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Abstract: MoO2 micro-powders with a mean pore size of 3.4 nm and specific surface area of 2.5 g/cm3

were compacted by dry pressing, then pressureless sintered at a temperature of 1000–1150 ◦C for
2 h or for a sintering time of 0.5–12 h at 1050 ◦C in an N2 atmosphere. Then, their microstructure
evolution for morphology, crystallite, and grain growth were investigated. By sintering at a certain
temperature and times, the irregular shape of the MoO2 powders transformed into an equiaxed
structure, owing to the surface energy, which contributed to faster grain growth at the initial stage
of sintering. The crystallite and grain sizes exponentially increased with the sintering time, and the
growth exponent, n, was approximately 2.8 and 4, respectively. This indicates that the crystallite
growth is governed by dislocation-mediated lattice diffusion, and the grain growth is determined
by surface diffusion-controlled pore mobility. The increase in sintering temperature increased both
crystallite and grain size, which obeyed the Arrhenius equation, and the activation energies were
determined to be 95.65 and 76.95 kJmol−1 for crystallite and grain growths, respectively.

Keywords: MoO2; sintering; XRD; SEM; morphology; crystallite; grain growth

1. Introduction

Molybdenum oxides, a type of metal oxide with an n-type semiconducting and non-
toxic nature, have attracted much attention for their diverse functional applications such
as electronics, catalysis, sensors, energy-storage units, field emission devices, supercon-
ductor lubricants , thermal materials, biosystems, and chromogenic and electrochromic
systems [1–3]. MoOX (2 ≤ X ≤ 3) has a high work function of approximately 6.7 eV and
can be used as the hole-extraction layer in photovoltaic devices, light-emitting devices, and
sensors, owing to its photochromism and low reflectance characteristics [4,5].

MoOX not only has many intermediate oxides such as MonO3n−1 between MoO2 and
MoO3, but also has various structural and electronic phases due to the multiple valence
states of 4d molybdenum from +3 to +6 [6,7]. Among them, the most common are MoO3
and MoO2, which differ in their electronic and optical properties and chemical structures.
MoO3 has an orthorhombic structure and consists of two layers of MoO6 octahedra as a
framework [8]. MoO2 has a disfigured rutile structure, which consists of MoO6 octahedra
coupled by edge-sharing [9]. Regarding the optical properties, MoO3 usually presents as
white, whereas MoO2 exhibits as dark blue or black, allowing a different light absorption
characteristic [10]. MoO2 is electrically conductive, but MoO3 is insulating [11,12]. This
metallic property of MoO2 endows it with possible applications as electrodes for gas sensors
and catalysis [13–15].
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MoO2 is less important in technological applications than MoO3 but has been used as
a catalyst for alkane isomerization or oxidation reactions and as a gas sensor. Furthermore,
MoO2 is an oxide-based compound semiconductor with an indirect band gap, and it is also
a potential candidate for desirable hole injection layer applications between a transparent
conducting oxide (TCO) and an organic light-emitting diode (OLED) [16]. For the fine
bezel in a thin-film transistor (TFT) backplane, MoO2 can be applied as a functional film to
lower the reflection of a metal-mesh electrode and enhance the effect of shadow elimination;
additionally, it is a cost-effective and reliable thin-film material [17].

MoO2 thin films can be fabricated using a molybdenum target using spin coating,
pulsed laser deposition, reactive sputtering, and thermal evaporation [18]. In the case of
the sputtering process, to optimize the performances of the thin film, most researchers
have studied the influences of sputtering parameters on the film properties, including the
type of sputter power (radio-frequency (RF) magnetron reactive sputtering, direct current
(DC) magnetron reactive sputtering), working pressure (oxygen partial pressure from
1.00 × 10−3 mbar to 1.37 × 10−3 mbar), base pressure, atmosphere (Ar-O2 sputtering gas),
sputter powder (electrical conductivity varying from 1.6 × 10−5 S/cm to 3.22 S/cm), film
thickness, and post-annealing treatment (oxygen annealing range from 250 to
350 ◦C) [19–23]. However, it is difficult to elucidate how the target influences the properties
of various films, the sputtering process, and the correlations between film properties and
target performance have not been well established. Therefore, recently, sputtering targets
have gradually grown in importance because the sintered density, grain size, electrical
properties, stoichiometry, and microstructural uniformity of the sputtering targets are now
known to significantly influence not only the properties of various thin films but also the
sputtering process. Understanding and controlling a sputtering target’s crystallite and
grain growth is important in thin film deposition processes, as it can affect the quality and
properties of the deposited thin film [24].

The use of MoO2 materials instead of Mo materials makes the optimization of process
parameters easier because MoO2 thin film is fabricated by reactive sputtering of Mo target
materials in a controlled O2 atmosphere. Several works [25–27] have investigated the
fabrications and microstructural evolution of Mo materials by powder metallurgy, but
studies on a fabrication of bulk materials using MoO2 powders by means of the sintering
process and its microstructural evolution during firing are limited. Therefore, this study
systematically investigated commercially available MoO2 powders to determine the effects
of the sintering temperature and time on microstructure evolution for the morphology
of the powder, grain growth. MoO2 bulk materials were fabricated from MoO2 powder
using a conventional sintering process at different sintering temperatures and times. The
crystalline structure, powder morphology, and microstructural evolution of the sintered
MoO2 were characterized via X-ray diffraction (XRD) and scanning electron microscopy
(SEM). Moreover, the kinetics and activation energy for crystallite and grain growths were
determined and elucidated based on lattice and surface diffusion mechanisms, respectively.

2. Materials and Methods

The as-received MoO2 powders had irregular polygonal structures (Figure 1a), particle
sizes with a mean diameter of 2.1 µm (Figure 1b), and a purity of 99.9%. The powders were
compacted into a cylindrical shape with a diameter of 6 mm and thickness of 3 mm at a
uniaxial press by applying 200 MPa at ambient temperature, and after pressure application
the time of 10 min is provided for even spreading of pressure. The compacted samples
were dried at 120 ◦C in an oven for 2 h before sintering. The MoO2 sample was sintered at
1000–1150 ◦C for 2 h, and at 1050 ◦C for 0–12 h in an N2 atmosphere. A constant heating
rate of 5 ◦C/min and a dwell time of 2 h was applied at various temperatures. To assure
specific temperature control, a type-B thermocouple (Thermo Fisher Scientific, Waltham,
MA, USA) was applied in the furnace equipment, and the electric power obligated for the
set sintering schedule was traced down using the potentiometer.
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× 40 kV power, in the range of 2θ = 20–80°, and a step size of 0.02°) at room temperature. 
The XRD results were obtained using the software for the powerful Rietveld refinement 
method (Crystal Impact GbR, Bonn, Germany). Highscore Plus files from CrystalMaker 
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The morphology and microstructure of the powders and the fractured surface of the sin-
tered samples were investigated by SEM at an accelerating voltage of 20 kV (SU5000, Hi-
tachi, Tokyo, Japan). To impede the specimen charging, a layer of platinum was coated 
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and sintered samples were measured using image analysis software (Image-Pro, Media 
Cybernetics Inc., Rockville, MD, USA). 
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approximately 3.4 nm (Figure 2b). 

Figure 1. (a) SEM photo and (b) histogram demonstrating the particle size distribution of the
as-received MoO2 powders.

The specific surface area (SSA) and pore size of the MoO2 micro-powders were de-
termined using an automatic adsorption instrument (Quanta chrome Corp. Quadrasorb
evo, Boynton Beach, FL, USA). Sample degassing was performed at 170 ◦C for 13 h, before
the absorption and desorption of liquid N2 at –196 ◦C (77 K). The MicroActive 4.0 soft-
ware (TriStar II 3020 version 2.0) was used to generate the Brunauer–Emmett–Teller (BET)
surface area and the Barrett–Joyner–Helenda (BJH) pore size distribution. The sintered
samples were identified using X-ray diffractometry (XRD, Smartlab, Rigaku Co.,Tokyo,
Japan) to determine the lattice parameters and dislocation density (Cu Kα, λ = 1.54059 Å,
25 mA × 40 kV power, in the range of 2θ = 20–80◦, and a step size of 0.02◦) at room
temperature. The XRD results were obtained using the software for the powerful Rietveld
refinement method (Crystal Impact GbR, Bonn, Germany). Highscore Plus files from Crys-
talMaker software version 10.8.2. were used to generate a crystal structure of the sintered
sample. The morphology and microstructure of the powders and the fractured surface of
the sintered samples were investigated by SEM at an accelerating voltage of 20 kV (SU5000,
Hitachi, Tokyo, Japan). To impede the specimen charging, a layer of platinum was coated
onto the powder and sintered samples for 15 s. The particle and grain sizes of the powders
and sintered samples were measured using image analysis software (Image-Pro, Media
Cybernetics Inc., Rockville, MD, USA).

3. Results and Discussion

The BET isotherms for nitrogen adsorption by the as-received MoO2 powders were
measured to evaluate the pore structure. As shown in Figure 2a, the distinctive hysteresis
loop was mainly observed at a higher pressure, i.e., P/P0 = 0.0–1.0, indicating a type IV
isotherm, which is indicative of a typical mesoporous material [28]. The hysteresis loop is
formed because of the difference in the capillary action in the mesopores and macropores
during the absorption and desorption process [29]. The pore size distribution, determined
from the adsorption–desorption curve using the BJH method, was analyzed as a function
of the pore diameter of the MoO2 powders, as shown in Figure 2b, which shows the pore
size distribution for pore diameters ranging from 1 to 300 nm. The SSA of the powders
determined from the N2 adsorption–desorption isotherm using the BET method was
2.5 m2g−1, macropores of size larger than 50 nm rarely existed, and the mean pore size was
approximately 3.4 nm (Figure 2b).
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ceived and sintered samples. 

Figure 2. (a) N2 adsorption-desorption isotherms and (b) cumulative pore volume and BJH pore size
distribution curves of as-received MoO2 powders.

XRD patterns and crystal structure modeling of the as-received and sintered samples
are shown in Figure 3. The XRD results exhibit characteristic peaks, similar to a previous
study [30], and the as-received powders have a monoclinic structure with a lattice parameter
of a = 5.6102 Å, b = 4.8573 Å, c = 5.6265 Å, and β = 120.915◦, showing crystal structure
modeling (Figure 3b). The dashed lines in Figure 3a indicate the peak of the main hkl miller
indices of the as-received and sintered samples, indicating that each lattice parameter is
invariant under the sintering process in this study, while the phase transition of MoO2 from
monoclinic structure to a tetragonal structure at T = 1260 ◦C (1533 K) was reported in a
previous study [31].
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The microstructures of the fracture cross-section of the sintered samples at different
times and histograms of the grain size distribution are shown in Figure 4. By increasing the
sintering time at 1050 ◦C, the as-received MoO2 particles transformed from an irregular
polygonal structure (Figure 1a) to those with a regular geometry with a nearly spherical
structure (Figure 4c,d). After elapsing the sintering time of 2 h at 1050 ◦C, roughly rounded
grains were roughly found in small and large grains, suggesting that a concave surface acts
to pull itself into a flat surface to decrease the surface energy. Subsequently, the presence of
surface tension forces induced by the difference in the curvature of the powder, which tends
to minimize the surface area of materials, can cause the material to adopt a more rounded
shape. The histograms of the grain size distribution of the sintered samples at different
times show that the grains grow with increasing sintering time, and finally, the mean grain
size reached 4.7 µm and the standard deviation of the grain sizes slightly increased. Grain
growth refers to a particle’s volume change by grain boundary motion and its driving
force is proportional to the mean of curvature on the grain boundary. The convex grain
boundaries of smaller particles move inward, and smaller particles shrink. Therefore, as
the sintering time increases, the standard deviation of the grain sizes increases because the
radius of the curved grain boundary reduces when smaller particle shrinks [32].
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Figure 4. SEM photographs of the fracture cross-section of the sintered MoO2 sample at 1050 ◦C for
(a) 0.5, (b) 2, (c) 6, (d) 12 h; (a’–d’) show the histograms of grain size distribution.

Figure 5 shows the microstructures and grain size variation in the sintered samples’
fracture cross-sections with increasing sintering temperatures for 2 h. Similar to Figure 4,
the as-received MoO2 powder with an irregular polygonal structure exhibits a partially
further spherical shape when the sintering temperature was increased above 1000 ◦C, owing
to the generation of surface tension force, capillary action, and particle rearrangement, as
previously mentioned. Unlike Figure 4, particles with a partially spherical shape were
observed in Figure 5a at a lower sintering temperature of 1000 ◦C for 2 h, indicating that
the transformation from the irregular polygonal structure to a rounded shape is caused by
sintering for sufficient time as well as over the temperature. By increasing the sintering
temperature, the grain size distribution increased, as shown in Figure 5a’–d’. Higher
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sintering temperatures provide more thermal energy for grain boundary migration and
coalescence, resulting in larger grain sizes and an increase in grain size distribution.
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Figure 5. SEM photographs of fracture cross-section of sintered MoO2 sample depending on different
temperatures of (a) 1000, (b) 1050, (c) 1100, (d) 1150 ◦C for 2 h; (a’–d’) show the histograms of grain
size distribution.

Based on the XRD patterns (Figure 2a), the crystallite size was calculated using the
Scherrer equation, which considers the broadening of a peak in a diffraction pattern to
relate the size of sub-micrometer crystallites as follows [33,34]:

Dhkl =
Cλ

Bhkl ·cosθ
, δ = 1/D2

hkl (1)

where Dhkl is the crystallite size in the direction perpendicular to the lattice planes, C is a
numerical factor frequently referred to as the crystallite-shape factor and C = 0.9 is a good
approximation [35], λ is the wavelength of the X-rays, Bhkl is the width (full-width at half-
maximum) of the XRD peak in radians, θ is the Bragg angle, and δ is the dislocation density.
Figure 6a,b show the variation in mean crystallite sizes and dislocation density, obtained
from the Scherrer equation, according to the annealing time and temperature, respectively.
Based on the obtained graph, the mean crystallite size increased, and dislocation density
decreased with the sintering time and temperature. As shown in Figure 6a, crystallite
growth was rapid in the initial stage and gradual after the intermediate stage. During the
initial stages of heating, the crystallite growth rate increases rapidly, and concurrently the
dislocation density decreases swiftly. However, as the crystallites increase in size, they
begin to hinder crystallite growth owing to the decrease in dislocation density; thus, the
growth rate decreased. Eventually, the growth rate decreased until the decrease rate in
dislocation density was effectively negligible. As shown in Figure 6b, the growth of the
mean crystallite size depends on the sintering temperature, and it was correlated with the
variation in the dislocation density. At the same sintering time of 2 h, the mean crystallite
size increased linearly with the decrease in dislocation density, indicating that the crystallite
growth is correlated with the variation in the dislocation density. Dos Reis et al. [36] also
show that the dislocation plays as an effective fast diffusivity channel in MgO based on
kinetic Monte Carlo simulations testified by atomistic calculations.
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Figure 6. Evolution of the mean crystallite size and dislocation density of the samples as a function of
(a) various holding times at a sintering temperature of 1050 ◦C and (b) various sintering temperatures
for 2 h.

Figure 7 shows the variation in the average grain size of sintered samples with various
sintering times at 1050 ◦C and various sintering temperatures for 2 h. As shown in Figure 7a,
the average grain size sharply increased for the sintering time of 2 h, and then steadily
increased until 12 h at the same sintering temperature. The graph shows that the grain
growth rate is very high in the first 0.5 to 2 h, and then the growth rate decreases. Grain
growth processes are also related to the mechanisms of grain boundary motion; thus, it is
assumed that the instantaneous rate of growth is directly proportional to the instantaneous
average rate of grain boundary migration in the structure, calculated as [37]

dG
dt
∼ v (2)

where G is the average grain size and v is the velocity of grain boundary motion. A grain
boundary proceeds with a velocity (v) in response to the net pressure on the boundary. It is
generally given that the velocity is directly proportional to the pressure, with the constant
of proportionality being the grain boundary mobility (M), and thus,

v = MP (3)

The driving force for boundary movement in ceramics is mostly acquired from the
pressure gradient ∆P across the boundary arising from its curvature, given by [38]

∆P = S
(

1
r1

+
1
r2

)
= S

(
1

KG

)
(4)

where S is the grain boundary energy, r1, and r2 are the two radii of curvature of the
boundary surface, and K is a constant. The pressure gradient ∆P decreases as the mean
grain size G increases as a function of sintering time. Consequently, the reduction in
∆P could also contribute to the decrease in the velocity of grain boundary motion at
the intermediate and final steps of the sintering process. By increasing the sintering
temperature, grain coarsening occurs because higher temperatures provide more thermal
energy for grain boundary movement and coalescence, resulting in larger grain sizes.
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Using the data on the crystallite and grain size variation with the sintering processes
(Figures 6 and 7), the kinetic and activation energy of grain growth can be evaluated as
shown in Figure 7. The grain (or crystallite) growth can be calculated as follows [39].

G− G0 = K′t1/n (5)

where G is the mean grain size, G0 is the initial grain size, K′ is a temperature-dependent
constant, t is the time, and n is the grain growth exponent representing the grain growth
behavior. Here, D on the left of the Y-axis of Figure 7a is the mean crystallite size. The n
value can be calculated using the data analysis software of Origin (Origin Lab, Northamp-
ton, MA, USA) using an allometric equation (y = aχˆb). Figure 7a shows that the m values
for crystallite and grain growth are approximately 2.8 and 4, respectively. According to
the literature [38], the values of the grain growth exponent n have been determined in the
kinetics of grain growth for various mechanisms: n values of lattice and surface diffusion
for pore-controlled systems are 3 and 4, respectively, and n = 2 for the boundary-controlled
system. In this study, it is reasonable to assume that the n value of 2.8 for crystallite growth
is mainly controlled by the lattice diffusion, and that of 4 for grain growth is predominantly
governed by surface diffusion for pore-controlled systems. The activation energy (Q) of
grain growth can be obtained by [39]

K′ = K′0exp
(
− Q

RT

)
(6)

where Q is the activation energy, T is the temperature in Kelvin, K′0 is the pre-exponential
rate constant, and R is the gas constant. This explains why a plot of ln(G − G0) vs. 1/T
produces a straight line (Figure 8b). The crystallite and grain growth activation energies
are 95.62 and 76.96 kJ/mol, respectively. The grain growth representing the exponent n
with a value of approximately 4 is the system where pore mobility is controlled by surface
diffusion [38]. The activation energy of the grain growth should indicate the activation
energy of the pore mobility controlled by surface diffusion in the sintered MoO2 samples.
On the contrary, an exponent of n ≈ 3 describes the activation energy governed by lattice
diffusion. Based on the interpretation, the value of the calculated activation energy of the
crystallite and grain growth could be accepted given that crystallite growth is controlled by
lattice diffusion through a dislocation channel, and grain growth is governed by surface
diffusion of a pore mobility. Then, the value of activation energy for crystallite growth
is greater than that for grain growth. However, it is difficult to identify a grain growth
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mechanism based on the exponent n alone, because Ganapathi et al. [29] obtained excellent
fits for all values of n = 2, 3, or 4 with different annealing temperatures and times based
on measurements on nanocrystalline Cu. Nevertheless, it is notable that the comparison
between the kinetics and activation energies for the crystallite and grain growth could
reliably be evaluated by the large reduction of some intrinsic limitations because of the
same experimental conditions, namely, model parameters, acquisition temperature and
time, purity, and usage of the same materials.
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4. Conclusions

Compacted MoO2 powders by dray pressing were sintered at various temperatures
and times in an N2 atmosphere, and their microstructure evolution was characterized using
XRD and SEM images. As the sintering process reached a certain temperature and time, the
irregular shape of as-received MoO2 powders transformed into an equiaxed structure, ow-
ing to the occurrence of surface tension force, following which, the grain started to grow to
decrease the surface energy. In accord with the Scherrer equation based on the XRD pattern,
the crystallite size increased gradually as the sintering time and temperature increased, and
the variation in grain size with sintering processes exhibited analogous trends as the change
in the crystallite size. The crystallite and grain size exponentially increased with a growth
exponent, n, of approximately 2.8 and 4, respectively, indicating that the growth kinetic can
be governed by dislocation-mediated lattice diffusion and surface diffusion-controlled pore
mobility, respectively. With increasing sintering temperature, both crystallite and grain size
obeyed the Arrhenius equation against 1/T, and the activation energies were 95.65 and
76.95 kJmol−1, respectively.
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