal of material from
AMMCs. EDM removes the material by erosion through melting and vaporizing in the
presence of dielectric fluid [12–14]. Spark erosion occurs between the tool and the workpiece
gap [15]. The machinability of MMCs is dependent upon the processes of machining being
adopted, along with the proper selection of the process material and operating parameters,
irrespective of the natures of the AMMCs [16]. Furthermore, formation of a recast layer
during machining must be removed without distorting the surface integrity, as it imparts
tensile residual stresses, resulting in cracking and low fatigue strength in the material being
machined [17].

Machining explorations of properties, such as elemental analysis, micro hardness,
porosity, surface roughness, etc., can be performed by using X-Ray diffraction (XRD),
scanning electron microscopy (SEM), electron probe microscopic analysis (EPMA), and
differential thermal analysis (DTA). The characterization results offer important, new
information about the composite powder’s microstructure and phase distribution [18]. The
uniform distribution of supplemented particles results in greater strength and imparts
high hardness, which eventually leads to high resistance to wear [19,20]. Moreover, in
EDM, brass electrode wire is found to be more reliable when compared to others because
of its higher material removal rate (MRR); non-electric parameters of EDM, like flushing
pressure, also contribute towards MRR.

Therefore, it is concluded that the machining and modeling of machined profiles of
AMMCs are yet to be explored in many aspects [21]. Hybrid aluminum metal matrix
composites (HAMMCs) are the foremost engineering materials due to their outstanding
characteristics and applications. The machining of HAMMCs paved a new path to explore
machining behaviors and their effects on the applications of these modern materials in the
industry [22,23]. It was also found that the cutting processes of AMMCs are not completely
explored [24]. The machining of AMMCs is quite difficult due to the presence of hard
supplementary particles. They have higher levels of hardness compared to tools made up
of carbide and high-speed steel (HSS) [25]. Out of advanced non-conventional machining
processes, EDM is found to be the more reliable thermal process, in which the material is
removed precisely by small spark erosion [26]. However, the EDM is established enough in
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many sophisticated industries like aerospace, automotive, and surgical instruments [27].
The machining behaviors of SiC-supplemented AMMCs have not been completely explored
until now in the literature. Therefore, in the current study, aluminum is selected as a matrix
material supplemented by SiC and ZrSiO4 particles to produce composites by the PM route.
Varying wt% of SiC and ZrSiO4 are added and then machined. The machine profile is
investigated for microstructure investigation along with hardness of the machined surface.

2. Methodology
2.1. Sample Preparation

The pure aluminum powder is used for the preparation of MMCs. The average
particle size (APS) range was 43–45 µm. Silicon carbide micro particles (SiC) with APS were
37–45 µm. The APS of zircon was <50 nm. Particle type and discontinuous reinforcements
were used. All powders were 99% pure. The hardness of AMMCs was be increased with
the increase in wt% of ZrSiO4 and SiC-reinforced MMCs [28]. The challenging task lay
in the preparation of the samples due to low wettability of the supplementary material
phase. Therefore, the preparation of AMMCs could not be possible by traditional casting
methods [29]. A few properties of SiC powder and ZrSiO4 are mentioned in Table 1.

Table 1. Property table for reinforcements [25].

Elastic Modulus SiC ZrSiO4

Elastic Modulus 410 GPa 275 GPa

Thermal Conductivity 30–40 W/mK 3.5 W/Mk (at 600 k)

The first step of preparation of samples was to weigh the powder as required. For
this purpose, powders were weighted using a digital weight balance of least 0.1 mg. The
measured weights of powders were ball-milled for one hour with the help of 35 balls of
steel (molybdenum each of size 5 mm) to further grind the mixture. A 10:1 ball-to-powder
ratio (BPR) was used during the mixing of powders in order to achieve homogeneous
mixing. Powders were mixed at 150 rpm for 60 min, respectively. After mixing, powders
were fed into the uniaxial hydraulic press with the help of a die as shown in Figure 1 with a
diameter of 20 mm, generating a pallet of the sample as shown on the left side of Figure 2.
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Figure 2. The left side of the figure shows fabricated AMMC while the right side shows a ma-
chined sample.

The mixture was compacted with the help of a hydraulic press for 2 min under a
pressure of 196 Mpa. After 2 min, the press was released and the sample was removed
from the circular die.

After compaction of binary and hybrid AMMCs, the samples were fed to sintering
furnace to heat them at different temperatures ranging from 500 ◦C to 1100 ◦C. Sintered
samples, as shown on the left side of Figure 1, were subjected to machining, and then
the porosity, chemical composition, and mechanical properties were examined, as well
as the hardness of the machined surface. The hardness of the machined samples was
measured with the Vickers hardness tester. The hardness was measured from the size of an
impression generated under load by a pyramid-shaped diamond indenter. Here, the load
of 980.7 mN was taken for 10 s. Furthermore, the SEM analysis was conducted to study the
microstructure examination using FESEM [30] as shown in Figure 3.
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ture images.

For the validation of experimental results, mathematical equations were estimated for
each input parameter using regression analysis. Fabricated sample (20 mm diameter and
4 mm thickness) compositions and sintering conditions are mentioned in the published
work of part of this research before machining [9]. The plan of the experiment mentioning
the designed ratio of reinforcements along with the selected sintering temperature and
sintering time in sintering furnace is shown in Table S1 of the attached Supplementary File.



Crystals 2023, 13, 1347 5 of 14

2.2. Machining of Samples

Machining of AMMCs is a challenging task because of the abrasive nature of supple-
mented particles. Traditional machining processes such as turning, milling, or drilling are
adopted for machining MMCs. But low surface integrity and accuracy of the machined
samples hindered the adoption of conventional machining for MMCs [31].

In the current study, the WEDM with a brass wire 0.25 mm in diameter was used,
keeping the pulse on/off time at constant values during the operation. The wire feed rate
was 2 to 3 mm/min. WEDM is a non-conventional thermal machining process in which
a wire made up of copper, brass or molybdenum can be used as an electrode [32]. It is
pertinent to know that the conductivity of the electrode and work-piece is mandatory for
the material removal as series of successive sparks are the source for cutting [33–35]. Electric
sparks produce heat at a temperature of 8000–12,000 ◦C, causing melting and vaporization
of the work-piece in the local surface layers. During the WEDM process, dielectric fluid
is consistently flushed in and out to carry the eroded material away [36]. The surface of
the work-piece is cooled side by side and solidified at a very high rate due to the high
thermal conductivity of water. This solidification of the top surface of the work-piece
results in the formation of a recast layer [37]. There are certain electrical and nonelectrical
parameters of WEDM which are needed to be selected at appropriate levels before the start
of machining [38]. Table 2 shows the machining conditions of WEDM. The samples are cut
in a transverse direction across the diameter.

Table 2. Machining conditions of WEDM.

Machining Conditions Symbol Unit Values

Gap voltage Vp mV 50
Pulse-on time TON µs 12
Pulse-off-time TOFF µs 14
Wire feed rate WFS mm/min 2–3
Wire diameter WD Mm 0.25

3. Results and Discussions

Estimation of elements in AMMC reinforced with SiC and ZrSiO4 with varying wt%
was performed by EDS analysis using SEM. The images obtained showed that porosity,
high pressure and close compaction of powder generates dense microstructure which
improves the heat conduction capacity and strength of AMMCs. The irregular and random
shapes of particles in the composite were observed. It was also observed that as the wt% of
the supplements increases, consolidation of samples from solid state to liquid state occurs
in the case of all twelve samples. Moreover, the recast layer was assumed to increase the
surface hardness of machined samples.

3.1. EDS Analysis of Samples

Optical microscopic examination of the composite reveals the presence of reinforce-
ment particles in the form of clusters as shown in Figure 4 of hybrid AMMCs. Machining
of such samples is not obvious as well.

EDS analysis of the samples containing 40% by weight of SiC confirms that SiC
particles are present in the synthesized composites as shown in Figure 5, whereas Table 3
presents the wt% of each constituent element.
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Figure 5. EDS analysis of AMMC with 40% SiC as a supplement. Left side shows microstructure
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their wt%.

Table 3. List of elements found as a result of EDS using SEM in the Al + 40% SiC supplemented
composites.

Elements Weight% Atomic%

Al 44.98 32.44
Si 1.71 1.18
C 3.77 6.11
O 49.54 60.26

It is important to note that oxides were also formed during the machining of AMMCs.
Similarly, the case of hybrid composite with SiC and ZrSiO4 is shown in Figure 6 and wt%
is presented in Table 4.
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composite showing their wt%.

Table 4. List of elements found as a result of EDS using SEM in the Al + 30% SiC + 20% ZrSiO4

supplemented composites.

Elements Weight% Atomic%

Al 44.55 37.34
Si 13.59 10.95
C 10.83 20.39
O 20.28 28.66
Zr 10.75 2.67

3.2. Porosity

Agglomerations or clustering of the reinforcements of varying size and shape are
observed in Figure 7; they result in particulate-rich and particulate-depleted regions.
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Figure 7. Porosity is shown in machined AMMC with 40% SiC.

Porosity and depleted zones were seen in the images obtained via SEM because of
the difference between the melting points of base metal and supplementary materials
(composition); however, one profound aspect which can be a next-level investigation is
the compaction pressure selected in this research since compaction pressure is inversely
proportional to porosity. It is also observed in the previous studies that a small increase in
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wt% of reinforcements causes drastic porosity due to the clustering and agglomeration at
high concentrations of supplements [39]. Hence, it can be concluded that supplementary
particles act as a barrier between rearrangement and diffusion of reinforcements resulting
in higher porosity, irrespective of the sintering temperature.

3.3. Hardness of Machined Samples

The hardness of machined samples may be enormously affected due to the heating
and machining of samples. For this reason, investigation of hardness was performed with
the Vicker hardness tester. Hardness of the samples was tested by a micro indenter with
a diamond probe using a force of 980.7 mN for 10 s with a high-voltage harness tester at
room temperature. It was observed that the Al-SiC binary composite matrix contains a wt%
of 5 and 20, whereas the hybrid composite of Al-SiC 5%–ZrSiO4 40% has approximately
the same hardness. It is important to note that the SiC wt% was at its lowest value in the
above cases. As the wt% of SiC increases, the hardness of AMMCs increases. Meanwhile,
the smallest value of hardness, i.e., 13.83 HV, was observed for the composite with 40%
of ZrSiO4. The observed trend in this study shows that as the wt% of ZrSiO4 increases,
the hardness decreases. However, the maximum hardness out of all twelve samples is
observed, i.e., 104.06 HV, for AMMC with 20 wt% of ZrSiO4. It is important to note that
as the sintering temperature increases, the hardness of the machined samples increases.
However, in the case of AMMCs supplemented with ZrSiO4, hardness decreases with the
increase in temperature beyond 700 ◦C. Sintering time does not impart much to the change
in hardness of machined samples. Table 5 shows the values measured for hardness along
with the standard deviation against each measurement.

Table 5. Hardness values for machined samples.

Sample Type Sample Mean Hardness
(HV) ± STD

Al-SiC Binary S1 30.8 ± 2.4
S2 36.0 ± 2.2
S3 59.4 ± 2.4
S4 67.7 ± 3.1

Al-ZrSiO4 Binary S5 25.4 ± 2.2
S6 104.0 ± 2.4
S7 60.2 ± 3.1
S8 13.8 ± 1.8

Al-SiC-ZrSiO4 Hybrid S9 29.8 ± 2.2
S10 49.4 ± 2.6
S11 50.6 ± 2.2
S12 55.4 ± 2.9

The change in composition of AMMCs affects their hardness [40]. In the case of Al-SiC,
hardness increases with the increase in wt% of SiC as shown in Figure 8, whereas the
reverse was observed in the case of Al-ZrSiO4 (Figure 9). Moreover, for hybrid AMMCs,
i.e., Al-SiC-ZrSiO4, wt% of SiC enhanced the hardness, whereas ZrSiO4 tried to pull it down
as presented in Figure 10. Therefore, minimum levels of hardness of machined profiles
were achieved at 40% of ZrSiO4 in the case of both hybrid and binary AMMCs. All the
results above showed that the hardness of machined samples is greatly influenced by the
sintering temperature and the concentration of supplements. It is evident from the below
plots that predicted and actual hardness correspond to one another in the case of Al-ZrSiO4
binary composites and Al-SiC-ZrSiO4 hybrid composites. In the case of Al-SiC, the trend of
actual and predicted results is the same, but the composites did not correspond exactly to
one another. ANOVA and regression equations were generated for the compliance of the
experimental results. In the case of binary AMMCs of Al-ZrSiO4, ANOVA showed that the
sintering temperature and wt% produce significant values.
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3.4. Regression Analysis for Hardness of Machined Samples

The experimental values were then validated and tested against the predicted values
by using regression analysis and ANOVA. Few observations had a substantial impact on
the model prediction according to the study of the main effect plot, with some data having
a stronger influence on the anticipated values than other. To pinpoint the reasons of these
data, by improving the experimental design, we could increase the precision of the model
predictions. In general, the plots are a useful tool for locating significant observations
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and enhancing the prediction model’s precision [30,41]. Equation (1) shows the relation
between the hardness of machined samples of Al-SiC-ZrSiO4 against input parameters,
respectively.

Hardness (HV) = 634.92 + 24.835 ZrSiO4 wt% − 1.4673 Sintering T (◦C). (1)

The regression equation presented the same behavior as that which the experimental
results showed. However, there was no significant factor (p > 0.05) found in the case of the
hardness of machined AMMCs supplemented with SiC and the hybrid of SiC and ZrSiO4.
In the case of Al- ZrSiO4, Equation (1) completely satisfied the statistical requirements
observed in ANOVA, as sintering temperature and composition show significant values
(p < 0.05).

However, the comparison graphs of predicted and experimental values for hardness
at different levels of temperature and compositions showed a similar trend in the case of
Al-SiC AMMCs, and they are exactly lying over one another in the case of Al-ZrSiO4 and
hybrid AMMCs as shown in Figure 11.
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3.5. Recast Layer

The recast layer is fine-grained, hard, brittle, and different from its parent material
structure. The formation of these layers is the result of process parameters of machining
and work-piece compositions [42]. The major reason for the presence of a recast layer is
the improper flushing of eroded material during pulse-off time and higher current and
nature of supplements added into MMCs [43]. In the current study, recast layers were also
observed, which increased the hardness of AMMCs. The white layer known as the recast
layer appeared on the machined surface with cracks and micro voids, which can be seen
via SEM (Figure 12).

Here, it is also important to note that SiC particles are hard in nature, which can distort
the recast layer and result in cracks, voids, and phase transformations. This can cause
drastic changes in the surface properties of the machined profile. The current study can be
extended by investigating the surface properties of these AMMCs. Proper selection of wt%
of reinforcements and peak current are the two most significant factors affecting the quality
and thickness of the recast layer [44]. In the present study, WEDM parameters were kept
constant on specific machining conditions, but by varying the machining conditions, signif-
icant results can be found which may contribute a lot to the available research regarding
surface studies of AMMCs. In the future, this study can be extended for the optimization of
machining parameters for such composites and cover the currently needed area to explore.
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Parametric analysis for the change in thickness of the recast layer would also contribute to
the new findings.
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4. Conclusions

The conclusions drawn from the findings and discussions are listed below.

â EDS examination confirms the presence of SiC and ZrSiO4 in the aluminum ma-
trix machined samples, where the distribution of reinforcements is inferred from
elemental analysis.

â The current investigation found that the machinability of each sample varies with
wt%, the hardness of machined AMMCs is significantly affected by wt% of supple-
ments, both individually and collectively. Since the strength of AMMCs must be
improved [45], the high wt% of brittle SiC and ZrSiO4 was added to the matrix alloy;
optimal machining conditions are required. The machined profile becomes harder as
the SiC weight percentage rises.

â The morphology of the AMMCs changes as a result of the addition of different
reinforcements to the metal matrix.

â Particulate-rich and particulate-depleted zones are formed by the aggregation or
clustering of the supplements of various shapes and sizes. This is a result of liquid
phase sintering occurring at higher temperatures, specifically 1100 ◦C, which causes
heterogeneous distribution and, ultimately, agglomeration and segregation [46].

â During sintering, supplements mix with molten matrix material at high temperatures
in the liquid phase to create detrimental phases. Because SiC (3.21 g/cm3) and ZrSiO4
(4.56 g/cm3) have different densities, aggregation occurs as the reinforcement particles
slide on the molten metal. This can be prevented by using a two-stage addition of
reinforcement particles [47], as opposed to the single-stage addition used here.

â As there is no significant relationship between sintering time and compaction pressure,
sintering time for both machined and sintered samples does not significantly affect
the hardness of either [48].

â The regression equations of HAMMC Al-SiC-ZrSiO4 and machined Al-ZrSiO4 satisfy
the statistical criteria for ANOVA tables.

â From the microstructure, it can be shown that samples are sintered by liquid-state
sintering rather than solid-state sintering as temperature and the proportion of rein-
forcements increase.

â Additionally, when the weight percentage of ZrSiO4 raises, dendritic gaps and poros-
ity are seen in the microstructure, resulting in a brittle structure. This is may be due to
slow cooling.
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