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Abstract: We present the results of a twofold experimental and computational study of (0001)
GaN/AlN multilayers forming pseudomorphic superlattices. High-Resolution Transmission Electron
Microscopy (HRTEM) shows that heterostructures with four c-lattice parameters thick GaN Quantum
Wells (QW) are misfit-dislocation free. Accurate structural data are extracted from HRTEM images
via a new methodology optimizing the residual elastic energy stored in the samples. Total energy
calculations are performed with several models analogous to the experimental QWs with increasing
thicknesses of GaN, whereas this of the AlN barrier is kept fixed at n = 8 c-lattice parameters. With
vanishing external stresses, minimum energy configurations of the studied systems correspond
to different strain states. Linear elasticity accurately yields the corresponding lattice parameters,
suppressing the need for on-purpose total energy calculations. Theoretically justified parabolic fits
of the excess interfacial energy yield the values of interfacial stress and elastic stiffness as functions
of the GaN QW thickness. Total species-projected densities of states and gap values extracted from
there allow deciphering the effect of the evolving strain on the electronic structure of the superlattice.
It is found that the gap energy decreases linearly with increasing the strain of the QW. These results
are briefly discussed in the light shed by previous works from the literature.

Keywords: interfaces; AlN; GaN; pseudomorphic heterostructures; strain-balance; DFT; HRTEM

1. Introduction

Interfaces formed when homogeneous systems are in physical contact influence prop-
erties of the assembly, such as mechanical, electronic, or chemical. Composite assemblies
of various crystalline constituents put in physical contact yield properties that differ from
the ideal mechanical mixture of bulk constituents. Therefore, interfaces have been studied
extensively in pure systems, metals, semiconductors, insulators, and alloys [1,2]. These
studies have shown that interfaces perturb the structure of the constituent crystals over
distances representative of the inter-crystalline global symmetry, resulting in excess energy
and the modulation of interplanar spacings at the close neighborhood of the boundary.
Interphase interfaces introduce effects that are additional to the perturbations mentioned
above relating to the lattice mismatch, such as strains in defect-free heteroepitaxial struc-
tures [3] or threading dislocations and other interfacial structural defects accommodating
the misfit [4–9]. In both cases, misfit-generated strains influence the properties of the
assembly and deserve detailed investigations.

A specific case of heteroepitaxy refers to layers with various thicknesses in the form of
multiple quantum wells (QWs). Such systems exhibit new structural, dynamic, and elec-
tronic properties. Multilayered structures, consisting of ultra-thin and unequal-in-thickness
wells and barriers sharing the same in-plane lattice parameters of the crystalline layers, form
strained structures known as superlattices. Superlattices are essential in manufacturing de-
vices, e.g., optoelectronic, and present electronic properties highly conditioned by the strain
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partitioning in the superlattice. Above a critical layer thickness, the elastic energy stored
therein is lowered via the spontaneous formation of interfacial misfit-dislocations [10–18].
It has been shown that the energy gaps of superlattices differ from those reached by alloyed
constituents, which offer a means for bandgap tuning [19–22]. GaN/AlN superlattices are
promising structures for light-emitting devices operating in the ultraviolet spectral region
and various optical devices with intersubband transitions in the infrared range, such as
high-speed optical modulators, quantum cascade lasers, and photodetectors [23–26].

In the present work, electron microscopy (EM) observations are made on superlat-
tices of thin GaN wells grown pseudomorphically on twice-thicker AlN barriers. A new
methodology is proposed, based on optimizing the stored elastic energy of strained superlat-
tices, for extracting structural data from high-resolution transmission electron microscopy
(HRTEM) images. Unlike other experimental and theoretical studies of GaN/AlN multilay-
ered structures [27–30], the present work focuses on a twofold experimental and systematic
computational investigation of such superlattices. The pseudomorphic model that complies
with the strain state condition determined experimentally is the so-called ‘strain-balance’
model of GaN wells on AlN barriers, withholding the zero external stress condition, σ = 0.
The computational study relies on density functional theory (DFT) atomistic simulations.
These reveal compliance with the elastic theory predictions of strain partitioning and the
contribution of the planar interfaces to the total energy of the superlattice. In addition,
the electronic structure of the studied superlattices has been investigated to highlight the
impact of interfaces on the energy gap values. To the extent of our knowledge, this is the
first systematic investigation of interfacial energetics as a function of the QW thickness. It
completes previous works from the literature focusing on how the last influences strain
partition and related electronic properties of such superlattices [16,17,20,25,27].

2. Materials and Methods
2.1. Experimental

The samples studied in this work contain GaN/AlN multiple quantum wells (MQWs)
grown by radio frequency plasma-assisted molecular beam epitaxy (rf-MBE) on (0001)
AlN/Al2O3 templates [31]. The samples consisted of 35 periods of GaN/AlN short-period
superlattice with 4c-GaN wells and 8c-AlN barriers (c: the lattice parameter along the
common [0001] crystallographic direction) capped with 100 nm thick AlN to prevent
environment-caused surface degradation. The growth methods and related details are
described in [31].

The sandwich technique was used for preparing cross-sectional specimens. Mechan-
ical grinding was followed by focused Ar+ ion milling to thin the specimens to electron
transparency. HRTEM observations were performed along the

[
1210

]
zone axis of the

wurtzite structure, using a 200 kV JEOL JEM 2011 electron microscope, with a point-
to-point resolution of 0.19 nm and a spherical aberration coefficient Cs = 0.5 mm. This
orientation yields the shortest diffraction reflections (i.e., 0002, 1010) most appropriate
for the extraction of lattice constant values. Processing and analyzing HRTEM images
have been made using the software package GATAN Digital Micrograph Suite v.3.5 [32]
(Pleasanton, CA 94588, USA).

2.2. Computational Method
2.2.1. Geometrical Model

The experimental observations were used to prepare analogous atomistic supercells
for use as the starting configurations for the numerical modeling of the interfacial structure
and energy. Accordingly, reference axes x, y, and z spanned the crystallographic directions
[1010

]
,
[
1210

]
and [0001] of the wurtzite structure, respectively. For all the DFT simulations,

initial supercells were constructed with dimensions of a unit cell in the basal plane (one
atom) and lengths Lbc = (m + 8) c-AlN with m = 1–8. Within the initial supercells, the
GaN wells were introduced by replacing 2 m layers of the Al sublattice with 2 m Ga
layers. Figure 1 illustrates the projection of such a model along the

[
1210

]
zone axis. Here,
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the thicknesses of the constituent layers cope with the experimentally studied system,
4c-GaN/8c-AlN.
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Figure 1.
[
1210

]
projection of the balls and sticks model of a GaN QW pseudomorphically matching

AlN along the [0001] crystallographic direction. The polarity of the wurtzite structure implies different
atomic arrangements at the two interfaces (illustration produced via the software package Open
Visualization Tool (OVITO v.3.3.2) [33] (OVITO GmbH, Darmstadt, Germany).

2.2.2. DFT Calculations

Energetic and structural characteristics of GaN/AlN superlattices were investigated via
DFT calculations with the Quantum Espresso ab-initio package [34–36] and the thermo_pw
driver of routines [37] computing ab-initio material properties. The density functional of
Wu et al. [38] was implemented using wc Projector Augmented Wave (PAW) pseudopoten-
tials with non-linear core corrections [39]. This functional was chosen since, thereby, the
lattice constants and the elastic moduli of the constitutive single crystalline compounds are
realistically reproduced. The calculations used the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) minimization algorithm [40] with cutoffs for the kinetic and potential energies
set respectively at Ec = 140 Ry and Uc = 1260 Ry. Moreover, the following convergence
criteria have been adopted for the energy, δE < 10−8 Ry, the forces, δF < 10−8 Ry/Bohr
and stresses, δσ < 10−9 GPa. It can be seen in Tables A1 and A2 that computed lattice
constants and elastic moduli of the single crystalline binary compounds are in fair good
agreement with their experimental counterparts, consistently with the above-given justifica-
tion about the choice of using the specific wc, PAW pseudopotentials in this work. Relaxed,
strain-balanced bi-crystalline structures were obtained by minimizing the energy of initial
configurations with full periodic boundary conditions and vanishingly small external stress(
σ = 0

)
. The resulting values of the linear dimensions of the supercell, transversal and

normal to the interfaces, respectively labeled abc, Lbc, and the corresponding total potential
energy, Ebc, are listed in Table A3.

For the reference purpose, total and projected densities of states, henceforth referred
to as DOS and PDOS, respectively, were calculated for the single crystalline compounds
by including the Hubbard correction for strongly correlated systems implemented in the
Quantum Espresso package (DFT+U) [41–43]. With Hubbard ortho-atomic parameters
U Al-3p = 0.8, N-2p = 8.45, and Ga-3d = 2.5, calculated bandgaps (AlN: 6.11 eV, GaN:
3.50, see below Section 3.6) reproduce satisfactorily the experimental data (AlN: 6.13 eV,(c/a

)AlN ≈ 1.6, GaN: 3.45 eV,
(c/a

)GaN ≈ 1.63 [44,45]). It is worth noting that other
pseudopotentials from the Quantum Espresso repository tested in this work yield similar
results.

3. Results
3.1. TEM Observations

Figure 2a illustrates a dark field cross-section TEM (XTEM) image showing the 24 top
QWs of the superlattice recorded using the 0002 reflection in two-beam conditions. The
selected area electron diffraction (SAED) pattern in Figure 2b corresponds to the

[
1210

]
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oriented zone axis of the wurtzite structure. The mismatch between the lattices of AlN and
GaN amounts ≈ 4%. Consequently, two reflections should be visible in the SAED pattern
originating from the two crystalline layers. The absence of such reflections indicates that
GaN has grown pseudomorphically on AlN, whereas the satellite spots along the [0001]
c-axis mark the periodicity of the superlattice (see the pattern in the inset).
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Figure 2. (a) Dark field XTEM image of the superlattice recorded using the 0002 reflection, (b) SAED
pattern viewed along the

[
1210

]
zone axis attesting for the pseudomorphic growth. The inset is the

enlargement of the transmitted beam and relates to the periodicity of the superlattice.

Figure 3 is the HRTEM image of a 4c-thick GaN QW embedded in 8c-thick AlN
adjacent barriers viewed along the

[
1210

]
zone axis. The stacking sequence of wurtzite

is ‘AaBb’ where ‘A, B’, ‘a, b’ mark metal and nitrogen atoms, respectively. This image
visualizes (0002) lattice planes of the wurtzite crystal structure. Fourier filtering, using the
1010 spatial frequency in a series of HRTEM images from several interfacial areas, shows
the absence of misfit dislocations, further strengthening the conclusion that GaN has grown
pseudomorphically, as is shown in the inset of Figure 3. Accordingly, the in-plane lattice
parameter is common to the two crystallites. A sampling methodology is developed and
presented below, allowing the extraction and evaluation of the dimensional information
from the HRTEM images. Thereby, the comparison between the experiment and the results
of DFT modeling of analogous superlattices becomes possible. This methodology measures
distances expressed in image pixels units between Nc successive AlN (0002) planes on both
sides of any given GaN slab. As expected, these distances increase linearly with Nc, as
shown in Figure 4. The linear least-squares fit on data collected from eight different sample
regions yields the slope and the intercept with the vertical axis, respectively cAlN = 28.453
and DGaN = 118.31 (pixel units). The first represents the c-lattice parameter of AlN, and the
second is the thickness of the GaN slab (Figure 4a).

The apparent data dispersion is low and well inferior to the reasonable qualitative
estimation of the maximum measurement error ±cAlN/2, which expresses the deviation
between image bright spots and atomic column positions in the sample, merging uncertain-
ties from various causes. The error principally affects the intercept, whereas with increasing
Nc, the slope of the linear fit is decreasingly influenced. Figure 4b displays the average
distance, d (in pixels), between successive atomic columns along a

[
1010

]
row measured

far from the interfaces and from eight different regions of the sample as functions of Nc.
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Figure 4. (a) Lattice constant, c, of AlN from thickness measurements (in pixels) of slabs consisting in
Nc successive AlN (0002) planes on both sides of the QW. The slope of the linear least-squares fits the
data, sc = 28.453 pixels, yields the c-lattice parameter and the intercept with the vertical axis the QW
thickness D = 118.31 pixels; (b) Lattice parameter, a, of AlN obtained from measurements of distances
between atomic columns along a

[
1010

]
row. The slope of the linear squares fit, sa = 15.59 pixels

relate to the a-value.

The slope of the linear least-squares fit relates to the a-lattice parameter of AlN,
a = 2/

√
3·15.59 ≈ 18.001. This, combined with the above-found value cAlN = 28.453

pixels (Figure 4a), yields
(c/a

)AlN ≈ 1.58. It is considered in the following that this value
represents a trustable determination of this ratio. The value is lower than that measured
in the single crystal,

(c/a
)AlN ≈ 1.6 [44], indicating that due to their pseudomorphic

relationship, both sample constituents are deformed. Moreover, the least-squares straight
line does not pass precisely through the origin in this figure. This relates to the errors
committed to measuring the distances of successive atomic columns, which affect very little
of the slope of the linear fit and its average value representative of the a-lattice constant
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of AlN barriers in the sample. It should be stressed here that lattice constants of the
superlattice are likely to evolve with changing the thicknesses of the constituents. For
further progress in strain partitioning and comparing the above findings with modeling,
there is a need to convert lattice constant measurements into real units, which has been
conducted via the deconvolution methodology presented in the next section.

3.2. HRTEM Data Deconvolution

Distance measurements expressed in units of image pixels can be converted into real
units (Å) since the correspondence is known between pixels and the image scale. However,
appreciating the accuracy of the thereby emerging conversion factor, CpA, is not a simple
task (pA stands for ‘pixels to Å’). Alternative to this ‘geometrical’ determination, the choice
has been made to estimate CpA and the corresponding lattice parameters and deformation
states of the superlattice constituents via an optimization procedure guaranteeing that
the total residual elastic energy stored in the sample is at the minimum. This assumption
is qualitatively compatible with the strain-balanced condition that one can reasonably
admit describing the deformation states of the experimental samples. It corresponds
to states defined by the pseudomorphic relationship between the two compounds in
mechanical equilibrium (vanishing external stresses). The path towards the minimal elastic
energy condition consisted in simultaneously optimizing lattice constants and the elastic
energy content of the sample by defining the following objective function and numerically
localizing its lowest value (multi-dimensional minimization package MERLIN [46]):

f =

(
cAlN

pred

cAlN
TEM

− 1

)2

+

(
aAlN

pred

aAlN
TEM

− 1

)2

+ wel

{
Eel,AlN

pred VAlN
pred + Eel,GaN

pred VGaN
pred

}
(1)

Indexes ‘pred’ and ‘TEM’ mark, respectively, quantities predicted and extracted from
the TEM micrographs and VAlN

pred , VGaN
pred are predicted volumes of the respective lattice cells

at the mechanical equilibrium. The minimization algorithms in the MERLIN package
tentatively choose values of the function variables until the procedure repeatedly fails to
decrease the current f-value. During the minimization, the weight factor wel , transforms the
last term in Equation (1) into an a-dimensional quantity adjusting at a value comparable to
the first two geometrical terms. Upon convergence of the procedure, optimal values of the
conversion factor and the lattice constants are obtained, corresponding to the lowest value
of the elastic energy stored in the sample.

aAlN
TEM

(
Å
)
= C

pa
aAlN

TEM(pixels)

cAlN
TEM

(
Å
)
= C

pa
cAlN

TEM(pixels)
(2)

It is worth noting that the first two terms in Equation (1) refer solely to the lattice param-
eters of AlN, extracted from the least-square fits of Figure 4a,b. These values of the experi-
mental lattice parameters represent ‘bulk’ AlN in the sample and are free from the interfacial
perturbation, which is foreseen as short-range for such interfaces. This analysis is the princi-
pal asset of the extraction methodology developed in the present work. Regarding the GaN
lattice parameters, the pseudomorphic growth imposes aGaN

TEM = aAlN
TEM. Upon convergence

to the minimum of the objective function, f, the value CpA = 0.17684 Å/pixel is obtained.
Consequently, the TEM data, transformed by using this value yield DGaN ≈ 20.922 Å, for
the thickness of the GaN slab and cGaN ≈ DGaN

4 ≈ 5.23 Å, cAlN = 5.03 Å. The values of the
lattice parameters found via this optimization procedure, aGaN = aAlN , the corresponding
parallel and normal deformations, the related zero-stress predictions, and residual total
elastic energies in the two compounds are displayed in Table 1. The absolute values of
the in-plane deformations in both compounds are comparable. Moreover, the values of
ε⊥ are vanishingly small and compatible with the values expected holding the zero-stress
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condition. It follows that dimensions normal to the interfaces of the superlattice are about
equal to these of the equimolar mechanical mixture, irrespective of the thicknesses of the
bicrystals. The c-lattice parameter of AlN in Table 1 is about 1% lower than the value
deduced by transforming the experimental measurement in pixels via the conversion factor
Cpa. This should be attributed to interfaces in the experimental sample, not accounted for
by Equation (1).

Table 1. Converged values of the lattice parameters and the corresponding normal and tangential
deformations. Experimental data from the literature for single crystalline compounds are also given
for comparison.

Compound a (Å) ε// c (Å) ε⊥ c/a Eel (MPa)

AlN 3.136 0.008 4.957 −0.004 1.58 33.5
GaN 3.136 −0.017 5.23 0.009 1.67 132.9

3.3. Spatial Extension and Deformation States of Interfaces

The relaxed configurations of the studied systems allow for extracting the perturba-
tions of the interplanar distances d0002 due to the hetero-phase interfaces, information
experimentally out of reach. Figure 5a is the graph of the d[0002]-spacings of metallic and
nitrogen successive layers of a strain-balanced pseudomorphic GaN on AlN (m = 4, n = 8)
as a function of the z-position obtained from a relaxed configuration of a superlattice analo-
gous to the experimental sample (Figure 2). As is qualitatively visible in the figure, only a
few atomic layers are perturbed by the interfaces. Local, relative changes of d-spacings are
better highlighted by, εi and is defined by:

εi =
zi+1 + zi−1 − 2zi

zi − zi−1
(3)

where the indexes i − 1, i and i + 1 refer to the same species of successive planes. The sum
of the εi values between planes locating respectively at zn and zm correspond to the total
relative change of the spacing between them. Figure 5b presents two representations for
m = 4 and n = 8, m = 1 and n = 8. It confirms that ‘bulk-like’ regions, corresponding to the
‘plateaus’ in Figure 5a, separate the two interfaces and that perturbations induced by these
are not evolving and are very short-ranged. An interesting result is also visible, namely
that in the systems (m, n) = (m < 2, n = 8), the two inequivalent interfaces merge into a
single interface.

Values of the a-lattice parameter and the length, Lbc, of the relaxed bicrystal prove that
the deformation states corresponding to different GaN thicknesses are different (Figure 6).
As expected, the variation of Lbc is linear with m, whereas the slope of the linear least-
squares fit the data yields the value of the GaN c-lattice parameter in the superlattice. This
is found to be practically identical to the single crystal value, cGaN = 5.1913 Å (Table A1).
The intercept with the vertical axis is an estimation of the c-lattice parameter of AlN,
cAlN = 39.895

8 ≈ 4.9869 Å, which is identical to the value obtained for the single crystal. This
finding confirms the qualitative statement that interfacial perturbations are short-ranged
and shows that the total thicknesses of the studied systems along the common c-axis are
about equal to these of the equimolar mechanical mixture of the two compounds. However,
by considering the precisely calculated values of Lbc, we may notice short elongations that
should be attributed to the influence of interfaces. These almost negligible elongations are
not visible in Figure 6b.
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Figure 6. Linear dimensions of strain-balanced, pseudomorphic superlattices as functions of the QW
thickness expressed in c-lattice constants units: (a) a-lattice constant common to the two compounds
(Table A3) (b) total length along the z-axis; the trend line is a linear least-squares fit to the data.

As a reference states the single crystalline binary compounds at mechanical equi-
librium and the mechanical mixture, Figure 7a displays the superlattice’s normal strain
components and the unperturbed ‘bulk’ regions as functions of the GaN thickness. It is
seen that the apparent deformation of the computational box along the c-direction is small
and practically constant with increasing the GaN thickness, whereas, by comparison, the
two nitrides undergo significant and opposed sign normal deformations as is expected.
Remarkably, the overall normal deformation of the computational cell is vanishingly small.
Optimal c-lattice parameters of the superlattice constituents and computed elastic moduli
yield the normal deformations plotted in Figure 7b as functions of the zero-stress prediction
(dashed line in this figure). Minor and systematic deviations visible in the figure are likely
related to the no-symmetric influence of the interfaces and have not been investigated in
more detail.
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Figure 7. (a) Deformation along the c-axis of the bi-crystal (open circles) and of the bulk regions of the
nitrides as functions of the QW thickness (full circles) expressed in numbers of lattice cells; (b) ‘bulk’
deformations, ezz, in the two constituents of the superlattice (full circles: GaN, full squares: AlN)
and the prediction of the zero-stress model (dashed line). Labels PS and QE refer respectively to the
zero-stress (σzz = 0) linear elasticity prediction and the total energy calculations.

The results above establish that the deformation state of the superlattice and of the
two interfaces change with the evolving QW thickness. At this stage, it is foreseen that the
interfacial excess energy should behave similarly in agreement with similar investigations
in the literature [47–49].

3.4. Deformation States of Relaxed Superlattices and Zero-Stress

The total energy calculations have shown that withholding the condition, σ = 0, the
tangential deformations, e//, are functions of the QW thickness. Using the ab-initio values
of the elastic moduli obtained by thermo_pw (Table A2), the elastic energy of the mechanical
mixture of the two compounds is computed as a function of the common a-lattice parameter
fixed by the pseudomorphic and the minimum elastic energy conditions. Figure 8 represents
the results obtained for the different superlattices investigated in this work (m = 1–8,
n = 8) as functions of the common a-lattice parameter by using the experimental elastic
moduli [50,51] and equilibrium single crystal lattice parameters [44,45]. The minima of
the plots identify the equilibrium a-lattice parameter of the superlattices, whereas the
corresponding c-lattice parameters can be derived via the zero-stress elastic condition.

Crystals 2023, 13, x FOR PEER REVIEW 10 of 19 
 

 

 

Figure 8. Variation of the total elastic energy of mechanical mixtures equimolar to the studied su-

perlattices as functions of the common in-plane a-lattice parameter. For any given system, the min-

imum of the corresponding plot defines its optimal value. 

Lattice constants are also available for the ‘bulk’ regions of the relaxed superlattices, 

which provides the basis of a comparison with the elastic predictions above and the ex-

perimental values for the system m = 4, n = 8 (Figure 9a–c). The overall agreement for the 

a-lattice parameter is excellent. In contrast, differences are visible with the zero-stress pre-

dictions of the c-lattice parameters in both the constituents that amount to Δ𝑐 ≈ ±0.01 Å. 

Moreover, fair agreement is obtained between the lattice constants extracted from the 

TEM images, the zero-stress, and the total energy evaluations. These deviations should be 

attributed to the interfacial d-spacing irregularities and the difference between experi-

mental and calculated elastic constants. 

   

(a) (b) (c) 

Figure 9. Elastic, zero-stress prediction of the lattice constants of mechanical mixtures (n = 8, m = 2–

8) versus the values from ‘bulk’ regions in the relaxed superlattices (full circles). (a) a-lattice constant 

common to the two compounds; c-lattice constant of AlN (b) and of GaN (c). Open squares represent 

values extracted from the TEM observations (m = 4, n = 8, Table 1), whereas labels PS and QE desig-

nate zero-stress predictions and total energy calculations, respectively. 

The general conclusion is that the zero-stress condition is approximately fulfilled in 

the superlattice regions free from interfacial perturbations. It provides a useful tool for the 

experimentalist to predict the linear dimensions of superlattices without resorting to time-

consuming total energy calculations. A similar method for predicting the common a-lat-

tice parameters was presented in [52] with equivalent results. 

3.5. Interfacial Excess Energy 

Under zero external stresses, the deformation states of the investigated superlattices 

are functions of the thickness of the GaN QW (m = 1−8, Figure 10a), which implies that the 

total interfacial energy content, γ, should also depend on the evolving QW thickness in 

3.12

3.13

3.14

3.15

3.12 3.14

a(
Å

)	
P
S

a(Å)	QE

4.95

4.958

4.965

4.973

4.98

4.96 4.97

c
A

lN
(Å

)	
P

S

c
AlN

(Å)	QE

Figure 8. Variation of the total elastic energy of mechanical mixtures equimolar to the studied
superlattices as functions of the common in-plane a-lattice parameter. For any given system, the
minimum of the corresponding plot defines its optimal value.
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Lattice constants are also available for the ‘bulk’ regions of the relaxed superlattices,
which provides the basis of a comparison with the elastic predictions above and the
experimental values for the system m = 4, n = 8 (Figure 9a–c). The overall agreement for
the a-lattice parameter is excellent. In contrast, differences are visible with the zero-stress
predictions of the c-lattice parameters in both the constituents that amount to ∆c ≈ ±0.01 Å.
Moreover, fair agreement is obtained between the lattice constants extracted from the
TEM images, the zero-stress, and the total energy evaluations. These deviations should be
attributed to the interfacial d-spacing irregularities and the difference between experimental
and calculated elastic constants.
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Figure 9. Elastic, zero-stress prediction of the lattice constants of mechanical mixtures (n = 8, m = 2–8)
versus the values from ‘bulk’ regions in the relaxed superlattices (full circles). (a) a-lattice constant
common to the two compounds; c-lattice constant of AlN (b) and of GaN (c). Open squares represent
values extracted from the TEM observations (m = 4, n = 8, Table 1), whereas labels PS and QE
designate zero-stress predictions and total energy calculations, respectively.

The general conclusion is that the zero-stress condition is approximately fulfilled in
the superlattice regions free from interfacial perturbations. It provides a useful tool for
the experimentalist to predict the linear dimensions of superlattices without resorting to
time-consuming total energy calculations. A similar method for predicting the common
a-lattice parameters was presented in [52] with equivalent results.

3.5. Interfacial Excess Energy

Under zero external stresses, the deformation states of the investigated superlattices
are functions of the thickness of the GaN QW (m = 1−8, Figure 10a), which implies that
the total interfacial energy content, γ, should also depend on the evolving QW thickness
in the studied systems. This excess quantity is obtained from relaxed total energies of the
superlattices with reference to the mechanical assembly of unstrained AlN and GaN single
crystals equimolar to the given superlattice constituents:

γ = γ1+γ2 =
1

Abc

[
Ebc −

(
Emm(m, n) + EGaN

el ×VGaN
0 (m) + EAlN

el ×VAlN
0 (n)

)]
(4)

where, γ1, γ2 are, respectively, the interfacial energies of the two inequivalent interfaces
present in the studied superlattices, A is the cross-sectional area of the computational box
and Ebc is the total energy of the relaxed system. Emm(m, n) represents the total energy of
the mechanical (ideal) mixture of equimolar, no-interacting single-crystalline compounds,
i.e., without chemical bonding between them, made respectively of m-GaN and n-AlN
lattice cells along the c-direction, normal to the interfaces, VAlN

0 (n), VGaN
0 (m) the volumes

of the unstrained crystals. EAlN
el , EGaN

el represent the respective elastic energies that were
calculated by using, ac, the common a-lattice parameter extracted from the total energy
calculations with vanishing the external stress, whereas the respective c-lattice parameters
were determined using linear elasticity (Figure 9b,c). The ground states obtained for
the successive GaN thicknesses correspond to different deformation states of the binary
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compounds and their interfaces. The increment of the in-plane deformation of the interfaces
between successive states (m ± 1, n), εs

11 = εs
22, for any value of m can be estimated by:

εs
11(m± k) = ln

(
ac(m± k)

ac(m)

)
(5)

where the common lattice parameter ac (m) serves as the reference and k ∈ b1, 8c. Equation (5)
holds because the differences, δac between neighboring states are small (Table A3). The
obtained γ-values are displayed in Figure 10a as functions of εs

11 = εs
22, whereas numerical

labels identify the thickness in c-lattice parameter units of the QW each time used as
the reference state. In this figure, the full line represents a parabolic fit to the numerical
data corresponding to m = 1. This functional form has been shown appropriate by recent
theoretical work when the interface is tangentially deformed under the vanishing normal
external stress component [48,49]. For the sake of clarity, parabolic fits for other m-values,
i.e., other reference states, have not been represented in the figure. The fits yield the values
of the sums of the interfacial stresses

〈
Γαβ

〉
and of the elasticity stiffnesses,

〈
Γαβγδ

〉
of

the two dissimilar interfaces, quantities usually not provided by similar works in the
literature. The latter reveals identical for all the eight reference states (m = 1–8), amounting
to
〈
Γαβγδ

〉
= 171.53 J/m2, whereas the former is found to increase linearly as a function of

the in-plane deformation (Figure 10b). The desirable comparison of the present findings
with results from the literature is not possible, for the investigated systems differ from
ours. However, the magnitudes of interfacial stress and elastic stiffness comply with these
reported in the literature for a tilt grain boundary in copper [48,49]. Unlike other works,
the properties of the two dissimilar interfaces present in the studied superlattices are not
individually addressable. However, γ-values displayed in Figure 10a are remarkably lower
than the experimental value of surface energy in AlN [53] and calculated values for AlN [54]
and GaN [55–57], which complies with the experimentally known mechanical stability of
such interfaces against decohesion.
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Figure 10. Dependence of the total excess interfacial energy (a) and stress (b) as functions of the
in-plane interfacial strain in ‘strain-balanced’ superlattices. Full lines are respectively parabolic (left)
and linear (right) fits to the data (see text). For the sake of clarity, parabolic fits for m 6= 1 are not
shown. Deformation values have been calculated by using the reference state identified via the
m-value appearing in (a).
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3.6. Energy Gap

The effect of strain on the band structure has been studied for a long time [58] and
constitutes an essential ingredient of band gap engineering [59]. In the pseudomorphic
superlattices considered here, the lattice mismatch between the two constituents is accom-
modated by strains, parallel and normal to the interfaces in direct relation with the elastic
properties of the ‘bulk’ constituents, provided the thicknesses of the GaN/AlN layers are
small enough not to favor the formation of misfit dislocations. The variation of the valence
and conduction band offsets with strain are mainly bulk effects [59]. It has been shown
that strain-induced shifts of the conduction and the valence bands are proportional to the
in-plane, parallel strain component, ε// [58] holding the same for the energy gap between
bands. Since, to our knowledge, the present work is the first systematic investigation of
strain-balanced GaN/AlN superlattices with incrementally increasing the QW thickness,
we computed the PDOS of Al, Ga, and N, and for the reference purpose, these of the
single crystals AlN and GaN (Figure 11a,b). In addition, these obtained for all the studied
superlattices are presented in Figure A1a–h. Energy gaps extracted from these calculations
are displayed in Figure 12 as functions of the parallel strain component. It is seen that
the superlattice-related data satisfy the expected linear dependence of the gap on ε//,
whereas a good agreement is found between experimental and calculated band gaps of the
single crystalline compounds (see Section 2.2.2 above). It should be noted that energy gaps
computed without the Hubbard correction are underestimated (single crystals GaN:1.86,
AlN:4.1, superlattices (m = 1–8): 2.98, 2.36, 1.96, 1.65, 1.4, 1.16, 1.0, 0.79, in eV).
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4. Discussion and Conclusions

HRTEM images of superlattices may contain artifacts, image distortions due to various
causes, and structural defects other than the interfaces and can be affected by point-to-point
resolution limitations. To assess the influence of such distortions, we performed a statistical
analysis of distance measurements between atomic columns in various areas of the experi-
mental images to determine the lattice constants of the AlN barrier and the thickness of the
GaN QWs. We found that the distance averages are affected by very low statistical noise,
proving the quality of the experimental sample. These values are expressed in image pixels,
and their transformation in real units requires the determination of the conversion factor,
Cpa. To this end, a new methodology is proposed based on the minimization of the total
elastic energy stored in the experimental sample and has been approximated, evaluating
the elastic energy of the equimolar mechanical mixture. Moreover, the hypothesis is made
that the influence of interfacial perturbations is vanishingly small. The results establish
that QWs and barriers are strained in agreement with the computational results, giving
confidence to the proposed approach.

The innovating method adopted in this work for calculating the properties of pseudo-
morphic, GaN/AlN superlattices consisted in exploring computational analogous satisfy-
ing the mechanical equilibrium condition (σ = 0) for systems with a fixed thickness of the
barrier and incrementally increasing that of the QW. This produces a variety of minimum
energy configurations with evolving deformation states for the bulk constituents and their
heterophase interfaces, in difference from previous works investigating the energetics of
interfaces for specific values of the respective thicknesses of QWs and of the barriers [30].

Crystallographic data about the superlattice constituents has also been obtained by
other works as a function of the QW thickness [52]. These last are in full agreement with the
counterparts presented in Section 3.2 since both series are obtained via the elastic energy
minimum approach. However, unlike others, the elastic theory predictions are compared
in the present work with the outcome of ‘ab-initio’ calculations. It has been found that both
these last methods yield identical results except for the c-lattice constant of AlN. No clear
understanding of this discrepancy has been reached yet.

The values of the energy gaps reported in Section 3.6 and Appendix A are compliant
with their equivalents from the literature [19–21], further validating the trends revealed by
the present calculations.

In the present work, successive fundamental states of the superlattices are character-
ized by lattice constants and interfacial excess energies, γ, all revealing functions of the
GaN QW thickness. The observed trends have led us to the following conclusions:

(i). The spatial extension of the interfaces is very short-ranged and remains practically
unchanged when the thickness of the GaN QW changes.

(ii). Energy-minimized configurations of the studied systems adopt different deformation
states. It has been shown that the elastic prediction of the lattice constants of elastically
strained bulk compounds reasonably agrees with the predictions of total energy
minimizations.

(iii). A no-trivial result is that the interfacial excess energy is a function of the thicknesses
of the superlattice constituents, which relates to the evolving deformation states of
the interfaces with changing the respective thicknesses. Works in the literature have
not accounted for such effects.

(iv). Similar to structural properties and the interfacial excess energy, the superlattice
electronic properties are tightly deformation state dependent. Indeed, it has been
established that the valence and conduction bands offsets in strained superlattices and
the energy gaps as well are in a linear relationship with the tangential deformation
component of the bulk constituents, ε// [56]. We have verified that energy gaps
calculated in the present work obey this linear relationship.
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Appendix A

Table A1. Calculated and experimental (between parentheses) lattice constants of wurtzite AlN, GaN;
experimental values are respectively taken from references [44,45]. Total energies per hexagonal unit
cell, containing two metal and two nitrogen atoms, are provided for cross-checking purposes.

Compound a (Å) c (Å) c/a E (eV)

AlN 3.114 (3.113) 4.9869 (4.9816) 1.601 (1.601) 1831.51
GaN 3.185 (3.189) 5.1913 (5.185) 1.630 (1.626) 8302.31

Table A2. Elastic constants (this work) and experimental (between parentheses) in GPa for AlN [50]
and GaN [51].

Compound C11 C12 C13 C33 C44 C66

AlN 382.1
(411 ± 10)

137.3
(149 ± 10)

107.0
(99 ± 4)

358.5
(389 ± 10)

111.9
(125 ± 5)

122.4
(131 ± 10)

GaN 355.3
(390)

126.0
(145)

88.6
(106)

394.2
(398)

93.3
(105)

114.6
(123)

Table A3. Linear dimensions, abc, Lbc, and total energies of the studied systems as functions of the
QW thickness in c-lattice units (m = 1–8).

m abc (Å) Lbc (Å) Ebc (eV)

1 3.122 45.087 22,954.292
2 3.129 50.278 31,256.541
3 3.134 55.469 39,558.801
4 3.138 60.661 47,861.066
5 3.142 65.852 56,163.338
6 3.145 71.043 64,465.616
7 3.148 76.235 72,767.895
8 3.150 81.426 81,070.175
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