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Abstract: The preparations and structural characteristics of three-dimensional Zn(II) metal-organic
frameworks (MOFs) with dipyridyl-olefin and tricarboxylate are reported. The solvothermal reactions
of zinc(II) nitrate hexahydrate, 1,4-bis [2-(4-pyridyl)ethenyl]benzene (bpeb), and 4,4′,4′′,-benzene-
1,3,5-triyl-tris(benzoic acid) (H3btb) furnished three Zn(II) MOFs (1–3) with new topologies. Depend-
ing on the temperature or mole-ratio variations, self-interpenetrated [Zn2(bpeb)(btb)(OH)]·DMF·H2O
(1), noninterpenetrated [Zn3(btb)2(bpeb)]·xSolvent (2), and fourfold interpenetrated [Zn2(Hbtb)2(bpeb)]
[Zn2(Hbtb)2(bpeb)] [Zn4(Hbtb)4(bpeb)2] (3) structures were generated with different molecular build-
ing blocks. It is interesting that although all three MOFs contain the same metal cation, anion, and
spacer ligand, they show different emissions due to structure and connectivity.

Keywords: MOFs; zinc; tricarboxylate; coligand; mole-ratio; long spacer ligand

1. Introduction

The crystal engineering of coordination polymers (CPs) and metal–organic frameworks
(MOFs) has advanced significantly, with a matured design component [1–7]. Currently,
the focus has shifted towards exploration and understanding the relationships between
structure, function, and properties [8,9]. In essence, selecting suitable metal cations and
spacer ligands allows for control over the interpenetration, cavities, channels, topology,
connectivity, and proximity of reactive functional groups within the lattice of coordination
networks. Nonetheless, throughout the crystallization process, the prevailing influence of
connectivity and topology remains attributable to kinetic factors. Crystals tend to maximize
packing density, leading to voids being occupied by guests, uncoordinated ligands, or
counterions, and sometimes resulting in interpenetration [4,10,11]. As the length of linear
spacers is extended, it is observed that three-dimensional (3D) coordination polymers have
a tendency to display interpenetration, and longer spacer ligands generally enhance the
degree of interpenetration in structures that are already interpenetrated [12–18].

Furthermore, interpenetration is a common phenomenon in MOFs and CPs, with
significant implications for pore engineering and various properties like gas separation,
gas sensing, catalysis, drug delivery, energy storage, electric devices, thermal insulation,
etc. [18–29]. The degree of interpenetration can be altered experimentally through factors
such as reaction temperature, reactant ratio, solvent centration, and solvent nature. For
example, under conditions of elevated temperature and concentration, a pillared-layer
structure with twofold interpenetration is favored, whereas reduced temperature and
concentration lead to the formation of its noninterpenetrated counterpart [15]. The use of
different amide-based solvents in solvothermal synthetic conditions can vary the interpene-
tration from three- to fivefold in diamondoid MOFs, where the interpenetration level affects
their gas uptake properties [30]. Various methods, such as liquid-phase epitaxial growth
and sonochemical techniques, offer control over interpenetration and catenation [31,32].
How gas sorption properties, chirality, nonlinear optical properties, and the sensing of
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specific substances like ammonia and nitrobenzene are influenced by the degree of inter-
penetration has been explored [21–23,33–39].

Herein, we report the preparations of three MOFs from zinc(II) salt, 4,4′,4′′,-benzene-
1,3,5-triyl-tris(benzoic acid) (H3btb), and 1,4-bis[2-(4-pyridyl)ethenyl]benzene (bpeb), show-
ing various interpenetration modes and new topologies (Figure 1 and Table 1). Several
MOFs with various molecular building blocks via the self-assembly of the long spacer
ligand, bpeb, and various Zn(II)-carboxylates have been reported [40–43]. In this study, it
was possible to synthesize MOFs with new topologies by employing the large molecule
btb tricarboxylate. These three structures (1–3) were constructed from different repeat-
ing units under different experimental conditions. The self-interpenetrated structure (1),
noninterpenetrated rotaxane structure in a tricarboxylate plane threaded by bpeb (2), and
four-interpenetrated three-dimensional (3D) network structure (3) are interesting and
advance our structural knowledge in molecular machines like rotaxanes.
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 1 2 3 
Formula C47H31N2O7Zn2 C74H46N2O12Zn3 C296H184N8O48Zn8 
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Z 16 4 2 
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b (Å) 62.2276(10) 30.8405(10) 27.4589(19) 
c (Å) 5.90860(10) 27.0931(9) 48.052(3) 
α (°) 90 90 90 
β (°) 90 96.884(2) 97.288(4) 
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No. of reflection used [>2σ(I)] 10834 [Rint = 0.0513] 9302 [Rint = 0.1134] 41682 [Rint = 0.1771] 

Refinement 55166 77799 62360 
Largest diff. peak and hole 1.956 and −1.655 e·Å−3 0.406 and −0.431 e·Å−3 1.153 and −1.232 e·Å−3 

Figure 1. The bpeb and H3btb ligands used in this work.

Table 1. Crystal and experimental data and refinement parameters.

1 2 3

Formula C47H31N2O7Zn2 C74H46N2O12Zn3 C296H184N8O48Zn8
Formula weight 866.48 1351.24 5143.46
Temperature (K) 173 173 173
Crystal system Orthorhombic Monoclinic Monoclinic

Space group Fdd2 C2/c P21/c
Z 16 4 2

a (Å) 60.5386(9) 11.4402(4) 16.3093(12)
b (Å) 62.2276(10) 30.8405(10) 27.4589(19)
c (Å) 5.90860(10) 27.0931(9) 48.052(3)
α (◦) 90 90 90
β (◦) 90 96.884(2) 97.288(4)
γ (◦) 90 90 90

V (Å3) 22,258.7(6) 9490.1(6) 21,346(3)
Dcalc (g/cm3) 1.034 0.946 0.800

2θmax (◦) 52.00 52.00 52.00
R1, wR2 [I > 2σ(I)] 0.0866, 0.2656 0.0620, 0.1673 0.0836, 0.1800
R1, wR2 [all data] 0.0980, 0.2826 0.1161, 0.1845 0.1939, 0.2066

Goodness-of-fit on F2 1.010 0.994 0.819
No. of reflection used [>2σ(I)] 10834 [Rint = 0.0513] 9302 [Rint = 0.1134] 41682 [Rint = 0.1771]

Refinement 55166 77799 62360
Largest diff. peak and hole 1.956 and −1.655 e·Å−3 0.406 and −0.431 e·Å−3 1.153 and −1.232 e·Å−3

2. Materials and Methods
2.1. General Procedures

All chemicals were purchased from commercial sources and used as received. All
solvents used were of reagent grade. The bpeb ligand was synthesized via the reported



Crystals 2023, 13, 1266 3 of 12

procedure [44]. Elemental analyses were carried out on a LECO CHNS-932 elemental
analyzer. The solid-state emission spectra were obtained from a Perkin Elmer LS 55
luminescence spectrometer. The FT-IR spectra were recorded using a Varian 640-IR FT-
IR Spectrometer with KBr pellets. The thermogravimetric curves were collected in a TA
Instruments TGA-Q50 thermogravimetric analyzer. The samples were heated at a constant
rate of 10 ◦C min−1 from room temperature to 700 ◦C in a continuous-flow nitrogen
atmosphere. The powder X-ray diffraction (PXRD) patterns were recorded on a Siemens
D500 diffractometer with graphite monochromatized Cu-Kα radiation (λ = 1.54056 Å) at
room temperature (23 ◦C). The single-crystal X-ray data were collected at the Korea Basic
Science Institute (KBSI, Western Seoul Center, South Korea).

2.2. Preparation of [Zn2(bpeb)(btb)(OH)]·DMF·H2O (1)

A mixture of bpeb (20.1 mg, 0.070 mmol), H3btb (30.8 mg, 0.070 mmol), and Zn(NO3)2·
4H2O (18.4 mg, 0.070 mmol) in DMF (3 mL), H2O (1 mL), and DMSO (0.5 mL) was placed
in a 5 mL glass tube, and then 2–3 drops of 0.1 M NaOH solution was added. The tube
was sealed and kept at 110 ◦C for 48 h, followed by cooling to room temperature over 8 h.
Green block-shaped crystals 1 suitable for X-ray analysis were obtained. IR (KBr pellet,
cm−1): 3446, 3037, 2817, 1634, 1611, 1548, 1377, 1104, 1018, 853, 817, 770, 704, 672. Anal.
Calcd for [C50H41N3O9Zn2]: C, 62.64; H, 4.31; N, 4.38. Found: C, 62.79; H, 4.34; N, 4.40%.

2.3. Preparation of [Zn3(btb)2(bpeb)]·xSolvent (2)

A mixture of bpeb (20.1 mg, 0.070 mmol), H3btb (15.4 mg, 0.035 mmol), and Zn(NO3)2·
4H2O (18.4 mg, 0.070 mmol) in DMF (3 mL), H2O (1 mL), and DMSO (0.5 mL) was placed
in a 5 mL glass tube, and then 2–3 drops of 0.1 M NaOH solution was added. The tube
was sealed and kept at 120 ◦C for 48 h, followed by cooling to room temperature over 8 h.
Green plate-shaped crystals 2 suitable for X-ray analysis were obtained. IR (KBr pellet,
cm−1): 3021, 2806, 1638, 1629, 1537, 1369, 1121, 1017, 854, 812, 776, 701, 670. Anal. Calcd for
[C80H64N4O16Zn3] as [Zn3(btb)2(bpeb)]·2DMF·2H2O: C, 62.66; H, 4.21; N, 3.65. Found: C,
63.01; H, 4.14; N, 3.49%.

2.4. [Zn2(Hbtb)2(bpeb)][Zn2(Hbtb)2(bpeb)][Zn4(Hbtb)4(bpeb)2]·xSolvent (3)

A mixture of bpeb (20.1 mg, 0.070 mmol), H3btb (31.1 mg, 0.071 mmol), and Zn(NO3)2·
4H2O (18.4 mg, 0.070 mmol) in DMF (3 mL), H2O (1 mL), and DMSO (0.5 mL) was placed
in a 5 mL glass tube, and then 2–3 drops of 0.1 M NaOH solution was added. The tube
was sealed and kept at 120 ◦C for 48 h, followed by cooling to room temperature over 8 h.
Green plate-shaped crystals 3 suitable for X-ray analysis were obtained. IR (KBr pellet,
cm−1): 3023, 2821, 1641, 1609, 1523, 1362, 1101, 1025, 853, 817, 769, 708, 676. Anal. Calcd
for [C305H221N11O55Zn8] as [Zn2(Hbtb)2(bpeb)][Zn2(Hbtb)2(bpeb)][Zn4(Hbtb)4(bpeb)2]
·3DMF·4H2O: C, 67.30; H, 4.09; N, 2.83. Found: C, 67.41; H, 4.15; N, 2.97%.

2.5. X-ray Crystallographic Analysis

The crystal structures of the crystallized samples of 1–3 were determined by single-
crystal diffraction methods at the Korea Basic Science Institute (KBSI, Western Seoul Center,
Daejeon, Korea). All crystals were picked up with paratone oil and mounted on a Bruker
D8 Venture PHOTON III M14 diffractometer equipped with a graphite monochromated Mo
Ka (λ = 0.71073 Å) radiation source and a nitrogen cold stream (−100 ◦C). Data collection
and integration were performed with SMART APEX3 (Bruker, Billerica, MA, USA, 2016)
and SAINT (Bruker, 2016) [45,46]. The absorption correction was performed by a multiscan
method implemented in SADABS [45]. The structure was solved by direct methods and
refined by full-matrix least-squares on F2 using SHELXTL [47].

In all cases, all nonhydrogen atoms were refined anisotropically, and all hydrogen
atoms were placed in idealized positions and refined isotropically in a riding manner along
with their respective parent atoms. Due to the serious disorders of the lattice solvents,
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MOFs 1–3 were squeezed by PLATON [48]. Relevant crystal data collection and refinement
data for the crystal structures are summarized in Table S1.

CCDC 2278602-2278604 contains the supplementary crystallographic data for this
paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/
retrieving.html (accessed on 8 July 2023) (or from the CCDC, 12 Union Road, Cambridge
CB2 1EZ, UK; fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk).

3. Results and Discussion
3.1. Syntheses of CPs 1–3

Three three-dimensional MOFs (designated as 1–3) were prepared through solvother-
mal reactions involving Zn(NO3)2·4H2O, bpeb, and H3btb. Despite utilizing the same
solvent conditions, variations existed in the equimolar ratio and/or temperature applied
during each reaction. The details are shown in Figure 2.
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3.2. Structural Description of [Zn2(bpeb)(btb)(OH)]·DMF·H2O (1)

The green block-shaped single crystals of [Zn2(bpeb)(btb)(OH)]·DMF·H2O (1) were
synthesized through a solvothermal reaction. This reaction involved combining zinc(II)
salt, bpeb, and H3btb in an equimolar stoichiometry using a mixture of dimethylformamide
(DMF), H2O, and dimethylsulfoxide (DMSO) at 110 ◦C (as shown in Figure 3). The single-
crystal X-ray diffraction (SC-XRD) analysis revealed that 1 crystallized in orthorhombic
Fdd2 with Z = 8. Within the asymmetric unit, there exist two zinc(II) atoms, one btb, one
bpeb, and one hydroxide ion (Figure 3). The Zn1 and Zn2 atoms in the repeating unit show
different coordination geometries. The Zn1 has a distorted square pyramidal geometry
with O3 and O4 from a chelating carboxylate ion, O1 from one bridging carboxylate of
btb ligands, and one N atom of the bpeb ligand in the square plane. Further, the oxygen
atom of the hydroxide ion is in the apical position. In Zn2, the coordination environment
is shown as having a distorted trigonal bipyramidal geometry with O6 from a chelating
carboxylate and O1s from a hydroxide ion, a nitrogen atom (N2) defining the trigonal
plane, and the axial positions occupied by O2 and O5 oxygen atoms from two different
btb ligands. The bpeb ligand has a trans-cis-trans conformation, as shown in Figure 3b.
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In the literature, when carboxylate was changed from btb to biphenyl-4,4′-dicarboxylate
(bpdc), triply interpenetrated 3D MOF [Zn3(bpdc)3(bpeb)]·0.5DMSO·1.5H2O showing the
same molecular building block [Zn3(O2C-R)6(py)2] as Zn1-Zn2-Zn1A with a perfect linear
angle of 180.0◦ was obtained [49]. However, in the case of MOF 1, Zn1-Zn2-Zn1A was
bent with an angle of 153.1◦. The tilting of the molecular building blocks is predicted to
be caused by the btb tricarboxylate as a large molecule. In the large void generated by the
angular tricarboxylate (120◦), btb was filled via self-interpenetration. The calculated total
potential solvent area volume in compound 1, as determined by PLATON [48], amounts to
8723.8 Å3, which corresponds to 39.1% of the unit cell volume (22,321.4 Å3), even in the
presence of self-interpenetration. Notably, the solvent’s unoccupied space was effectively
filled by well-ordered DMF and water molecules.
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Zn1 and Zn2. (b) A general view around zinc(II) in 1. (c) A self-interpenetration, with channels along
the c-axis in 1.

3.3. Structural Description of [Zn3(btb)2(bpeb)]·xSolvent (2)

The green plate-shaped single crystals of [Zn3(btb)2(bpeb)]·xSolvent (2) were syn-
thesized through a solvothermal reaction. This reaction involved combining zinc(II) salt,
bpeb, and H3btb in a 1:1:0.5 molar ratio stoichiometry using a mixture of DMF, H2O, and
DMSO at 110 ◦C (as shown in Figure 4). The SC-XRD analysis revealed that 2 crystallizes
in monoclinic C2/c with Z = 4. The asymmetric unit contains one and a half zinc(II) atoms,
one btb, and half of a bpeb ligand (as shown in Figure 4). The crystallographic twofold
axis at Zn2 generates the whole repeating unit. In the case of the molecular building unit
[Zn3btb2], the arrangement of the three zinc(II) atoms is linear, and this configuration
is bridged by three carboxylate ligands connecting each pair of Zn2 atoms. As a result,
the central Zn2 atom adopts a distorted octahedral geometry, forming a ZnO6 core, as
visually depicted in Figure 4a. In the context of this depiction, each of the “terminal” Zn1
atoms within the linear trinuclear complex exhibits a tetrahedral geometry. These Zn1
atoms are bonded to three oxygen atoms, specifically O1, O4, and O5, originating from
three distinct btb ligands. A relatively weaker interaction between Zn1 and O3 (2.64 Å) is
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observed. The Zn3 rod consists of two pyramidal-shaped ZnO3 cores that are staggered
but positioned in a face-to-face orientation, as illustrated in Figure 4a. In the repeating
unit [Zn3(O2C-R)6(py)2], each Zn1 atom’s tetrahedral geometry is fulfilled through the
inclusion of a N atom from the bpeb ligand. Recently, this repeating unit was reported by us.
The single-stranded helix consists of the [Zn3(btb)3] unit from the double interpenetration
(Figure 4d). The bpeb penetrates the [Zn3(btb)2] square unit to form a rotaxane structure
(Figure 4e). To our knowledge, this represents a unique example of a coordination-based
polyrotaxane. Recently, 2D polyrotaxane-type coordination polymers were reported by
us [50–54]. The empty space volume as calculated by PLATON [48] in 2, 4496.8 Å3, is 47.4%
of the unit cell volume, 9490.1 Å3. The void volume was filled by solvent molecules in a
disordered arrangement.
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3.4. Structural Description of [Zn2(Hbtb)2(bpeb)][Zn2(Hbtb)2(bpeb)][Zn4(Hbtb)4(bpeb)2]·
xSolvent (3)

The green plate-shaped single crystals of [Zn2(Hbtb)2(bpeb)][Zn2(Hbtb)2(bpeb)][Zn4
(Hbtb)4(bpeb)2]·xSolvent (3) were isolated via a solvothermal reaction of zinc(II) salt, H3btb,
and bpeb in an equimolar ratio from a mixture of DMF, DMSO, and water at 120 ◦C (Table 1).
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The SC-XRD analysis revealed that 3 crystallized in monoclinic P21/c with Z = 2. Unusually,
the asymmetric unit in 3 contains three parts. The first part includes Zn1 (Figure 5a,d, red
part): one Zn(II) atom, one Hbtb, and one-half bpeb. And the second part involves Zn2
(Figure 5b,d, blue part): one zinc(II) atom, one Hbtb, and one-half bpeb. The third part
contains Zn3 and Zn4 (Figure 5c,d, green part): two Zn(II) atoms, two Hbtb, and one bpeb.
All of the zinc(II) atoms show tetrahedral coordination geometry. For example, the Zn1 with
a distorted tetrahedral geometry is coordinated to one N atom of the bpeb spacer ligands
and three O atoms of the btb ligands (Figure 5a). The distances of Zn1···O2, Zn1···O3A, and
Zn1···O6B are 3.0311(2), 3.0786(2), and 2.8154(1) Å, respectively, indicating that the carbonyl
oxygen atoms are nonbonded. In the four-fold interpenetrated structure shown in Figure 5e,
each of the red, blue, or green and light green single frameworks originates from the red,
blue, or green asymmetric units shown in Figure 5d, respectively. The calculated total
potential solvent area volume in compound 2, as determined by PLATON [48], amounts
to 11,462.1 Å3, which corresponds to 53.7% of the unit cell volume (21,346.0 Å3), even in
the presence of four-fold interpenetration. Notably, the solvent’s unoccupied space was
effectively filled by disordered DMF and water molecules.
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3.5. Thermal Stability

Thermal gravimetric analysis (TGA) experiments were carried out to investigate the
thermal stability of MOFs 1–3, as depicted in Figures S5–S7. The samples underwent a
gradual temperature increase at a constant rate of 10 ◦C per minute, commencing from room
temperature and heating up to 700 ◦C, all in an uninterrupted stream of N2 gas. The analysis
of the TGA data revealed that MOFs 1–3 exhibited thermal stability up to temperatures
ranging from 360 to 380 ◦C. Furthermore, it was verified that the solvents within the
structure of all MOFs displayed values consistent with the findings from elemental analysis.
The lattice solvents in 1 and 3 were notably eliminated post 220 ◦C. However, the solvent
molecules in 2 were progressively removed until approximately 270 ◦C.

3.6. Topological Analysis

The topologies of MOFs 1–3 were analyzed using the ToposPro program [55–57]. The
centers of zinc(II) atoms and btb ligands were considered to be connected nodes. MOFs
1–3 show all the new topologies. In the context of MOFs, a new topology refers to a novel
arrangement of the metal nodes and organic compounds that form the underlying frame-
work structure of the MOF. The reason for new topologies in MOFs 1–3 could be attributed
to the long spacer, bpeb, and tricarboxylate coligand as a large molecule incorporating
three directions.

By considering the center of the bpeb ligand, the Zn cation, and the btb ligand in 1 as 2-,
3-, and 5-connected nodes, respectively, the overall topology belongs to a (2,3,5)-connected
point symbol {8.102}{84.105.12}{8} net, which is a new topology. In 2, the incorporation
of the bpeb node, the Zn node, and the btb ligand node as 2-, 3-, and 8-connected nodes,
respectively, results in the overall topology being categorized as a new topology with a
(2,3,8)-connected point symbol {42.6}2{44.62.820.10.12}{8} net. In the case of 3, considering
the bpeb node, the Zn node, and the btb node as having connectivities of 2, 3, and 4,
respectively, the resultant topology can be identified as a new topology, a (2,3,4)-connected
point symbol {63.82.10}2{63}2{8} net.

3.7. Solid-State Emission

The luminescence properties of these MOFs (1–3) in the solid state were investigated
as d10 Zn(II) carboxylates exhibited this photoluminescence property, and the results are
shown in Figure 6 [58–60]. MOF 1 shows a strong blue emission with the peak centered
at 448 nm. MOF 2 also exhibits a strong blue emission centered at 452 nm with a slightly
shifted peak similar to MOF 1. However, while MOF 1 and MOF 2 emit light that appears
similar, MOF 3 exhibits a comparatively weaker greenish emission, with the peak centered
around 494 nm. It is interesting that despite having identical metal cations, anions, and
spacer ligands, the three MOFs exhibit distinct different emissions as a result of their differ-
ing structures and connectivities [61]. This implies that the variations in their structures and
connectivities result in distinct luminescent properties. The differences in the arrangement
of the metal cations and organic compounds within the framework can lead to different
energy states for the luminescent centers or varying degrees of interaction between them.
As a consequence, the emission spectrum, intensity, and efficiency of the MOFs will differ.
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