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Abstract: Beryllium finds widespread applications in nuclear energy, where it is required to ser-
vice under extreme conditions, including high-dose and high-dose rate radiation with constant
bombardments of energetic particles leading to various kinds of defects. Though it is generally
known that defects give rise to mechanical degradation, the quantitative relationship between the
microstructure and the corresponding mechanical properties remains elusive. Here we have investi-
gated the mechanical properties of imperfect hexagonal close-packed (HCP) beryllium via means of
molecular dynamics simulations. We have examined the beryllium crystals with void, a common
defect under in-service conditions. We have assessed three types of potentials, including MEAM,
Finnis–Sinclair, and Tersoff. The volumetric change with pressure based on MEAM and Tersoff
and the volumetric change with temperature based on MEAM are consistent with the experiment.
Through cross-comparison on the results from performing hydrostatic compression, heating, and
uniaxial tension, the MEAM type potential is found to deliver the most reasonable predictions on
the targeted properties. Our atomistic insights might be helpful in atomistic modeling and materials
design of beryllium for nuclear energy.

Keywords: beryllium; molecular dynamics simulation; MEAM; Finnis–Sinclair and Tersoff potentials

1. Introduction

Thanks to its unique properties, including high specific strength, low density, high
melting point, and particularly low neutron absorption and high neutron scattering cross
sections [1], beryllium finds widespread applications in nuclear energy. For instance,
beryllium is the top candidate for the first wall that directly faces the plasma in the ITER [2,3]
and for neutron multiplier in the DEMO tokamak fusion reactors [4]; beryllium is also
commonly employed as the moderator and reflector for fission reactor and spallation
neutron sources [5,6]; finally, beryllium is broadly used as the convertor to yield neutrons
via (p, n) reaction in the compact accelerator-based neutron sources that serve Boron
Neutron Capture Therapy (BNCT) [7,8].

In these applications, beryllium is often required to function under extreme environ-
ments, including astonishingly high temperatures and pressure, and frequent energetic
particle bombardments. For example, as a first-wall material for the tokamak fusion reactor,
beryllium needs to withstand temperatures and pressures as high as 1500 K and 2 GPa [3],
respectively. In compact accelerator-based neutron sources, beryllium constantly suffers
from impingements of 1~10 MeV protons, leading to not only dramatic thermal gradient
and stress, but also significant radiation damage. The mechanical integrity of beryllium
under extreme environments is thus essential to support these critical applications.
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There have been a handful of studies that conducted mechanical tests on beryllium
since the late 1960s. It has been known that radiation damage generally leads to mechanical
degradation [9,10]. The quantitative relationship between microstructure resulted from
serving under extreme environments and mechanical performance is important in safety
issues and materials design but remains to be uncovered. Beryllium is highly toxic, and
its supplies are very limited. As a result, the numerical investigations are more feasible.
Moreover, in parallel to experiments, numerical methods and simulations have been well
established as the third pillar in science and engineering investigations [11,12]. Among
the numerous numerical methods, the molecular dynamics simulations method has been
developed to be a reliable and indispensable tool in atomistic scale in various investiga-
tions [13,14].

The interatomic potential is the key in molecular dynamics simulations. An accurate in-
teratomic potential is a prerequisite for molecular dynamics simulations to produce reliable
and material-specific results. To this end, there are first-principles quantum mechanical [15]
and various kinds of interatomic potentials developed for beryllium, such as EAM [16,17],
AMEAM [18], MEAM [19], Finnis–Sinclair [20], and Tersoff [21]. Nonetheless, which po-
tential is more suitable to simulate beryllium under extreme environments encountered in
the applications listed above is still open to question. Hence, in this paper, we select three
representative types of potentials and cross-compare their predictions on the mechanical
properties of beryllium crystals embedded with spherical void defects, which are commonly
observed in beryllium due to energetic particle bombardments. Through cross-comparisons
on the simulation predictions, we point out that the MEAM type potential is the most
reliable one out of three chosen potentials.

2. Materials and Methods

We have performed molecular dynamics simulations using the LAMMPS software
(LAMMPS 64-bit 24 March 2022) [22] developed by the Sandia National Laboratory, because
it is free, open-source, and equipped with a variety of choices of interatomic potentials,
which considerably facilitates their implementations and thus, the cross-comparison. We
chose three types of potentials that were previously parameterized for beryllium as de-
tailed below.

2.1. MEAM Type Potential

The total interatomic energy E for MEAM type potential is expressed as below, all
equations presented below come from [19,23–25],

E = ∑
i

[
1
2 ∑

i 6=j
φ(rij) + F[ρi]

]
(1)

where φ accounts for contribution from direct interaction between atoms i and j explicitly
depending only on their distance rij, and F is the embedding function, whose input is the
average electron density ρ at the position of atom i. The definition of φ is shown below,

φ(r) =
2
Z

fC

(
rcut − r

δ

){
Eu(r)− F

[
ρ0(r)

]}
(2)

The first term Z equals 12 for the reference structure, a hexagonal close-packed struc-
ture (HCP) for beryllium. The second term fC(

rcut−r
δ ) is the smooth cutoff function and

takes the following expression,

fC(x) =


1 x ≥ 1

[1− (1− x)4]
2

0 < x < 1
0 x ≤ 0

(3)
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with
x =

rcut − r
δ

(4)

where rcut is the cutoff distance, and δ gives the cutoff region. Note that rcut and δ are both
tunable parameters. The third term Eu(r) is the energy of the reference structure and takes
the following expression,

Eu(r) = −Ec(1 + a∗)e−a∗ (5)

with
a∗ = α(

r
re
− 1) (6)

where Ec, re, and α are adjustable parameters.
Finally, the last term F from Equations (1) and (2) is the embedding function taking

the following expression,

F(ρ) = AEc
ρ

ρ0
ln

ρ

ρ0
fC(

rcut − r
δ

) (7)

where A is another adjustable parameter, and ρ0 is equal to 12 for an HCP structure. On
one hand, in Equation (2),

ρ = ρ0(r) = Zρa(0)(r) (8)

where ρa(0) is given in Equation (15). On the other hand, in Equation (1),

ρ = ρ(0)G(Γ) (9)

with
G(Γ) = e

Γ
2 (10)

and

Γ =
3

∑
h=1

t(h)(
ρ
(h)
i

ρ
(0)
i

)2 (11)

where t(h) are tunable parameters. The spherically symmetric partial electron density at
the position of atom i is written below,

[ρ
(0)
i ]

2
= [∑

i 6=j
Sijρ

a(0)
j (rij)]

2
(12)

Moreover, the counterparts characterizing angular contributions are given by similar
formulas but weighted by the Cartesian projections of the distances between two involved
atoms (denoted by superscripts u, v, and w) as follows,

[ρ
(1)
i ]

2
= ∑

u
∑
i 6=j

Sijρ
a(1)
j (rij)

ru
ij

rij
(13)

[ρ
(2)
i ]

2
= ∑

u,v
[∑
i 6=j

Sijρ
a(2)
j (rij)

ru
ijr

v
ij

r2
ij

]

2

− 1
3 ∑

i 6=j
[Sijρ

a(2)
j (rij)]

2
(14)

[ρ
(3)
i ]

2
= ∑

u,v,w
[∑
i 6=j

Sijρ
a(3)
j (rij)

ru
ijr

v
ijr

w
ij

r3
ij

]2 − 3
5∑

u
[∑
i 6=j

Sijρ
a(3)
j (rij)

ru
ij

rij
]2 (15)

Furthermore,
ρa(h)(r) = e−βh( r

re −1) (16)
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where the decay lengths βh are tunable parameters. The Sij is a many-body screening
function that quantifies the screening effect between two atoms i and j due to other atoms k
in the system, and is defined as following,

Sij = ∏
k 6=i,j

fc[
C− Cmin

Cmax − Cmin
] (17)

where Cmax and Cmin are the upper and lower bounds of C. In addition,

C =
2(Xik + Xkj)− (Xik − Xkj)

2 − 1

1− (Xik − Xkj)
2 (18)

where Xik = ( rik
rij
)2 and Xkj = (

rkj
rij
)2.

The summary of the MEAM type potential parameterized for beryllium developed in
ref. [26] is shown in Table S1 in Supplementary Information.

2.2. Tersoff Potential

The total interatomic energy for the Tersoff type potential is listed below; all equations
presented below come from [21,27],

E =
1
2∑

i
∑
j 6=i

fC(rij)[ fR(rij) + bij fA(rij)] (19)

where rij denotes the distance r between atoms i and j. fc is the sinusoidal cut-off function
that takes the following expression,

fC(r) =


1 r < R− D
1
2 −

1
2 sin(π

2
r−R

D ) R− D < r < R + D
0 r > R + D

(20)

where R and D are tunable parameters. In addition, fR(r) and fA(r) correspond to the
repulsive and attractive components, respectively, and are shown below,

fR(r) = Ae−λ1r (21)

fA(r) = −Be−λ2r (22)

where A, B, λ1, and λ2 are adjustable parameters. Lastly, bij encodes an angular contribution
that is written below,

bij = (1 + βnζn
ij)
− 1

2n (23)

ζij = ∑
k 6=i,j

fC(rik)g[θ(rij, rik)]e
λm

3 (rij−rik)
m

(24)

g(θ) = γ(1 +
c2

d2 −
c2

[d2 + (cosθ − cosθ0)2]
) (25)

where θ(rij, rik) represents the angle formed between atoms i, j, and k; n, β, m, λ3, c, d, γ,
and cosθ0 are the free parameters determined from fitting. The summary of the Tersoff
type potential parameterized for beryllium developed in ref. [27] is shown in Table S2 in
Supplementary Information.



Crystals 2023, 13, 1330 5 of 19

2.3. Finnis–Sinclair Type Potential

Finnis–Sinclair type potential belongs to the embedded-atom method (EAM) potential.
The total interatomic energy for the Finnis–Sinclair type potential can be written as follows,
all equations presented below come from [20,28,29],

E =
1
2∑

i,j
V(rij)−∑

i
f (ρi) (26)

where V(rij) accounts for the direct interaction between two atoms i and j depending on
their separation rij, and f (ρi) accounts for the many-body effect as shown below,

f (ρ) =
√

ρ(1 + Aρ) (27)

where A is an adjustable parameter, and

ρi = ∑
j

Φ(rij) (28)

The V(r) and Φ(r) are cubic splines with the following expressions,

V(r) =
n

∑
k=1

Ak(rak − r)3H(rak − r) (29)

Φ(r) =
m

∑
k=1

Bk(rbk − r)3H(rbk − r) (30)

where H(x) is the Heavyside step function that equals 1 when x is greater than 0 and
0 otherwise. The n, m, Ak, rak, B, and rbk are tunable parameters. The summary of the
parameters for the Finnis–Sinclair type potential developed for beryllium [29] is listed in
Table S3 in Supplementary Information.

2.4. Simulation Setup

The pristine beryllium characterizes a hexagonal close-packed (HCP) structure, whose
unit cell is illustrated in Figure 1. There are two parameters in the unit cell determining the
HCP structure, namely a and c. In the ordinary HCP crystalline, the ratio c/a equals 2

√
6/3;

however, experiments indicate that c/a for beryllium is slightly different from this value.
The a and c/a for three types of potentials employed in this study are listed in Figure 2.
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Figure 1. (a) The atomistic configurations of atoms in a conventional unit cell of the hexagonal 
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atoms for this MD investigation. 

Figure 1. (a) The atomistic configurations of atoms in a conventional unit cell of the hexagonal
closed-packed crystalline structure of Be. (b) The simulation box with dimensions of the 32,000 Be
atoms for this MD investigation.
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Figure 2. The lattice constants a (red right y-axis), c/a (blue right y-axis), and the bulk modulus, or B
(black left y-axis) of pristine beryllium crystal derived from the MEAM, Finnis–Sinclair, Tersoff type
potentials [26,27,29] compared to that from experiments [30,31].

The reference axes of our simulation domain are also illustrated in Figure 1. We first
created a simulation box that measures 20 a in the x direction, 36.64 a in y the direction,
and 20 c in the z direction, respectively, totaling 32,000 atoms; then, the system is relaxed at
300 K and 0 external pressure for 20 ps; after relaxation, the system was subjected to thermal
expansion, compression, and elongation, respectively. To create the structures with defects,
the atoms in the spherical region with a set radius centering in the middle of the crystalline
were deleted before relaxation and mechanical loading. We have explicitly examined nine
configurations. The numbers of deleted atoms, in an ascending order, are 12, 56, 159, 407,
775, 1339, 2114, 3148 and 4505, respectively. These systems are therefore named after the
number of deleted atoms for convenience. The zero void size system (i.e., 0 atoms were
deleted) refers to the perfect beryllium lattice used for reference for ease of the comparison.
For mechanical loading, the system is elongated in the x direction, while the other two
dimensions are kept at zero stresses to simulate the uniaxial tensile testing experiment.

3. Results
3.1. Equations of States
3.1.1. Hydrostatic Compression

Figure 3 illustrates the MD simulation results of volumetric change when the pristine
beryllium is subject to hydrostatic compression using three types of potentials. Note that V
represents the volume at the corresponding hydrostatic pressure, while V0 is the volume at
0 pressure.

It can be seen that the volume is showing linear dependence on the hydrostatic
pressure, while the slope of linearity varies among the three chosen types of potentials; the
MEAM type potential shows the largest volumetric change, the Tersoff type is the second,
and the Finnis–Sinclair type shows the least change. It is understandable that this slope
reflects the bulk modulus, which is shown in Figure 2.

3.1.2. Thermal Expansion

Figure 4 illustrates the MD simulation results of volumetric change when the pristine
beryllium is subject to heating using three types of potentials. Note that V represents the
volume at the corresponding temperature, while V0 is the volume at 0 K.
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experiment [32].
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Figure 4. Normalized volumetric change as a function of temperature from MD simulations based
on the three types of potentials, MEAM, Finnis–Sinclair (F–S), Tersoff, and that from Exp [33].

It can be seen that the three types of potentials show starkly distinct behaviors. First,
in contrast to the case from hydrostatic compression, the Finnis–Sinclair type potential
shows the largest volumetric change when the system is subject to heating. Moreover, the
volume based on MEAM and Finnis–Sinclair type potential shows a linear dependence
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on temperature. Second, the volumetric curve based on the Tersoff type potential is very
unusual. It starts to shrink at 500 K. The result based on MEAM potential is most similar to
the result from Exp.

3.2. Uniaxial Tensile Response

In this section, we present the results from performing uniaxial tension on pristine
beryllium crystals and those embedded with spherical void defects. Two dependent factors,
namely the size of the void and temperature, along with the accompanying microstructural
evolution are examined for three types of potentials.

3.2.1. MEAM Type Potential

Figure 5 illustrates the dependence on the size of the spherical void embedded in the
beryllium crystals. The nine void-embedded systems (12, 56, 159, 407, 775, 1339, 2114, 3148,
and 4505) and the primitive beryllium system (marked as “0”) have been studied. For
mechanical loading, the system is elongated in the x direction. It shows the stress–strain
curves, where the color code is employed to represent the number of atoms removed from
the crystals before relaxation and subsequent loading. These curves characterize similar
features; the stress gradually builds up with strain until approaching the fracture point,
after which there comes a sudden drop, suggesting a considerable stress release. The
microstructural characteristics at the tagged points underlying the observed stress–strain
relationship will be demonstrated later in this section. It can be readily seen that the larger
size of the void necessarily leads to an earlier onset of fracture.
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Figure 5. The strain–stress relationship of nine void-embedded beryllium systems (12, 56, 159, 407,
775, 1339, 2114, 3148, and 4505) under tensile tests compared that of pristine beryllium (“0” system).
The voids are spheric. The zero void size system (0, grey line) refers to the perfect beryllium lattice
used for reference for ease of the comparison. The system size is 32,000 lattice sites. The interatomic
potential used is the MEAM potential. The temperature is 300 K.

Figure 6 illustrates the effect of the size of the spherical void on the properties of
beryllium reflected by the strain–stress relationship. The tensile toughness, defined as the
energy absorbed per unit volume before failure during uniaxial tensile testing, becomes
smaller, and is shown in panel (a). The slope of the linear region on curves representing
Young’s modulus becomes smaller too, as shown in panel (b). Similarly, panel (c) and panel
(b) demonstrate the stress and strain at the onset of fracture. The original data are listed in
Table S4 in Supplementary Information.
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Figure 6. Effect of void size of spherical void on the mechanical performance of beryllium subject
to uniaxial tension. The nine void-embedded beryllium systems (12, 56, 159, 407, 775, 1339, 2114,
3148, and 4505) are compared to the pristine one (“0”-sized void). (a) Tensile toughness; (b) Young’s
modulus; (c) Fracture stress; (d) Fracture strain. The system size is 32,000 lattice sites. The interatomic
potential used is the MEAM potential. The temperature is 300 K.

To examine the dependence on temperature on the mechanical behaviors, we have
investigated the uniaxial tensile tests with the same size (775) of the void defect fixed at
various temperatures. We have considered four temperatures, 150 K, 300 K, 450 K, and 600 K
to show the trend. The results are displayed in Figure 7. These four stress–strain curves
suggest a general trend that the stress gradually builds up with strain until approaching
the fracture point, after which there comes a sudden drop, suggesting a considerable stress
release. The increase in temperature lowers the ultimate tensile strength, the fracture stress,
and the fracture strain of the void-embedded hcp beryllium.
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Figure 7. Effect of temperature on the strain–stress relationship of beryllium subject to uniaxial
tension derived from MD simulations. The system size is 32,000 lattice sites. The interatomic potential
used is the MEAM potential. The void size is 775 (this number of atoms were removed to form
the void).

Figure 8 illustrates the effect of temperature on the properties of beryllium reflected by
the strain–stress relationship. Similarly, the results indicate that a higher temperature leads
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to smaller toughness, smaller Young’s modulus, and earlier onset of fracture (equivalently
smaller fracture stress and strain). These quantities appear to be approximately linearly
dependent on the temperature in the beryllium crystals. The original data are listed in
Table S5 in Supplementary Information.
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cracks are more likely to occur where the stress is concentrated, and from Figure 9, the 

stress is concentrated in the middle, so the material is easy to break from the middle. 

Figure 8. Effect of temperature on the mechanical performance of beryllium subject to uniaxial tension
derived from MD simulations: (a) Toughness; (b) Young’s modulus; (c) Fracture stress; (d) Fracture
strain. The system size is 32,000 lattice sites. The interatomic potential used is the MEAM potential.
The void size is 775 (this number of atoms were removed to form the void).

To investigate the fracture mechanism, we illustrate the microscopic characteristics in
Figure 9. Panel (a) shows the strain–stress relationship and normalized energy change dur-
ing the stretching process of strain. Panel (b) and panel (c) demonstrate the configurations
of atoms on the plane slicing through the center of the void defect, where the color code
is employed to represent the potential energy of each atom in panel (b) and the stress on
each atom in the x direction in panel (c). Moreover, the circled numbers denote the stages
throughout the loading process marked in panel (a). In addition, we know that cracks
are more likely to occur where the stress is concentrated, and from Figure 9, the stress is
concentrated in the middle, so the material is easy to break from the middle.

The first configuration corresponds to the onset of loading. The second configuration
corresponds to the stage in the middle of loading before fracture, the color of panel (c)
shows that the stress increases. The third configuration corresponds to the stage of the
imminent fracture. Up to this stage, it is the point on the peak in panel (a) that some parts
of panel (c) become deep red, showing that the stress is concentrated, and will crack. The
fourth, fifth, and sixth configurations correspond to the process of fracture. The red color
of panel (c) decreases, showing that the stress is released after the fracture.

3.2.2. Tersoff Type Potential

Figure 10 illustrates the dependence on the size of the spherical void embedded in the
beryllium crystals based on the Tersoff potential. The color-code is consistent with that of
Figure 5.
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Figure 9. Microstructures underlying progress derived from MD simulations based on the MEAM 
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Figure 9. Microstructures underlying progress derived from MD simulations based on the MEAM
type potential: (a) strain–stress relationship and strain–normalized energy relationship; (b) potential
energy; (c) stress in the x direction. The system size is 32,000 lattice sites. The void size is 775 (this
number of atoms were removed to form the void).
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Figure 10. Effect of size of spherical void on the strain–stress relationship of beryllium subject to
uniaxial tension derived from MD simulations based on the Tersoff type potential. The system size is
32,000 lattice sites. The temperature is 300 K.

Figure 11 illustrates the dependence on the size of the spherical void embedded in the
beryllium crystals based on the Tersoff potential. The arrangement of panels is consistent
with that of Figure 6. Similarly, we see toughness depicted in panel (a), Young’s modulus
shown in panel (b), and the fracture stress and strain illustrated in panel (c) and panel (d),
all decrease with the enlargement of the spherical void defect. The original data are listed
in Table S6 in Supplementary Information.
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Figure 11. Effect of size of spherical void on the mechanical performance of beryllium subject to
uniaxial tension derived from MD simulations based on the Tersoff type potential: (a) Toughness;
(b) Young’s modulus; (c) Fracture stress; (d) Fracture strain. The system size is 32,000 lattice sites.
The temperature is 300 K.

Figure 12 illustrates the dependence on temperature with the size of the void defect
fixed. The color-code is consistent with that of Figure 7.
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Figure 12. Effect of temperature on the strain–stress relationship of beryllium subject to uniaxial
tension derived from MD simulations. The system size is 32,000 lattice sites. The interatomic potential
used is the Tersoff potential. The void size is 775 (this number of atoms were removed to form
the void).

Figure 13 illustrates the effect of temperature on the properties of beryllium reflected
by the strain–stress relationship. The arrangement is consistent with that of Figure 8. The
results on the fracture strain and stress, and toughness are similar. However, surpris-
ingly, Young’s modulus linearly increases with temperature. The original data is listed in
Table S7 in Supplementary Information.
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Figure 13. Effect of temperature on the mechanical performance of beryllium subject to uniaxial
tension derived from MD simulations based on the Tersoff type potential: (a) Toughness; (b) Young’s
modulus; (c) Fracture stress; (d) Fracture strain. The system size is 32,000 lattice sites. The void size is
775 (this number of atoms were removed to form the void).

The microscopic characteristics throughout the fracture are illustrated in Figure 14.
The arrangement and color-code are consistent with that of Figure 9. According to Figure 14,
the stress distribution is relatively uniform, and small cracks may appear in some parts.
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In the first and second configurations, the system is stressed from its initial state. In 

the third configuration, corresponding to the stage at the imminence of fracture, the sys-

tem began to develop some small cracks. In the fourth, fifth, and sixth configurations, the 

crack grows in both directions. Nonetheless, the system does not tear up. 

3.2.3. Finnis–Sinclair Type Potential 

Figure 15 illustrates the dependence on the size of the spherical void embedded in 

the beryllium crystals. The color-code is consistent with that of Figure 5. The observations 

are also qualitatively similar. 

Figure 14. Microstructures underlying progress derived from MD simulations based on the Tersoff
type potential: (a) strain–stress relationship and strain–normalized energy relationship; (b) potential
energy; (c) stress in the x direction. The system size is 32,000 lattice sites. The void size is 775 (this
number of atoms were removed to form the void).

In the first and second configurations, the system is stressed from its initial state. In
the third configuration, corresponding to the stage at the imminence of fracture, the system
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began to develop some small cracks. In the fourth, fifth, and sixth configurations, the crack
grows in both directions. Nonetheless, the system does not tear up.

3.2.3. Finnis–Sinclair Type Potential

Figure 15 illustrates the dependence on the size of the spherical void embedded in the
beryllium crystals. The color-code is consistent with that of Figure 5. The observations are
also qualitatively similar.
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Figure 15. Effect of size of spherical void on the strain–stress relationship of beryllium subject to
uniaxial tension derived from MD simulations based on the Finnis–Sinclair type potential. The
system size is 32,000 lattice sites. The temperature is 300 K.

Figure 16 illustrates the effect of the size of the spherical void on the properties of
beryllium reflected by the strain–stress relationship. The arrangement of panels is consistent
with that of Figure 6. The results on toughness, Young’s modulus and the fracture stress
are similar. However, the fracture strain slightly increases when the atoms removed exceed
2000. The original data are listed in Table S8 in Supplementary Information.
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Figure 16. Effect of size of spherical void on the mechanical performance of beryllium subject to uni-
axial tension derived from MD simulations based on the Finnis–Sinclair type potential: (a) Toughness;
(b) Young’s modulus; (c) Fracture stress; (d) Fracture strain. The system size is 32,000 lattice sites.
The temperature is 300 K.
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Figure 17 illustrates the dependence on temperature with the size of the void defect
fixed. The color-code is consistent with that of Figure 7. The temperature has a slight effect
on the strain-stress relationship.
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The void size is 775 (this number of atoms were removed to form the void). 

Figure 17. Effect of temperature on the strain–stress relationship of beryllium subject to uniaxial
tension derived from MD simulations based on the Finnis–Sinclair type potential.

Figure 18 illustrates the effect of temperature on the properties of beryllium reflected
by the strain–stress relationship. The arrangement is consistent with that of Figure 8. The
results on toughness and fracture stress are similar. Moreover, Young’s modulus and
fracture strain show very weak dependence on temperature. The original data are listed in
Table S9 in Supplementary Information.
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Figure 18. Effect of temperature on the mechanical performance of beryllium subject to uniaxial
tension derived from MD simulations based on the Finnis–Sinclair type potential: (a) Toughness;
(b) Young’s modulus; (c) Fracture stress; (d) Fracture strain. The system size is 32,000 lattice sites.
The void size is 775 (this number of atoms were removed to form the void).

The microscopic characteristics throughout the fracture are illustrated in Figure 19.
The arrangement and color-code are consistent with that of Figure 9. According to Figure 19,
the stress distribution is relatively uniform, and small cracks may appear in some parts.
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The microscopic characteristics throughout the fracture are illustrated in Figure 19. 

The arrangement and color-code are consistent with that of Figure 9. According to Figure 

19, the stress distribution is relatively uniform, and small cracks may appear in some parts. 

Figure 19. Microstructures underlying progress derived from MD simulations based on the Finnis–

Sinclair type potential: (a) strain–stress relationship and strain–normalized energy relationship; (b) 

potential energy; (c) stress in the x direction. The system size is 32,000 lattice sites. The void size is 

775 (this number of atoms were removed to form the void). The temperature is 300 K. 

The first and second configurations are similar to those from prior potentials. Simi-

larly, some cracks are created in the third configuration. However, these sheath cracks do 

not lead to the tearing up of the system. 

4. Discussion

Figure 20 illustrates the strain–stress relationship of the three potentials, where the 

color code is employed to represent the type of potential. All three potentials are under 

the same temperature (300 K) and same size of the spherical void (775). Especially, the 

stress–strain relationship of MEAM and Finnis–Sinclair has some similarities. 

Figure 19. Microstructures underlying progress derived from MD simulations based on the Finnis–
Sinclair type potential: (a) strain–stress relationship and strain–normalized energy relationship;
(b) potential energy; (c) stress in the x direction. The system size is 32,000 lattice sites. The void size is
775 (this number of atoms were removed to form the void). The temperature is 300 K.

The first and second configurations are similar to those from prior potentials. Similarly,
some cracks are created in the third configuration. However, these sheath cracks do not
lead to the tearing up of the system.

4. Discussion

Figure 20 illustrates the strain–stress relationship of the three potentials, where the
color code is employed to represent the type of potential. All three potentials are under
the same temperature (300 K) and same size of the spherical void (775). Especially, the
stress–strain relationship of MEAM and Finnis–Sinclair has some similarities.
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Figure 20. Strain–stress relationship of beryllium subject to uniaxial tension derived from MD
simulations based on the three types of potentials: MEAM (black), Tersoff (red) and Finnis–Sinclair
(blue). The system size is 32,000 lattice sites. The void size is 775 (this number of atoms were removed
to form the void). The temperature is 300 K.
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Figure 21 illustrates the effect of the size of the spherical void on the properties
of beryllium, respectively, based on the three types of potential: MEAM, Tersoff, and
Finnis–Sinclair type potential. In all three potentials, the toughness becomes smaller, and
is shown in panel (a). The Young’s modulus becomes smaller too, as shown in panel (b).
Similarly, panel (c) and panel (b) demonstrate the fracture stress and strain at the onset
of fracture.
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Figure 21. Comparison of three potentials on the mechanical performance of beryllium subject to
uniaxial tension derived from MD simulations: (a) Toughness; (b) Young’s modulus; (c) Fracture
stress; (d) Fracture strain. The system size is 32,000 lattice sites. The void size is 775 (this number of
atoms were removed to form the void). The temperature is 300 K.

However, there are subtle differences in the three types of potential. The toughness
of the Tersoff potential is highest and the Finnis–Sinclair is lowest. Young’s modulus of
Finnis–Sinclair and MEAM is much higher than that of Tersoff. Fracture stress and strain
are similar to toughness.

5. Conclusions

We have assessed interatomic potentials on the mechanical properties of HCP beryl-
lium. We have explicitly examined the beryllium with defects of spherical void as well as
the referring pristine perfect beryllium using three types of interatomic potentials, namely
MEAM, Finnis–Sinclair, and Tersoff. Through systematic comparison, we gain atomistic
insights into the relationship between the microstructure and mechanical performances.

The bulk modulus derived from hydrostatic compression suggests that the results
derived from the MEAM and Tersoff type potentials are fairly close to that from the
experiment. Among the thermal expansion curves, the result derived from the Tersoff type
potential is unreasonable showing a negative thermal expansion coefficient beyond the
temperature of 500 K.

From the uniaxial tension testing, the MEAM type predicts a clear fracture mecha-
nism by tearing up along the direction perpendicular to that of stretching, whereas the
Finnis–Sinclair and Tersoff types tend to accommodate the deformation more homoge-
neously without tearing up the system. Considering the fact that beryllium tends to
be brittle after neutron irradiation, the predictions from the MEAM type potential are
more reasonable.
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In summary, through intercomparison of the three types of potentials previously
developed for beryllium, this study concludes that the MEAM type potential yields the
most reasonable predictions on the pristine beryllium and those with spherically shaped
void defects. Our results might be useful in further atomistic investigation and material
design on beryllium, a toxic yet important nuclear material.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cryst13091330/s1, Supplementary Information includes nine tables,
as (Tables S1–S3) the parameters of three potentials developed for beryllium; (Tables S4 and S5)
effect of void size of spherical void and temperature on the mechanical performance of beryllium
subject to uniaxial tension based on the MEAM potential; (Tables S6 and S7) effect of void size of
spherical void and temperature on the mechanical performance of beryllium subject to uniaxial
tension based on the Tersoff potential; (Tables S8 and S9) effect of void size of spherical void and
temperature on the mechanical performance of beryllium subject to uniaxial tension based on the
Finnis–Sinclair potential.

Author Contributions: Conceptualization, B.W., J.J. and Q.P.; methodology, J.J. and Q.P.; formal
analysis, C.Y. and W.D.; investigation, C.Y., W.D. and S.L.; data curation, C.Y.; writing—original draft
preparation, B.W.; writing—review and editing, B.W. and Q.P.; visualization, C.Y.; supervision, B.W.
and Q.P.; project administration, B.W. All authors have read and agreed to the published version of
the manuscript.

Funding: Q. P. would like to acknowledge the support provided by the National Natural Science
Foundation of China (Grant No. 12272378) and the LiYing Program of the Institute of Mechanics,
Chinese Academy of Sciences (Grant No. E1Z1011001).

Data Availability Statement: The data presented in this study are available upon reasonable requests.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of this study; in the collection, analyses, or interpretation of the data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Zheng, L.; Liu, X.; Bao, S.; Zhang, J.; Zhong, J.; Ding, Y. Research Progress on Properties of Rare Metal Beryllium. Chin. J. Rare Met.

2023, 24, 292–302.
2. Barabash, V.; Eaton, R.; Hirai, T.; Kupriyanov, I.; Nikolaev, G.; Wang, Z.; Liu, X.; Roedig, M.; Linke, J. Summary of beryllium

qualification activity for ITER first-wall applications. Phys. Scr. 2011, T145, 014007. [CrossRef]
3. Tolias, P. Analytical expressions for thermophysical properties of solid and liquid beryllium relevant for fusion applications. Nucl.

Mater. Energy 2022, 31, 101195. [CrossRef]
4. Vladimirov, P.V.; Chakin, V.P.; Dürrschnabel, M.; Gaisin, R.; Goraieb, A.; Gonzalez, F.A.H.; Klimenkov, M.; Rieth, M.; Rolli, R.;

Zimber, N.; et al. Development and characterization of advanced neutron multiplier materials. J. Nucl. Mater. 2021, 543, 152593.
[CrossRef]

5. DiJulio, D.D.; Lee, Y.J.; Muhrer, G.; Herwig, K.W.; Iverson, E.B. Impact of crystallite size on the performance of a beryllium
reflector. J. Neutron Res. 2020, 22, 275–279. [CrossRef]

6. Muhammad, S.T.; Ahmad, S.-u.-I.; Chaudri, K.S.; Ahmad, A. Beryllium as reflector of MNSR. Ann. Nucl. Energy 2008, 35,
1708–1712. [CrossRef]

7. Hu, N.; Tanaka, H.; Akita, K.; Kakino, R.; Aihara, T.; Nihei, K.; Ono, K.; Baxter, D.; Gutberlet, T.; Kino, K.; et al. Accelerator based
epithermal neutron source for clinical boron neutron capture therapy. J. Neutron Res. 2022, 24, 359–366. [CrossRef]

8. Magni, C.; Postuma, I.; Ferrarini, M.; Protti, N.; Fatemi, S.; Gong, C.; Anselmi-Tamburini, U.; Vercesi, V.; Battistoni, G.; Altieri, S.;
et al. Design of a BNCT irradiation room based on proton accelerator and beryllium target. Appl. Radiat. Isot. 2020, 165, 109314.
[CrossRef] [PubMed]

9. Pajuste, E.; Kizane, G.; Avotin, a, L.; Zarin, š, A. Behaviour of neutron irradiated beryllium during temperature excursions up to
and beyond its melting temperature. J. Nucl. Mater. 2015, 465, 293–300. [CrossRef]

10. Simos, N.; Elbakhshwan, M.; Zhong, Z.; Camino, F. Proton irradiation effects on beryllium—A macroscopic assessment. J. Nucl.
Mater. 2016, 479, 489–503. [CrossRef]

11. Peng, Q.; Zhang, X.; Hung, L.; Carter, E.A.; Lu, G. Quantum simulation of materials at micron scales and beyond. Phys. Rev. B
2008, 78, 054118. [CrossRef]

12. Sun, Y.; Peng, Q.; Lu, G. Quantum mechanical modeling of hydrogen assisted cracking in aluminum. Phys. Rev. B 2013, 88, 104109.
[CrossRef]

https://www.mdpi.com/article/10.3390/cryst13091330/s1
https://www.mdpi.com/article/10.3390/cryst13091330/s1
https://doi.org/10.1088/0031-8949/2011/T145/014007
https://doi.org/10.1016/j.nme.2022.101195
https://doi.org/10.1016/j.jnucmat.2020.152593
https://doi.org/10.3233/JNR-190135
https://doi.org/10.1016/j.anucene.2008.02.005
https://doi.org/10.3233/JNR-220037
https://doi.org/10.1016/j.apradiso.2020.109314
https://www.ncbi.nlm.nih.gov/pubmed/32768928
https://doi.org/10.1016/j.jnucmat.2015.05.049
https://doi.org/10.1016/j.jnucmat.2016.06.048
https://doi.org/10.1103/PhysRevB.78.054118
https://doi.org/10.1103/PhysRevB.88.104109


Crystals 2023, 13, 1330 19 of 19

13. Peng, Q.; Ma, Z.; Cai, S.; Zhao, S.; Chen, X.; Cao, Q. Atomistic Insights on Surface Quality Control via Annealing Process in
AlGaN Thin Film Growth. Nanomaterials 2023, 13, 1382. [CrossRef] [PubMed]

14. Peng, Q.; Meng, F.; Yang, Y.; Lu, C.; Deng, H.; Wang, L.; De, S.; Gao, F. Shockwave generates <100> dislocation loops in bcc iron.
Nat. Commun. 2018, 9, 4880. [PubMed]

15. Ganchenkova, M.G.; Vladimirov, P.V.; Borodin, V.A. Vacancies, interstitials and gas atoms in beryllium. J. Nucl. Mater. 2009,
386–388, 79–81. [CrossRef]

16. Agrawal, A.; Mishra, R.; Ward, L.; Flores, K.M.; Windl, W. An embedded atom method potential of beryllium. Model. Simul. Sci.
Eng. 2013, 21, 085001. [CrossRef]

17. Daw, M.S.; Baskes, M.I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals.
Phys. Rev. B 1984, 29, 6443–6453. [CrossRef]

18. Hu, W.Y.; Zhang, B.W.; Huang, B.Y.; Gao, F.; Bacon, D.J. Analytic modified embedded atom potentials for HCP metals. J. Phys.
Condens. Matter. 2001, 13, 1193–1213. [CrossRef]

19. Baskes, M.I. Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 1992, 46, 2727–2742. [CrossRef]
[PubMed]

20. Finnis, M.W.; Sinclair, J.E. A simple empirical N-body potential for transition metals. Philos. Mag. A 1984, 50, 45–55. [CrossRef]
21. Tersoff, J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 1988, 37, 6991–7000. [CrossRef]
22. Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [CrossRef]
23. Baskes, M.I. Determination of modified embedded atom method parameters for nickel. Mater. Chem. Phys. 1997, 50, 152–158.

[CrossRef]
24. Baskes, M.I.; Johnson, R.A. Modified embedded atom potentials for HCP metals. Model. Simul. Mater. Sci. Eng. 1994, 2, 147–163.

[CrossRef]
25. Lee, B.-J.; Ko, W.-S.; Kim, H.-K.; Kim, E.-H. The modified embedded-atom method interatomic potentials and recent progress in

atomistic simulations. Calphad 2010, 34, 510–522. [CrossRef]
26. Dremov, V.V.; Karavaev, A.V.; Kutepov, A.L.; Soulard, L.; Elert, M.; Furnish, M.D.; Chau, R.; Holmes, N.; Nguyen, J. Molecular

Dynamics Simulation of Thermodynamic and Mechanical Properties of Be and Mg. In Proceedings of the Conference of the
American-Physical-Society-Topical-Group on Shock Compression of Condensed Matter, Waikoloa, HI, USA, 24–29 June 2007.

27. Bjorkas, C.; Juslin, N.; Timko, H.; Vortler, K.; Nordlund, K.; Henriksson, K.; Erhart, P. Interatomic potentials for the Be-C-H system.
J. Phys. Condens. Matter 2009, 21, 445002. [CrossRef]

28. Dai, X.D.; Kong, Y.; Li, J.H.; Liu, B.X. Extended Finnis–Sinclair potential for bcc and fcc metals and alloys. J. Phys. Condens. Matter
2006, 18, 4527–4542. [CrossRef]

29. Igarashi, M.; Khantha, M.; Vitek, V. N-body interatomic potentials for hexagonal close-packed metals. Philos. Mag. B 2006, 63,
603–627. [CrossRef]

30. Migliori, A.; Ledbetter, H.; Thoma, D.J.; Darling, T.W. Beryllium’s monocrystal and polycrystal elastic constants. J. Appl. Phys.
2004, 95, 2436–2440. [CrossRef]

31. Petzow, G.; Aldinger, F.; Jönsson, S.; Welge, P.; van Kampen, V.; Mensing, T.; Brüning, T. Ullmann’s Encyclopedia of Industrial
Chemistry; Wiley-VCH: Hoboken, NJ, USA, 2005.

32. Ming, l.C.; Manghnani, M.H. Isotherma compression and phase-transition in beryllium to 28.3 GPa. J. Phys. F Met. Phys. 1984, 14,
L1–L8. [CrossRef]

33. Gordon, P. A High Temperature Precision X-ray Camera: Some Measurements of the Thermal Coefficients of Expansion of
Beryllium. J. Appl. Phys. 1949, 20, 908–917. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/nano13081382
https://www.ncbi.nlm.nih.gov/pubmed/37110967
https://www.ncbi.nlm.nih.gov/pubmed/30446642
https://doi.org/10.1016/j.jnucmat.2008.12.063
https://doi.org/10.1088/0965-0393/21/8/085001
https://doi.org/10.1103/PhysRevB.29.6443
https://doi.org/10.1088/0953-8984/13/6/302
https://doi.org/10.1103/PhysRevB.46.2727
https://www.ncbi.nlm.nih.gov/pubmed/10003959
https://doi.org/10.1080/01418618408244210
https://doi.org/10.1103/PhysRevB.37.6991
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1016/S0254-0584(97)80252-0
https://doi.org/10.1088/0965-0393/2/1/011
https://doi.org/10.1016/j.calphad.2010.10.007
https://doi.org/10.1088/0953-8984/21/44/445002
https://doi.org/10.1088/0953-8984/18/19/008
https://doi.org/10.1080/13642819108225975
https://doi.org/10.1063/1.1644633
https://doi.org/10.1088/0305-4608/14/1/001
https://doi.org/10.1063/1.1698252

	Introduction 
	Materials and Methods 
	MEAM Type Potential 
	Tersoff Potential 
	Finnis–Sinclair Type Potential 
	Simulation Setup 

	Results 
	Equations of States 
	Hydrostatic Compression 
	Thermal Expansion 

	Uniaxial Tensile Response 
	MEAM Type Potential 
	Tersoff Type Potential 
	Finnis–Sinclair Type Potential 


	Discussion 
	Conclusions 
	References

