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Abstract: In this work, solution-annealed AISI 316H grade austenitic stainless steel was studied in
terms of investigating the electrolytic hydrogen charging effects on the resulting Charpy impact
toughness and dry sliding tribological behavior. Conventional Charpy impact bending tests were
employed to study the mechanical response of the investigated material to dynamic loading con-
ditions, whereas dry linear sliding tribological tests were used to study material friction and wear
behavior. The obtained mechanical and tribological properties were correlated with corresponding
fracture and tribological mechanisms, which were determined from morphological observations of
fracture surfaces and tribological tracks. The applied testing procedures were individually carried
out for the non-hydrogenated, hydrogen-charged, and dehydrogenated material conditions. The ob-
served changes in individual properties due to applied hydrogen charging were rather small, which
indicated the good resistance of solution-annealed AISI 316H steel against material degradation in
currently used electrolytic hydrogenation conditions.

Keywords: austenitic steel; hydrogen charging; impact toughness; tribology

1. Introduction

Hydrogen is seen as a critical component of greening Europe’s energy market to be
the first carbon-neutral by 2050 worldwide [1,2]. In the context of building a hydrogen
economy by the gradual transformation of the energy industry using ecological, so-called
“green hydrogen” as an energy carrier, the challenge aimed at the safety and reliability
of hydrogen production, storage, and distribution is becoming increasingly crucial [3–6].
From the viewpoint of the use of suitable metallic materials for constructing any equipment
exposed to hydrogen, it is necessary to consider the eventual possibility of the occurrence
of a material degradation phenomenon called hydrogen embrittlement (HE) or hydrogen-
induced cracking (HIC). This type of degradation refers to the environmental embrittlement
of metallic materials by the action of atomic hydrogen with the ability to diffuse into the
microstructure of metals from the surrounding environment, even at room temperature [7–10].
Although intensive research on hydrogen embrittlement has been carried out for several
decades, it cannot be concluded that there exists a single universal mechanism to explain the
action of hydrogen in microstructures of various materials. Nevertheless, it is well-known
that a key role in terms of the interaction of diffusible hydrogen with the microstructure
having a decisive effect on materials’ susceptibility to HE is played by so-called “hydrogen
traps”, which are formed by various microstructural or substructural objects capable of
attracting and trapping free atomic hydrogen. These traps are various defects of the metal
crystal lattice (e.g., dislocations, vacancies, substitution atoms, precipitates, inclusions, etc.)
showing the existence of internal stresses in their surroundings [11–18]. Thus, there are
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significant differences in the HE resistance among different classes of metallic materials
taking into account not only their varying chemical compositions but also their various
processing and service conditions influencing their crystallographic structures and phase
composition characteristics.

In our previously published works [19–24], we investigated the effects of various
conditions of heat treatment, including long-term isothermal expositions and the elec-
trolytic hydrogen charging of welded joints of advanced creep-resistant steels on their
mechanical and brittle–fracture properties. In these complex material systems, certain
small improvements in HE resistance were observed after laboratory high-temperature
aging experiments, which could be explained by internal stress relieving as well as by the
additional precipitation of fine carbide particles leading to irreversible hydrogen trapping
at carbide/matrix interfaces [19–24]. However, at the same time, the gradual development
of thermal embrittlement was clearly observed due to the precipitate coarsening of several
secondary phases (e.g., special alloy carbides and intermetallic phases) with the increasing
duration of thermal exposure. The results of our recent study [25] about the HE behavior of
plastically pre-strained and cathodically hydrogen-charged AISI 316H austenitic stainless
steel have shown that this material was subjected to room-temperature static tensile testing
in its solution-annealed (precipitation-free) material condition and showed rather small
susceptibility to HE and its tendency for HE with increasing the plastic pre-straining was
only slightly increased. It has been concluded that the observed degradation of deformation
properties of plastically pre-strained and hydrogen-charged materials was predominantly
caused not by HE but by gradual plasticity exhaustion due to the excessive strain-induced
generation and multiplication of slip dislocations causing deformation hardening.

The present work is aimed at a continuation of our former study [25], which was
focused on the characterization of HE behavior of solution-annealed and variously pre-
strained AISI 316H steel in room-temperature static tensile testing conditions. The currently
performed investigation concerns the effects of cathodic hydrogen charging on the mechan-
ical response of the same AISI 316H material in dynamic loading conditions employing
Charpy impact bending tests and dry linear sliding tribological tests at room temperature.
The obtained results of mechanical and tribological tests are discussed in terms of their
possible correlations among microstructural features, fracture surface characteristics, and
acting tribological mechanisms.

2. Experimental Materials and Methods

The input experimental material was a seamless tube (38 mm outer diameter, 6 mm
wall thickness) of 1050 ◦C solution of annealed and water-quenched AISI 316H stainless
steel. With respect to its high elemental alloying (see Table 1), this material can be regarded
as non-equiatomic medium–entropy alloy, as also reported in [26].

Table 1. Chemical composition in wt.% of the investigated AISI 316H stainless steel.

Material C Si Mn Cr Mo Ni Fe

AISI 316H 0.05 0.51 1.77 16.76 2.05 11.13 rest

The response of the investigated material to dynamic mechanical loading in the initial
non-hydrogenated state (i.e., without hydrogen charging) and then also in the hydrogenated
state (i.e., after electrochemical hydrogen charging at room temperature in a solution of
1 M HCl with 0.05M N2H6SO4 at a current density of 20 mA/cm2 for 24 h) was evaluated
from the Charpy impact bending tests and dry linear sliding tribological tests at room
temperature. The used electrolytic hydrogenation procedure was selected on the basis of
our former studies [23,24], which indicated an unchanging course of deformation properties
of hydrogenated steel specimens after exceeding 24 h of the hydrogen charging time, giving
rise to the assumption of their full hydrogen saturation. Further details concerning the
selection of currently used hydrogenation conditions are given in [25]. The electrolytic
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hydrogen charging of individual specimens of investigated material was performed using
the potentiostat/galvanostat model 173 (Princeton Applied Research, Oak Ridge, TN, USA).

The concentration of the absorbed hydrogen within the electrochemically hydro-
genated specimen was calculated on the base of the method of hydrogen electrochemical
oxidation (HEO), which was principally defined and described in [27] and has been com-
monly used by many other authors, e.g., [28–30]. HEO was conducted out from the solution
containing 1 mol·dm−3 NaOH and 8 g·dm−3 of thiourea as a hydrogen recombination
poison to avoid H2 gas evolution, using a modular potentiostat/galvanostat Autolab Vionic
(Metrohm, Utrecht, Netherlands) in conventional three-electrode cells under laboratory
temperature. A hydrogenated specimen with a surface area of 6.7 cm2 was used as a work-
ing electrode, and saturated Ag/AgCl and platinum electrodes (1 × 1 cm2) as reference
and counter electrodes, respectively. The applied potential E = −0.9 V was maintained for
1000 s to ensure complete hydrogen oxidation.

The electrochemically hydrogenated specimens for mechanical and tribological tests
were shortly stored in liquid nitrogen immediately after hydrogen charging. Then, one
by one, the specimens were gradually warmed up on still air to room temperature and
were consecutively subjected to individual testing procedures. A schematic view of the
employed sub-sized Charpy V-notch (CVN) impact bending test specimen is shown in
Figure 1.
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Figure 1. Schematic Charpy V-notch (CVN) impact bending test specimen. All dimensions are in mm.

A conventional Charpy pendulum impact tester PSW 30 (VEB Werkstoffprüfmaschi-
nen Leipzig, Leipzig, Germany) with a 300 J impact energy pendulum hammer was em-
ployed to determine the CVN impact toughness in conformity with standard ISO 148-
1:2016 [31]. Three individual tests were performed for each material condition. The HE
resistance of the studied material was determined by the calculation of the HE index from
the results of performed Charpy impact bending tests of non-hydrogenated and hydrogen-
charged test specimens. The hydrogen embrittlement index (HEI) was calculated as a
relative change in average CVN impact toughness values between the non-hydrogenated
and hydrogen-charged test specimens according to the following formula:

HEICVN =
CVN0 − CVNH

CVN0
× 100% (1)

The subscripts “0” and “H” refer to the non-hydrogenated and hydrogen-charged
material states, respectively. The dehydrogenated Charpy impact bending test specimens
obtained by the long-term room-temperature holding (25 ◦C/30 days) of originally hydro-
genated specimens in a dry air environment were also examined. The tribological tests
were carried out on metallographically polished surfaces of the same flat prismatic samples
as those used for CVN impact toughness tests. These tests were performed in the mode
of dry linear sliding at room temperature using a SiC ball (5 mm diameter) counterpiece,
10 N loading force, 10 cm/s sliding speed, and 250 m sliding distance. The tribological
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testing apparatus was a universal tribometer BRUKER UMT 3 (Bruker Nano GmbH, Berlin,
Germany). The tribological tests were carried out in conformity with standard ASTM
G133-05(2016) [32]. Vickers microhardness was measured using the microhardness tester
WILSON-WOLPERT Tukon 1102 (Buehler ITW Co., Ltd., Lake Bluff, IL, USA) on a metalo-
graphically ground and polished sample surface at a 0.49 N loading force and 15 s loading
time per measurement corresponding to the HV0.05 unit scale. Preliminary, microstruc-
tural observations were performed using a light optical microscope (LOM) OLYMPUS
GX71 (Olympus Corporation, Tokyo, Japan). The microstructure was examined in the
drawing direction of the original tube. In this direction, the samples were cut for the
preparation of specimens for mechanical and tribological tests. Conventionally prepared
metallographic specimens were etched in the solution of “Aqua Regia” (i.e., acidic solution
of the concentrated HCl and HNO3 acids in a molar ratio of 3:1). The grain size of studied
material was determined by software ImageJ (version 1.46, National Institutes of Health,
Bethesda, MD, USA). The mean grain diameter was calculated as the Feret mean diame-
ter [33]. Detailed microstructural and fractographic analyses, including crystallographic
orientation measurements and phase mapping analyses, were carried out using the scan-
ning electron microscope (SEM) JEOL JSM-7000F (Jeol Ltd., Tokyo, Japan) linked with an
electron backscatter diffraction (EBSD) detector Nordlys-I (HKL technology A/S, Hobro,
Denmark). The EBSD analyses were performed on a drawing direction plane (405 µm
by 315 µm in size) of prepared metallographic cross-sections, and the obtained data were
processed using the software CHANNEL-5, HKL (Service pack 7). Detailed morphological
observations of tribological tracks, including semi-quantitative chemical micro-analyses in
selected locations, were performed using SEM TESCAN Vega-3 LMU (TESCAN Brno, s.r.o.,
Brno, Czech Republic) and an energy dispersive X-ray (EDX) spectrometer BRUKER XFlash
Detector 410 m (Bruker Nano GmbH, Berlin, Germany). Topographical measurements of
tribological profiles and specific wear rate determination were performed using a confocal
microscope PLu neox 3D Optical Profiler (SENSOFAR, Barcelona, Spain) and employing a
standard evaluation procedure described, for instance, in [34].

3. Results and Discussion
3.1. Microstructure of Solution-Annealed Material

A typical light-optical microstructure of solution-annealed AISI 316H steel is depicted
in Figure 2, showing a polygonal grain structure with the presence of annealing twins and
longitudinal inclusions in the form of dark-appearing chain-like structures. The qualitative
chemical micro-analysis of these inclusions was carried out by the combination of the SEM
and EDX measurement, which indicated them to be likely MnS particles (Figure 3). The
more focused EDX analyses of anticipated MnS inclusions were also carried out on the
fractured surfaces of broken CVN test specimens (see further in Section 3.3).
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solution-annealed material condition with typical morphology of polygonal grain boundaries and
longitudinal chain-like traces of former MnS inclusions (a); typical EDX spectrum of mixed MnS
trace/matrix local chemical micro-analysis (b).

The results of detailed microstructural analyses of the as-received AISI 316H material
were already presented in our previous study [25]. As also shown here in Figure 2, it
has been concluded that the initial material exhibited polygonal grains with the abun-
dant occurrence of annealing twin boundaries. By means of both X-ray diffraction and
EBSD phase mapping, the matrix microstructure was found to be a single-phase austenitic
structure with a face-centered cubic (FCC) crystal lattice [25]. The minor occurrence of
MnS inclusions was not detectable by the used techniques. The random distribution of
crystallographic planes did not indicate any pronounced crystallographic texture [25].

3.2. Determination of Absorbed Hydrogen

As already stated, the concentration of the absorbed hydrogen in the CVN impact
toughness test specimen was determined immediately after the process of cathodic hydro-
gen charging by the method of hydrogen electrochemical oxidation (HEO). The calculation
of the hydrogen amount was conducted according to the formula:

CH =
QH
zFν

[mol·cm−3] (2)

where QH is the charge value passed through the sample during anodic polarization and,
in our case, at E = −0.9 V, z is the number of electrons in the take-in reaction, F is the
Faraday constant, and ν is the effective volume of the sample. In our case, we assumed that
hydrogen penetrated to a depth of 1 mm, representing an effective volume of 0.67 cm−3.
As can be seen from Figure 4a, during the polarization of the hydrogen-charged working
electrode at E = −0.9 V, the current drops after the first 100 s to the value closest to the zero
meant that the hydrogen oxidation reaction was very fast, and after 300 s the passivation
process occurred. On the other hand, the blank experiment was performed with the same
sample without hydrogen charging. It Is clearly visible from the red curve that in the case
of the same polarization conditions, only the passivation of the sample surface occurred.
Finally, the passed charge was calculated by the integration of the I-t (Figure 4b) curve in
the range of 0–300 s, and the charge value was found as QH = 3.63 × 10−3 C·cm−2. Based
on Faraday’s law, it corresponds to CH = 3.756 × 10−7 mol·cm−3. Usually, the hydrogen
concentration at saturation in steel is stated in wppm. Thus, after employing corresponding



Crystals 2023, 13, 1249 6 of 18

calculation procedures detailed in, e.g., [35–37], the hydrogen concentration reached a
value of 0.47 wppm.
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3.3. Effect of Hydrogen Charging on CVN Impact Toughness

Figure 5 shows the average CVN impact toughness values in non-hydrogenated,
hydrogen-charged, and dehydrogenated material conditions. It can be seen that the effect
of hydrogen charging on the CVN impact toughness value was rather small.
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The comparison of individual fracture surfaces corresponding to individual material
conditions did not reveal any significant differences in the fracture characteristics among
individual test specimens (see Figure 6).
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Figure 6. Scanning electron microscopic fractographs of broken CVN impact toughness test specimens
of solution-annealed AISI 316H steel for individual test conditions: non-hydrogenated (a); hydrogen-
charged (b); and dehydrogenated (c). Typical EDX spectrum of MnS inclusions abundantly occurring
on the visualized fracture surfaces (d).

The fracture micromechanism of currently investigated material after Charpy impact
bending tests was always ductile dimple tearing. The observed differences were only
related to the size and morphology of individual dimples.

As already shown in Figure 5, it is interesting to note that the hydrogen-charged
CVN test specimens clearly exhibited a small increase in the CVN impact toughness value
compared to the non-hydrogenated test specimens. The actual occurrence of the slight
toughening effect due to hydrogen charging was additionally verified by the results of
the performed CVN impact toughness tests on the dehydrogenated test specimens. The
obtained results clearly indicated reversibility in dynamic mechanical behavior due to
the performed dehydrogenation, i.e., the possibility for the original property restoration
thanks to hydrogen desorption (see Figure 5). This double-check for the results of dynamic
mechanical tests of CVN test specimens without hydrogen, i.e., both the non-hydrogenated
and dehydrogenated ones, strongly supports the observed findings about the occurrence of
the dynamic hydrogen-toughening effect in hydrogen-charged AISI 316H material. Thus,
the calculated hydrogen embrittlement index for the currently studied material resulted in
a negative value, i.e., HEICVN = −14.98%. The negative value of the calculated hydrogen
embrittlement index might not be so surprising since, in several other studies regarding the
effect of hydrogen charging on the mechanical behavior of FCC-structured alloys, similar
findings have already been reported about some enhancement of deformation properties



Crystals 2023, 13, 1249 8 of 18

by hydrogenation [38–47]. However, it should be noted that such behavior in relation to the
enhancement of deformation properties by hydrogen charging has been typically observed
in high-alloyed metallic systems, including mainly high entropy alloys with an FCC crystal
structure [38–44]. From the viewpoint of the acting toughening mechanism, it has been
generally accepted that the hydrogen-enhanced twinning-induced plasticity, including
hydrogen-facilitated deformation nano-twinning, seemed to be the most likely mecha-
nism of hydrogen-induced ductilization [38–47]. Murakami et al. [46] studied the fatigue
behavior of 304 and 316L stainless steel and revealed their drastically improved fatigue
crack growth resistance upon hydrogen charging. This behavior has been ascribed to the
interplay between two competitive roles of hydrogen, namely the dislocation pinning and
enhancement of dislocation mobility [46]. In the present investigation, the occurrence of
deformation twinning has been clearly observed in both non-hydrogenated and hydrogen-
charged test specimens after they performed CVN impact toughness bending tests (see
Figure 7). Besides the clear occurrence of deformation twinning and intensive slip band for-
mation, some random indication of sub-grains has also been observed in hydrogen-charged
material (Figure 7b), which might be considered the additional toughening effect. On the
contrary, no sub-grains were observed in the non-hydrogenated material (Figure 7a). The
toughening effects of microstructural grain refinement are generally well-known and have
been frequently reported in numerous sources in the literature, e.g., in [48–55], for various
classes of structural metallic materials. However, in the case of the current investigation, it
has been supposed that hydrogen charging might cause just the sub-grain visualization
instead of their formation by induced hydrogen. For example, in the study [56], the origin
of sub-grain formation in austenitic stainless steel was related to the specific mode of solidi-
fication. Thus, it is believed that the observed differences in the mechanical behavior of the
currently studied material are mainly attributed to the higher proportion of the deformation
twinning mechanism in hydrogen-charged material compared to the non-hydrogenated
material (Figure 7), which also fairly agrees with the findings of [57]. The average grain
sizes in terms of the Feret mean diameter for non-hydrogenated and hydrogen-charged
AISI 316H material were 61 µm and 56 µm, respectively, which indicated that hydrogen-
charging did not affect the material grain size significantly. Nguyen et al. [58] investigated
the Charpy impact properties of hydrogen-exposed 316L stainless steel at ambient and
cryogenic temperatures and found that the impact properties of their tested material had
high resistance against HE. In contrast to the findings of the present investigation focused
on the effects of hydrogen charging on dynamic mechanical properties of AISI 316H stain-
less steel, Nguyen et al. [58] observed a slight decrease in CVN impact toughness values
due to hydrogen charging at all tested temperatures which were facilitated by partial phase
transformation from the austenitic phase to hexagonal and cubic phases in 316L stainless
steel with a modified chemical composition.
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In Figures 8–10, the results of more focused EBSD crystallographic and phase mapping
analyses from the microstructural areas just beneath the fracture locations of the specimens
after CVN impact bending tests are visualized. With respect to the relatively small observed
difference in measured CVN impact toughness properties between the non-hydrogenated
and hydrogen-charged test specimens of the studied material, no significant microstructural
differences were to be expected between the non-hydrogenated and hydrogen-charged test
specimens. Figure 8 shows crystallographic microstructure visualization by inverse pole
figure (IPF) imaging after a CVN impact bending test for the non-hydrogenated (Figure 8a)
and hydrogen-charged (Figure 8b) CVN test specimen. Figure 8 indicates highly deformed
grain microstructures with a major occurrence of near {111} crystallographic planes in
addition to distinct locations exhibiting the higher occurrence of deformation twins, which
are considered to enhance material toughening through the effect of twinning-induced
plasticity. Due to the very high impact speed of dynamic material testing during the CVN
impact bending tests of about 5.6 m/s, the considerations of the newly formed deformation
twins to act like hydrogen diffusion paths could be, in this specific case, neglected.

Crystals 2023, 13, x FOR PEER REVIEW 9 of 18 
 

 

non-hydrogenated and hydrogen-charged test specimens of the studied material, no 
significant microstructural differences were to be expected between the 
non-hydrogenated and hydrogen-charged test specimens. Figure 8 shows crystallo-
graphic microstructure visualization by inverse pole figure (IPF) imaging after a CVN 
impact bending test for the non-hydrogenated (Figure 8a) and hydrogen-charged (Figure 
8b) CVN test specimen. Figure 8 indicates highly deformed grain microstructures with a 
major occurrence of near {111} crystallographic planes in addition to distinct locations 
exhibiting the higher occurrence of deformation twins, which are considered to enhance 
material toughening through the effect of twinning-induced plasticity. Due to the very 
high impact speed of dynamic material testing during the CVN impact bending tests of 
about 5.6 m/s, the considerations of the newly formed deformation twins to act like hy-
drogen diffusion paths could be, in this specific case, neglected. 

 
(a) (b) 

 
(c) 

Figure 8. EBSD crystallographic microstructure visualization of AISI 316H steel by Z-direction in-
verse pole figure (IPF) imaging of sub-fracture surface area of a CVN impact bending test specimen 
in non-hydrogenated (a) and hydrogen-charged (b) material state. The legend (c) is the corre-
sponding IPF color key. 

Figure 9 shows a local misorientation map (LMM) after the CVN impact bending 
test for the non-hydrogenated (Figure 9a) and hydrogen-charged (Figure 9b) CVN test 
specimens. As expected, through the comparison of LMMs of non-hydrogenated and 
hydrogen-charged test specimens after the CVN impact bending tests, no significant 
differences in local misorientations were observed between the individual specimens 
(Figure 9). In other words, the areas with locally increased misorientations (yellow and 
red areas) indicating locally increased mechanical strains showed very similar charac-
teristics for both material conditions, which fairly correlated with measured CVN impact 
toughness properties (Figure 5). 

Figure 8. EBSD crystallographic microstructure visualization of AISI 316H steel by Z-direction inverse
pole figure (IPF) imaging of sub-fracture surface area of a CVN impact bending test specimen in
non-hydrogenated (a) and hydrogen-charged (b) material state. The legend (c) is the corresponding
IPF color key.



Crystals 2023, 13, 1249 10 of 18Crystals 2023, 13, x FOR PEER REVIEW 10 of 18 
 

 

 
(a) 

 
(b) 

Figure 9. EBSD local misorientation mapping (LMM) microstructure visualization of AISI 316H 
steel in sub-fracture surface area of CVN impact bending test specimen in non-hydrogenated (a) 
and hydrogen-charged (b) material state. The corresponding legends (right portions) depict miso-
rientation angle distributions. 

. 

  
(a) (b) 

 
(c) 

Figure 10. EBSD phase mapping microstructure visualization of AISI 316H steel in the sub-fracture 
surface area of the CVN impact bending test specimen in non-hydrogenated (a) and hydro-
gen-charged (b) material state. The legend (c) is the phase map color key. 

Figure 9. EBSD local misorientation mapping (LMM) microstructure visualization of AISI 316H steel
in sub-fracture surface area of CVN impact bending test specimen in non-hydrogenated (a) and
hydrogen-charged (b) material state. The corresponding legends (right portions) depict misorienta-
tion angle distributions.

Crystals 2023, 13, x FOR PEER REVIEW 10 of 18 
 

 

 
(a) 

 
(b) 

Figure 9. EBSD local misorientation mapping (LMM) microstructure visualization of AISI 316H 
steel in sub-fracture surface area of CVN impact bending test specimen in non-hydrogenated (a) 
and hydrogen-charged (b) material state. The corresponding legends (right portions) depict miso-
rientation angle distributions. 

. 

  
(a) (b) 

 
(c) 

Figure 10. EBSD phase mapping microstructure visualization of AISI 316H steel in the sub-fracture 
surface area of the CVN impact bending test specimen in non-hydrogenated (a) and hydro-
gen-charged (b) material state. The legend (c) is the phase map color key. 

Figure 10. EBSD phase mapping microstructure visualization of AISI 316H steel in the sub-fracture
surface area of the CVN impact bending test specimen in non-hydrogenated (a) and hydrogen-
charged (b) material state. The legend (c) is the phase map color key.



Crystals 2023, 13, 1249 11 of 18

Figure 9 shows a local misorientation map (LMM) after the CVN impact bending
test for the non-hydrogenated (Figure 9a) and hydrogen-charged (Figure 9b) CVN test
specimens. As expected, through the comparison of LMMs of non-hydrogenated and
hydrogen-charged test specimens after the CVN impact bending tests, no significant differ-
ences in local misorientations were observed between the individual specimens (Figure 9).
In other words, the areas with locally increased misorientations (yellow and red areas)
indicating locally increased mechanical strains showed very similar characteristics for
both material conditions, which fairly correlated with measured CVN impact toughness
properties (Figure 5).

Figure 10 shows the phase mapping EBSD images for the non-hydrogenated (Figure 10a)
and hydrogen-charged (Figure 10b) AISI 316H material microstructure after performing
the CVN impact bending tests. The recorded phase maps (Figure 10) indicate the pure
FCC austenitic crystal structure of the CVN impact on bending tested specimens in both
non-hydrogenated and hydrogen-charged material conditions. This observation has shown
that neither impact straining nor the electrolytic hydrogenation resulted in any phase
changes in studied AISI 316H material states at room temperature.

Thus, the microstructural and supplemental EBSD analyses additionally supported
conclusions regarding the observed dynamic mechanical behavior of solution-annealed
AISI 316H steel, i.e., the insignificant effect of applied hydrogen charging on the resulting
CVN impact toughness, which clearly indicated the very good resistance of studied material
against hydrogen-related degradation in currently performed hydrogenation experiments.

3.4. Effect of Hydrogen Charging on Tribological Behavior

Figure 11 shows the average values for the coefficient of friction (COF) of studied AISI 316H
material for individual material conditions with respect to the hydrogen charging application.
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Figure 11. Average coefficients of friction of AISI 316H steel determined for its non-hydrogenated,
hydrogen-charged, and dehydrogenated material states.

The results in Figure 11 indicate that the studied material in all material conditions
exhibits similar average COF values. The non-hydrogenated material showed a slightly
lower average COF value (0.47) than the hydrogen-charged material (0.49). The higher
average COF value of hydrogen-charged AISI 316H material might be ascribed to the slight
local overheating of its tribological surface due to decreased thermal conductivity by the
presence of hydrogen. Indeed, it has been reported that for pure metals and alloys, thermal
conductivity is reduced due to the insertion of hydrogen atoms, which hinders the thermal
conduction of free electrons [59]. Such behavior was also confirmed by Luo et al. [60] in
their first-principles study dealing with the effect of interstitial hydrogen on the mechanical
and thermal properties of tungsten. Thus, it can be assumed that increasing COF values in
currently hydrogenated AISI 316H steel is likely attributed to the fact that the hydrogen
absorbed within surface layers decreases the material thermal conductivity, leading to
local superheating and, consequently, the change in tribological behavior. For the sake
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of completeness, the dehydrogenated material was also tribologically tested (Figure 11),
and it was found that its measured average COF value decreased (0.45) compared to the
COF values of the non-hydrogenated (0.47) and hydrogen-charged materials (0.49). This
observed decrease in the COF value of the dehydrogenated material was likely ascribed
to the mitigation of the hydrogen-related decrease in thermal conductivity in superficial
layers after the dehydrogenation of studied material as well as additional surface oxidation
serving as a solid lubricating agent during tribological testing [61,62].

Figure 12 displays the characteristic tribological track profiles related to individual dry
linear sliding tests of studied AISI 316H steel in different material conditions. In the case
of non-hydrogenated material (Figure 12a), the pure abrasive wear track can be indicated,
whereas, in the other two cases (i.e., the hydrogen-charged and dehydrogenated materials)
the position of the wear profile in relation to the contact area can indicate a combined
abrasive–adhesive wear behavior (Figure 12b,c).
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Figure 13 shows the average values of the specific wear rates of studied AISI 316H ma-
terial for individual material conditions with respect to the hydrogen charging application.
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Figure 13. Average specific wear rates of studied 316H material determined for its non-hydrogenated,
hydrogen-charged, and dehydrogenated material states.

The highest wear rate was shown in non-hydrogenated material (Figure 13), which
exhibited a pure abrasive wear mechanism (Figure 12a). In contrast, both the hydrogen-
charged and dehydrogenated materials exhibited much lower wear rates compared with
the non-hydrogenated material (Figure 13), which is probably caused by their complex
abrasive-adhesive wear mechanism (Figure 12b,c).

Figure 14 shows the average microhardness values of studied AISI 316H material for
individual material conditions with respect to the hydrogen charging application.
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Figure 14. Average microhardness values of studied 316H material determined for its non-
hydrogenated, hydrogen-charged, and dehydrogenated material states.

The lowest hardness of the non-hydrogenated material (215 HV0.05) correlated well with
its highest specific wear rate (2.67 × 10−6 mm3/N.m), and vice versa, i.e., the highest micro-
hardness of the hydrogen-charged material (221 HV0.05) correlated well with its lowest specific
wear rate (1.96 × 10−6 mm3/N.m). Finally, the dehydrogenated material exhibited medium
values of microhardness and specific wear rate (218 HV0.05 and 2.4 × 10−6 mm3/N.m) in
comparison with non-hydrogenated and hydrogen-charged materials.

The morphological characteristics of individual tribological tracks are shown in more
detail on the SEM images in Figure 15.
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Figure 15. SEM morphological characterizations of tribological tracks including the EDX spectra of
performed chemical micro-analyses of selected (marked by green cross) locations: non-hydrogenated
material (a), hydrogen-charged material (b), dehydrogenated material (c).

From Figure 15, it can be concluded that all investigated material states exhibited
morphologically similar tribological behavior, characterized by plastic deformation and
the tribo-oxidation reaction of the steel substrate alongside the regular occurrence of SiC
debris of the tribological ball counter-piece coming out of the tribological track surface,
as indicated by SEM/EDX analyses. On the whole, it can be stated that the results of
tribological tests supported the rest of the findings of the present investigation, pointing
out that the hydrogen-charging of fully-recrystallized AISI 316H steel led to small effects on
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the investigated properties studied under dynamic loading conditions, thus indicating the
very good resistance of studied material against hydrogen-related degradation in currently
applied electrolytic hydrogenation conditions.

4. Summary and Conclusions

Room-temperature mechanical and tribological testing procedures in correlation with
microstructural analyses were employed to characterize the applied hydrogen charging
effects on AISI 316H grade material. Thus, the following conclusions are summarized:

• The EBSD crystallographic phase analyses indicated that the applied electrochemical
hydrogen charging and subsequent dynamic loading tests did not result in any phase
transformations of the studied austenitic steel at room temperature.

• The used electrochemical hydrogen charging of investigated material resulted in a
slight increase in both the CVN impact toughness and COF frictional coefficient. At the
same time, the specific wear rate of electrochemically hydrogenated material exhibited
a slight decrease compared to the non-hydrogenated material.

• The observed slight improvement in the CVN impact toughness of electrochemically
hydrogenated AISI 316H steel is mainly related to the hydrogen-enhanced twinning-
induced plasticity mechanism. However, owing to rather small changes in CVN impact
toughness due to hydrogen charging, the hydrogenation effects on microstructural
and fractographic characteristics were rather negligible in comparison with non-
hydrogenated material.

• The COF increase in hydrogenated material could be ascribed to the local overheating
of the tribological surface due to decreased thermal conductivity in the presence of
hydrogen. This conclusion can be supported by the observed transition of the acting
wear mechanism from pure abrasive wear for non-hydrogenated material to the more
complex abrasion/adhesion wear mechanism for the hydrogen-charged material.
These changes in specific wear rates for individual material states also correlate well
with observed changes in acting wear mechanisms.

• Both CVN impact toughness tests and dry linear sliding tests performed on the
dehydrogenated materials indicated their reversible behavior leading to the restora-
tion of nearly original properties. On the whole, it can be concluded that the ob-
served hydrogen-induced changes in individual properties determined under dynamic
loading conditions indicated the high resistance of studied solution-annealed AISI
316H steel against material degradation in currently performed electrolytic hydrogen-
charging experiments.
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