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Abstract: The numerical results from the modeling of liquid crystals dispersed in aqueous solutions
in the form of axially symmetric droplets, with the aim of helping to facilitate the development of
liquid crystal biosensors, were obtained. We developed a transient two-dimensional nonlinear model
obtained via torque balance that incorporates Frank’s elastic free energy. In order to perform para-
metric studies, we defined the scaled parameters based on the surface viscosity and the homeotropic
anchoring energy at the droplet interface. To evaluate the performance of the biosensor, the average
angle and characteristic time were defined as performance criteria. Using these results, we studied the
bulk reorientation of liquid crystal droplets in aqueous solutions caused by biomolecular interaction.
Furthermore, we examined how surface viscosity affects the performance of a biosensor in the case
of weak planar anchoring. The droplet interface ordering was modeled using the Euler–Lagrange
equation. The droplets’ equilibrium was determined by minimizing their total distortion energy
based on the interaction between their surface and bulk elastic energy. Two factors that contributed
to the biosensor performance were homeotropic strength and surface viscosity. This highlights the
importance of controlling the surface and physicochemical properties to achieve the desired liquid
crystal orientation. In addition, our results provide insight into the role that surface viscosity plays in
controlling radial configuration.

Keywords: liquid crystal droplet; biosensors; director reorientation; bipolar; radial; surface viscosity

1. Introduction

Liquid crystal biosensors are optical sensors that detect biological and chemical species
using liquid crystals as sensing substrates. Liquid crystals have specific properties like
birefringence and high sensitivity of orientation when interacting with biomolecules in
aqueous solutions [1,2]. Thermotropic liquid crystals have been demonstrated to detect a
wide range of biomolecules and can be fabricated into thin films or microdroplet emulsions
in water [3–5]. Liquid crystal biosensors work based on the orientation changes in response
to the interface realignment. The orientation of liquid crystals in the bulk depends on the
properties and geometry of the interfaces. In general, any changes at the liquid crystal
surface could be propagated through the bulk up to 100 µm due to the long-range orienta-
tional order. Polarized light can be utilized to amplify and observe the small variation in
liquid crystal interface alignment. This can be used as the basis to develop liquid crystal
biosensors to detect biological or chemical agents. Studies show that the adsorption of
phospholipids, surfactants, proteins, and bacteria at the interface triggers the ordering
transmission by changing the anchoring and easy axis at the liquid crystal interface [6–8].

Liquid crystal films and droplets in aqueous solutions are examples of platforms that
detect biological species due to their intermolecular interactions. There is a wide range of
biological species that liquid crystal biosensors can detect, including bacteria, viruses, and
proteins. Therefore, they could be used in areas such as medical, environmental, and food
sectors [9–11].
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Researchers have shown that liquid crystals in water emulsions can be used for
the detection of target analytes. Changing the droplet orientation from bipolar to ra-
dial and changing the optical texture allows for the detection of chemical and biological
species [12–17].

Emulsions of liquid crystals provide an additional advantage over liquid crystals
formed at planar interfaces. Liquid crystal droplet biosensors do not require the preparation
of a solid substrate. In addition, the droplet has a higher surface area to volume ratio and
can adsorb a wide variety of targets on its surfaces, allowing a greater amount of target
analytes to be absorbed [18,19].

A liquid crystal droplet’s orientation depends on the molecular alignment on its
surface. The liquid crystal droplet forms a tangential orientation in pure water under the
planar anchoring condition. In the absence of surfactants or any other external fields, a
parallel alignment in which the director tends to be aligned tangentially to the droplet
interface creates a bipolar configuration [3]. A bipolar orientation is characterized by
two defects, which are located at the end of the axis of symmetry at opposite points and
are caused by tangential or planar anchoring within the droplet surface, as illustrated in
Figure 1a. Experimental studies have shown that thermotropic nematic liquid crystals
dispersed in aqueous solutions respond to chemical analytes at the interface. By adsorbing
surfactant or lipid at the interface, the planar preferred alignment of liquid crystal then
changes to homotropic alignment. Adsorption of surfactants at the surface could cause
anchoring transition or change in the easy axis [20]. The droplet’s orientation transitions
from a bipolar to a radial within the droplet, which changes the optical appearance [7]. The
radial configuration of the droplet exhibits the single-point defect at its center due to its
perpendicular anchoring on the surface of the droplet, as illustrated in Figure 1b.

Figure 1. (a) Bipolar configuration of liquid crystal droplets that liquid crystal molecules are tangential
and planar to the surface, and two opposed point defects appear diametrically. (b) The radial
configuration of a liquid crystal droplet with a single defect point at the center of the droplet.

The design of liquid crystal droplet biosensors has been studied based on config-
uration transitions corresponding to changes in anisotropic optical properties such as
birefringence [7,21]. The optical patterns are created by the deformed liquid crystal system
when light propagates through it. It provides a way to identify this transition from a
bipolar to radial orientation in the sample. The bipolar liquid crystal microdroplets appear
brightly in aqueous solutions. In contrast, the radial orientation has a dark texture with
a cross-like pattern. Thus, this creates a unique optical response, which is then used to
identify and quantify the presence of the biological agent. Previous experimental studies
investigated the optical texture to understand the liquid crystal orientation within the
droplets dispersed in the aqueous phase [1,4,19]. Since the optical pattern of the liquid
crystal biosensor can detect the presence and concentration of the biological analyte, the
changes in the orientation can be used to study its performance [22].

Studies in the past have shown that liquid crystal emulsions can detect the presence of
a variety of target analysts. Several experimental studies show that liquid crystal emulsion
droplets dispersed in an aqueous solution can be used as a sensing platform. For example,
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the orientational changes in the liquid crystal droplets from a tangential to perpendicular
alignment due to the adsorption of surfactants at the aqueous interface could be the base of
the surface-induced droplet biosensors [22,23]. A droplet’s configuration is significantly
affected by its diameter. It is also affected by the surface’s physicochemical properties and
temperature, whereas the orientation depends on the interfacial energies [24]. Moreover,
the configuration of liquid crystal droplets is greatly influenced by their size, and most
preparation methods do not allow us to control the size of the droplets [8,25].

Although liquid crystal droplet systems can sense chemical and biological materials,
this presents a different technical challenge, including inconsistency in the shape and size
of the droplets as well as mobility through the aqueous medium that typically translates
into a velocity of 1µm/s. Since dispersion droplets move freely within an aqueous solution,
it is difficult to characterize the individual droplets using the optical method because
it is difficult to obtain quantitative information about the liquid crystal orientation at
the interface experimentally using the optical method. As one way to overcome this
issue, researchers would immobilize liquid crystal droplets in an aqueous solution. For
instance, adding glycerol to an aqueous phase increases the viscosity and decreases droplet
motion. However, this affects the interfacial properties of the droplet, such as its surface
viscosity [4,19,26].

In the past, Kingister et. al. attempted to address this issue by immobilizing the
liquid crystal droplets on chemically-tailored solid surfaces. However, they observed
that the immobilization of the droplets disturbs the order of the liquid crystal within the
droplet. They suggested that the immobilization of liquid crystal droplets lead to changes
in the ordering of the liquid crystal that depend on the physicochemical properties of the
surface [18]. Miller et. al. also reported the challenge that increasing the viscosity of the
aqueous phase will not only reduce droplet motion but also alter the surface properties of
the liquid crystal droplet [4].

As part of our study, we analyzed the sensitivity of the liquid crystal droplet biosensors
and surface interactions as a result of biomolecular adsorption. Firstly, two dimensionless
surface parameters were introduced to characterize the interface. Then, we manipulated the
parameter related to interfacial properties to optimize the liquid crystal droplet biosensor
performance. To do this, it was assumed that the easy axis will have a sudden transition
from planar to homeotropic in the presence of sufficient surfactant concentration [27]. Our
second objective was to investigate the bulk orientational response to variations in surface
viscosity without changing the easy axis, assuming weak planar anchoring energy at the
surface of the droplet due to the presence of chemical analytes. Additionally, we examined
how viscosity affects the droplet’s dynamics behavior and response time.

To investigate the effect of surface properties, we assumed that the obtainment of
radial configurations of liquid crystal droplets was induced by perpendicular anchoring
with the uniform microdroplet scale in addition to a constant temperature and uniform
interface properties [25,28].

To our knowledge, the mathematical modeling and computer simulation of transient
reorientation caused by interface interactions have not been extensively studied for emul-
sion liquid crystal biosensors. Numerical studies were found to be able to resolve some
gaps relevant to surface viscosity, anchoring energy, and easy axis at the interfaces of
the droplets during the biosensor application. In this study, a transient two-dimensional
nonlinear model based on the Leslie–Ericksen theory on cylindrical coordinates is used to
analyze the deformation of the liquid crystal droplets. Additionally, the Frank energy was
incorporated into the governing equation to model the droplet and surface interaction. The
model was then used to simulate the interaction between the droplet and the surface. The
results of the simulation will help to understand the dynamics of the droplets and how the
surface characteristics affect the droplet behavior during biosensor usage.
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2. Formulation of the Model and Numerical Methods
2.1. Theory

This section describes the theoretical background of developing the governing equa-
tion and numerical method for solving our model. A liquid crystal droplet’s director
reorientation is determined using torque balance, according to Leslie–Ericksen’s theory.
The liquid crystal droplet was studied using the nonlinear continuum mechanical theory,
and the director field (n) was defined as the preferred average orientations of rod-like
molecules. The Frank free energy equation for describing the energy associated with liquid
crystal strains in the system is as follows [29]:

Fd =
1
2

K11(∇·n)2 +
1
2

K22(n·(∇× n))2 +
1
2

K33|n× (∇× n)|2 (1)

where K11, K22, and K33 are the Frank elastic constants associated with the three types of
deformation for splay, twist, and bend, respectively. The elastic constants of the liquid
crystals determine the restoring torques when a system is reoriented or disturbed from
equilibrium. In liquid crystal systems, these constants measure the system’s resistance to
distortion. Typically, these constants are around 10−11 N [30].

A Cartesian vector representation of director reorientation is given in the following
torque balance:

Γe + Γv = 0 (2)

where Γv is the viscous torque and Γe is the elastic torque. The constitutive equations to
determine the elastic and viscous torques can be calculated using the equations below:

Γe = n× h (3a)

where h is defined as the molecular field, which can be found using the following constitu-
tive equations:

h = hS + hT + hB (3b)

hS = K11∇(∇·n) (3c)

hT = −K22{a∇× n +∇× (an)} (3d)

hB = K33{b×∇× n +∇× (n× b)} (3e)

The constitutive equations for a and b are defined as follows:

a = n·∇ × n (3f)

b = n×∇× n (3g)

The following Equation (4a) is used to calculate the viscous torque:

Γv = −n× (γ1N + γ2A·n) (4a)

where γ1 and γ2 are the rotational and irrotational torque coefficients. The kinematic
constitutive equations are defined as follows:

A =
1
2

[
(∇V)T +∇V

]
(4b)

Ω =
1
2

[
(∇V)T −∇V

]
(4c)
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where A is the strain tensor and Ω is the angular velocity tensor. It was assumed that the
liquid crystal has no bulk movement within the droplet, so the system is stationary with
zero velocity. As a result, A and Ω are zero. Also, vector N represents the angular velocity
of the director relative to that fluid, and it is defined below:

N =
.
n−Ω·n (5)

where the superposed dot represents the material time derivative.

2.2. Mathematical Model

The cross section of a bipolar droplet is shown in Figure 2 in the cylindrical coordinate
system (r, θ, z). The director field n is described as follows:

n(r, z, t) = (sin φ(r, z, t), 0, cos φ(r, z, t)) (6)

where φ is the polar angle measured from the z-axis, which is space- and time-dependent. In
this system study, the droplets are axisymmetric, so it was considered to be two-dimensional.

Figure 2. This is a schematic representation of a two-dimensional bipolar droplet in the cylindrical
coordinate system. The z-axis is along the symmetry axis. n is the director and φ is the polar angle
measured from the z-axis.

The Frank energy is derived from combining Equation (6) into Equation (1), as ex-
pressed in the two-dimensional cylindrical coordinate system:

Fd = 1
2

K11sin2φ
r + 1

2 K11r
(

∂φ
∂z

)2
sin2φ− K11

∂φ
∂z sin2φ + 1

2 K11
∂φ
∂r sin(2φ)

− 1
2 K11r ∂φ

∂z
∂φ
∂r sin(2φ) + 1

2 K11r
(

∂φ
∂r

)2
cos2φ + 1

2 K33r
(

∂φ
∂r

)2
sin2φ

+ 1
2 K33r ∂φ

∂z
∂φ
∂r sin(2φ) + 1

2 K33r
(

∂φ
∂z

)2
cos2φ

(7)

In the absence of an external field, the director orientation within the droplet is
determined using the balance between the bulk and surface energy as a result of minimizing
the elastic free energy. The total free energy of the liquid crystals contained within a droplet
is given by the following expression:

F =
∫
V

FddV +
∫
S

Fsds (8)
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where Fd can be calculated from the Frank free energy (1), and Fs can be determined using
the Rapini–Papoular expression as follows [31]:

Fs =
1
2

Wφsin2(φs − φe ) (9)

where Wφ is the anchoring coefficient that characterizes the strength of surface anchoring.
The droplet anchoring angles φs and φe are the actual and preferred anchoring angles at
the droplet surface, respectively. In the case of strong anchoring at the surface, the director
aligns with the easy axis. In contrast, weak anchoring allows the system to evolve towards
an intermediate equilibrium by balancing viscous and elastic torques depending on the
strength of the anchoring.

The Euler–Lagrange equation describes the distortion of a liquid crystal droplet’s
surface through the balance of generalized and frictional forces. The equation was derived
via the calculus of variations by balancing elastic and viscous forces to study the interaction
dynamics at the interface between a thermotropic liquid crystal droplet and an aqueous
phase. There is only one generalized coordinate in the system, φ. For our system, the
Rayleigh generalized dissipation function was simplified to drive the Euler–Lagrange
equation as follows [32]:

∂Rs

∂
.
φ

+ φ∅ = 0 (10)

where Rs is denoted as the Rayleigh dissipation function for the surfaces, Φ∅ represents
elastic forces. Then, the Euler–Lagrange equation is as follows:

∂Rs

∂
.
φ

= λs ∂φ

∂t
(11)

where the surface viscosity governing the surface director orientation at the liquid crystal
droplet aqueous interface is indicated by λs, and an overdot on the function indicates
time differentiation.

System energy consists of bulk and surface components. The total free energy of the
system can be found according to Equations (7), (9) and (10), as shown below:

F =
∫
V

Fd(φ,
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φ)dV +
∫
S

Fs(φ)ds (12)

The variation of F is shown below:

δF =
∫
V

(
∂Fd
∂φ

δφ +
∂Fd
∂
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In this equation, ν is the outward unit normal vector to the enclosing surface S of
volume V. The elastic forces at the surface are expressed below:

Φφ =
∂Fd
∂∇φ

ν+
∂Fs

∂φ
(15)
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2.3. Governing Equation

The following scaling relations were used to nondimensionalize the governing equa-
tions and boundary conditions, as shown below:

Kii
* =

Kii
K

, (for i = 1, 3) (16)

K =
1
2
(K11 + K33) (17)

r* =
r
R

(18)

z* =
z
R

(19)

t* =
tK

γ1R2 (20)

In these relations, superscript asterisks denote the dimensionless variables and R is
the radius of the droplet.

The non-dimensional parameters of surface viscosity and anchoring energy are defined
as follows:

W =
1
2

RWo

K22
(21)

λs* =
2λs

γ1R
(22)

By incorporating Equations (2)–(6) and applying scaling Equations (17)–(20), the
governing equation was obtained to describe director orientation dynamics. Therefore, the
nonlinear partial differential equation that is time-dependent is as follows:

∂φ

∂t∗
= κ1

∂2φ

∂r∗2 + κ2
∂2φ

∂z∗2 + κ3
∂2φ

∂r∗∂z∗
+ κ4

(
∂φ

∂r∗

)2
+ κ5

(
∂φ

∂z∗

)2
+ κ6

∂φ

∂r∗
∂φ

∂z∗
+ κ7

∂φ

∂r∗
+ κ8

∂φ

∂z∗
+ κ9 (23)

where the spatially and angle-dependent elastic functions {κi}, i = 1, 2, . . .9 are provided in
Appendix A.

The following first-order time-dependent partial differential equations were obtained
by combining Equations (7)–(15) and the scaling relations, Equations (17)–(22). Hence, the
Euler–Lagrange equation describes liquid crystal motion at an interface as follows:

λs* ∂φ

∂t* = κ10 + κ11
∂φ

∂r* + κ12
∂φ

∂z* + Wϕsin[2(φ− φe)] (24)

As shown in Figure 2, the two-dimensional droplet has symmetry about the z-axis, so
the governing Equations (23) and (24) can be solved numerically for half of a circle, where
r* > 0. Then, the initial and boundary conditions are defined as follows:

φ = φi(r∗, z∗, t∗) at t∗ = 0, r∗ ≥ 0, −1 ≤ z∗ ≤ 1 (25)

∂φ

∂r* = 0 at t∗ ≥ 0, r∗ = 0, −1 ≤ z∗ ≤ 1 (26)

λs* ∂φ
∂t* = κ10 + κ11

∂φ
∂r* + κ12

∂φ
∂z* + Wϕsin[2(φ− φe)]

at t∗ ≥ 0, r∗ > 0, z∗ =
(

1− r∗2
)1/2 (27)
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2.4. Numerical Method of Solution

For the numerical solution, the Galerkin finite element method [33] with a bilinear
basis function was used. The Newton–Raphson iteration was used to solve a set of nonlinear
ordinary unsteady differential equations after spatial discretization. Time was discretized
using finite differences, and time was integrated using an implicit first-order Euler predictor-
corrector. The convergence was achieved when the differences between the two sequence
solution vectors reached less than 10−6. Our mathematical model consists of nonlinear time-
dependent partial differential equations governed by transient boundary conditions. We
developed our mathematical model using Mathematica software and derived all equations
in this software. We generated the mesh using the rectangular elements that discretize
the two-dimensional droplet geometry. In addition, the initial dimensionless time step
considered was 10−5 [33–36].

We developed the finite element program in FORTRAN 95 language [37], and compiled
it using the Intel compiler. The LAPACK solver routines from the Intel Math Kernel Library
were used to solve the linear algebraic equations [38]. Analyzing and visualizing our results
followed the same procedure as our previous work [39]. Our analysis was performed on the
Digital Research Alliance of Canada’s Cedar and Graham clusters using high-performance
computing resources.

3. Results and Discussions

In this study, we examined the liquid crystal director configurations within a droplet
in relation to changes in surface viscosity and interface anchoring energy. The adsorption
of the surfactant was considered the driving force that triggered the realignment of the
liquid crystal at the droplet surface, influenced by the surface properties. Therefore, this
study is based on the adsorbate-induced bipolar to radial transition, and we assumed that
the change in the anchoring transition was caused by amphiphilic adsorption [40].

The anchoring energy of the liquid crystal at interfaces with aqueous solutions varies
with the biomolecule concentration. The adsorption of biomolecules on the surface en-
hances homeotropic anchoring and causes the liquid crystal molecules to be rearranged
to the radial configurations from the bipolar orientation within the droplet. Moreover, it
was assumed in this study that the defect changes abruptly. Therefore, we did not consider
other possible configurations of the liquid crystal droplets caused by defect migration.
In addition, we assumed the sufficient surfactants at the liquid crystal aqueous interface
caused the uniform transition from tangential to perpendicular anchoring [6].

Since topological defects are governed by both surface and bulk elastic energies [22,41],
we did not investigate whether the defects could cause droplet reorientation as reported
by Lin [18,20]. As part of this parametric study, we kept the droplet size constant while
focusing on the surface properties. The droplet diameter, however, is considered when
defining the parameters in Equations (22) and (23).

Our study investigated the role of interface properties in droplet reorientation by
evaluating the droplet deformation under different parameter combinations. A droplet’s
deviation from the preferred alignment at the surface is determined by the anchoring
energy at its interface. When the director is aligned with an easy axis, energy is at its
minimum. Generally, when the anchoring strength is high, the director aligns with the
surface alignment. However, when the W is finite and reduced, the surface orientation
is determined by minimizing the total energy, which is the balance between bulk and
surface energy. With the help of this parametric study, we can investigate the interaction
between the liquid crystals inside the droplets and the aqueous solution interface. In
this discussion, we examined the effects of dimensionless surface viscosity and anchoring
energy. A comparison was made between the numerical results and the experimental data
that were available for validation [4].

Figure 3 illustrates the initial conditions of the liquid crystal confined within a circular
geometry, which was obtained via a mathematical model with fixed tangential boundary
conditions representing to the strong planar anchoring in an aqueous solution as a result of
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a tangential easy axis. We used this obtained initial condition for all cases studied for our
parametric studies.

Figure 3. Bipolar steady state tangential configuration caused by the aqueous solution induced by
water before introducing the surfactant at the droplet interface as the initial conditions.

The experimental results of the emulsion liquid crystal configuration in an aqueous
solution in the absence of a surfactant or external field were assumed as the initial condition.
In addition, we assumed that the droplet size favors a bipolar structure.

Considering the discussion above, the bipolar configuration exists due to the strong
tangential anchoring at the surface. The adsorption or interaction of the surfactant or
chemical analytes on the surface changes the anchoring energy and easy axis, leading to a
realignment of the liquid crystal bulk within its spherical geometry.

The effect of the intermolecular interaction and absorption of chemical analytes at the
surface of the liquid crystal droplets in relation to the liquid crystal inside the droplet is
modeled using the Euler–Lagrange equation, which is based on the dissipation interaction
between the surface and the bulk of the liquid crystal. The initial configuration of the liquid
crystal emulsion is determined using the physicochemical properties of the droplet surface.
Additionally, molecular interactions can explain director reorientation within the droplet.

To study the dynamics of the orientation of liquid crystal droplet biosensors, we
introduced mean magnitude angle and characteristic time to investigate the performance of
liquid crystal biosensors. The mean magnitude of the orientation angle 〈‖φ‖〉 of the liquid
crystal within the droplet is defined below:

〈‖φ‖〉 = 1
πR2

∫ 1

−1

∫ (1−z*2)
1/2

−(1−z*2)
1/2

φdr*dz* (28)

The mean angle is the average of the angles within the two-dimensional droplet
geometry.

In Figure 4, a semilogarithmic plot of the magnitude of the mean polar orientation
angle <||φss||> at steady state conditions relative to homeotropic anchoring strength
at different surface viscosity parameters is shown. The data pattern shows a sigmoidal
trend as W increases. As homeotropic anchoring increases, the result of a sigmoidal trend
indicates a slow steady decline in the mean angle at steady state, which is consistent with
the definition of homeotropic anchoring energy mentioned above. This suggests that the
increase in homeotropic anchoring strength is correlated with the decrease in the mean
angle at a steady state. Additionally, it shows that the mean angle within the range of
10−2 < W < 102 differs with surface viscosity. Thus, the results demonstrate that the surface
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viscosity parameter has a significant impact on the mean polar orientation angle. The results
indicate the orientation of the liquid crystal is interrelated with both surface viscosity and
homeotropic anchoring energy.

Figure 4. The mean magnitude of the polar angle <||φss||> at steady state versus dimensionless
anchoring energy for different ranges of dimensionless surface viscosity parameters λs*.

As shown in Figure 5, three case studies illustrate bulk reorientation at a steady state
caused by adding surfactants at the liquid crystal droplet aqueous interface. Increasing
anchoring energy tends to align the surface director with the surface perpendicular align-
ment. It has already been mentioned that surfactant concentration at the interface impacts
homeotropic anchoring strength. Increasing the concentration of surfactants causes greater
anchoring energy, causing the surface director to become even more aligned with the
surface perpendicular alignment.

Figure 5. Steady state configuration for the following dimensionless anchoring energy parameter at
λs* = 103: (a) W = 100, (b) W = 101, and (c) W = 102.
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Furthermore, the mean angle transmitted to the radial configuration is not linear for
W ≤ 10. However, the mean angle <||φss||> at steady state is constant for W ≥ 10 and
for the surface viscosity λs* ≤ 102. Furthermore, <||φss||> is constant for higher viscosity
with higher homeotropic anchoring in the range of 10 ≤W ≤ 102 with a surface viscosity
of 102 < λs* ≤ 103, as depicted in the plot. Thus, for the mentioned ranges, the mean angle
transmitted to the radial configuration is linear. This suggests that to fully obtain the radial
orientation of the surface viscosity, W should be kept within the recommended ranges for
the best results during the biosensor performance. Thus, the distinctive optical textures
corresponding to different liquid crystal orientations in this range can be observed under a
polarized microscope.

Moreover, the mean angle decreases with the increasing homeotropic anchoring and
the decreasing surface viscosity. Therefore, by examining the higher viscosity λs* > 103, the
W = 102 is sufficient to obtain a complete dark appearance with a cross-like texture during
the biosensor performance, which represents the radial configuration.

Since the mean angle gradually decreases, a relaxation characteristic time was defined
as used in our past papers [39,42]. The time constant is defined as 36.78 percent of the
declining process to investigate the temporal average orientation within the droplet. This
process is used to measure how fast the droplet reorients towards the radial configuration.

Figure 6 shows the relation between τ and W on a linear scale. The plot shows
the downward trend of characteristic time versus W for different surface viscosity λs*
values. The overall trend of τ follows the sigmoidal pattern as W increases. The plot
depicted that τ gradually decreases as W increases with the sigmoidal trend in the range of
10−2 < λs* ≤ 102. The decrease in τ is steeper in the range of 50 < λs* ≤ 102 and τ is almost
constant in the range of λs* ≤ 1. The minimum value of τ is obtained at λs* ≤ 1. Also, in
this range, the relation of τ and W is linear. This suggests that the maximum efficiency
of the system is achieved for higher values of W and lower values of λs*. This suggests
that the system can be improved by adjusting these parameters according to the desired
performance. Tuning these parameters can help in achieving the desired performance of
the system. The results show that the radial configuration and anchoring energy are related
and depend on the surface viscosity.

Figure 6. Characteristic time τ of the liquid crystal biosensor droplet in relation to dimensionless
anchoring energy W at different dimensionless surface viscosities λs*.
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Figures 7–11 illustrate the reciprocal time at 2τ to 6τ of the process in relation to the
homeotropic anchoring. The plots indicate that the system responds differently at each
characteristic time depending on the surface viscosity. The system reaches the steady state
condition after seven characteristic times as per the simulation. Therefore, the reciprocal
time curves indicate how fast the system responds to the changes in the droplet’s surface
realignment. In addition, analyzing the relation between the radial configuration and
anchoring energy helps us to understand how the system responds to the surface interaction.
It shows the relationship between these two variables and how they affect the overall
performance of the system.

Figure 7. Reciprocal dimensionless time at two characteristic times τ of the liquid crystal biosensor
process versus dimensionless anchoring energy W for the different ranges of dimensionless surface
viscosity λs*.

Figure 8. Reciprocal dimensionless time at three characteristic times τ of the liquid crystal biosensor
process versus dimensionless anchoring energy W for the different ranges of dimensionless surface
viscosity λs*.
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Figure 9. Reciprocal dimensionless time at four characteristic times τ of the liquid crystal biosensor
process versus dimensionless anchoring energy W for the different ranges of dimensionless surface
viscosity λs*.

Figure 10. Reciprocal dimensionless time at five characteristic times τ of the liquid crystal biosensor
process versus dimensionless anchoring energy W for the different ranges of dimensionless surface
viscosity λs*.
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Figure 11. Reciprocal dimensionless time at six characteristic times τ of the liquid crystal biosensor
process versus dimensionless anchoring energy W for the different ranges of dimensionless surface
viscosity λs*.

According to Figures 7–11, the low surface viscosity parameter in the range of
10−3 ≤ λs* ≤ 10−1 has a reasonably similar and consistent gradual increase pattern through
time. This suggests that the viscosity is already at its optimum level and no further decrease
is required. However, λs* ≥ 10 has a reasonable linear relationship with W, where the trend
switches to gradual changes over time as shown through these figures. For λs* ≥ 102, the
relation with W stays linear until the steady state condition is reached. Additionally, it
depicts that there is a wide range of changes between 1 < λs* < 10. Furthermore, it was
predicted that the process with a range of 10−2 < λs* ≤ 100 exhibits a trend similar to the
low surface viscosity through time.

By changing the surface viscosity at the surface, we investigated how changing the
aqueous solution viscosity could affect the liquid crystal biosensor performance. In this
study, we assume the easy axis is planar and manipulate the surface viscosity to study the
system response.

Figure 12 shows a plot of the orientation angle at steady state conditions at weak
planar anchoring to study the effect of changing the viscosity of the aqueous solution which
could affect the liquid crystal surface and then the bulk orientation. It shows that the
average angle orientation of the liquid crystal within the droplet has two exponential trends
in the range of 10−4 < λs* ≤ 104. As depicted in the range of 10−4 < λs* ≤ 103, it shows
gradual increases in the average angle versus the surface viscosity, and for λs* ≤ 6 × 102,
the average angle stays linear in relation to the surface viscosity and is reasonably constant,
and interference at the steady state does not vary with the surface viscosity within this
range. The biosensor performance is affected by the droplet’s surface viscosity during
the transient process. Consequently, a higher surface viscosity leads to brighter optical
interference at steady state conditions. Figure 13 illustrates three case studies involving
droplet bulk orientation that result in different dimensionless surface viscosities.
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Figure 12. The mean magnitude of the orientation angle <||φss||> at steady state versus the
dimensionless surface viscosity parameter in the case of weak planar anchoring.

Figure 13. Steady state configuration for the following dimensionless surface viscosity parameters at
weak planar anchoring: (a) λs* = 10−3, (b) λs* = 5 × 102, and (c) λs* = 103.

The graph in Figure 14 shows dimensionless total distortion energy versus λs*, which
corresponds to the result in Figure 12. The equilibrium of a liquid crystal biosensor droplet
is obtained by minimizing the total free energy density. The energy is minimized in the
droplet system when the director aligns with the preferred direction and obtains the radial
configuration. The results demonstrate the impact of surface viscosity compared to bulk
rotational viscosity due to the surface interaction. The graph indicates that the system
reaches the minimum energy when the surface viscosity parameter is low; however, when
the surface viscosity increases, Frank’s energy level also increases at steady state conditions.
Accordingly, the radial configuration can be predicted via minimizing the elastic energy
associated with liquid crystal distortion within the droplet caused by chemical analyte
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interactions. Thus, the sensitivity of a biosensor or the order transition of a biosensor can
be controlled by lowering the elastic energy of the system.

Figure 14. The dimensionless total distortion free energy versus the dimensionless surface viscosity
parameter in the case of weak planar anchoring. In the absence of external torque, the droplet system
achieves equilibrium by minimizing energy when the director aligns with the preferred alignment.

Figure 15 shows the relationship between τ and λs* on a logarithmic scale in the range
of 10−4 ≤ λs* ≤ 103. τ has a reasonably linear relationship with 10−3 ≤ λs* ≤ 100. It shows
in λs* ≤ 100 that τ is independent of the surface viscosity at a low surface viscosity in
the case of weak planar anchoring. It shows in λs* ≥ 100 that τ increases gradually with
an increasing λs*. Therefore, the higher the viscosity, the slower the response time of the
biosensor droplet to the adsorption of biomolecules.

Figure 15. Characteristic time τ of the liquid crystal biosensor droplet in relation to dimensionless
surface viscosity energy in case of weak planar anchoring. It depicted the rate of changes as the
characteristic time increases monotonically versus the dimensionless viscosity parameter.
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4. Summary and Conclusions

Tuning the parameters appropriately is essential to achieving an optimal biosensor
performance. By conducting this research, the goal is to better understand how surface
properties affect liquid crystal droplet-based biosensors. During the design and analysis
of biosensors, surface viscosity should be taken into account. Based on the results of this
study, surface viscosity has a significant impact on Frank energy, which emphasizes why
surface viscosity should be studied. Our study provides insight into the behavior of the
liquid crystal droplets and their interactions with surface properties, which can be used
to guide the experiments and performance of liquid crystal biosensors by considering
the recommended ranges for surface viscosity in relation to the biosensor response time.
Furthermore, the orientation of the liquid crystal droplets is significantly affected by
their surface viscosity, according to the simulation results. Thus, sensitivity of the liquid
crystal biosensor performance to surface viscosity is related. This suggests that surface
viscosity is an important factor in controlling the performance of the biosensor due to
homeotropic anchoring caused by the adsorption of biomolecules. The results of our study
can also be used to optimize the design of the biosensors by identifying the parameters that
significantly affect response time and sensitivity. Understanding the biosensor limitations
can also help researchers improve the performance of the biosensors. As a performance
criterion during the design of the biosensors and droplet fabrication, low-surface viscosity
is recommended to ensure fast bulk responses to molecular interactions at the droplet
surfaces in the dimensionless range of 10−3 ≤ λs* ≤ 100.

In summary, two approaches were used in this study: first, assuming an adsorption-
driven liquid crystal biosensor and the relationship between surfactant concentration and
perpendicular alignment at the interface, strong homeotropic anchoring is considered to
study the effects of both W and λs*. Second, we investigated the effect of surface viscosity
on the performance of the biosensors due to the immobilization of the droplets and the
changes in the aqueous solution viscosity by considering weak planar anchoring.
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Nomenclature

Symbols Description
A rate of strain tensor
F total energy
Fs surface energy
Fd Frank elastic free energy density per volume
h film thickness
h the molecular filed
hs splay molecular field
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hT twist molecular field
hB bend molecular field
I the light intensity
K elastic constant
K1 splay elastic constant
K2 twist elastic constant
K3 bend elastic constant
n director
N co-rotational time flux
R Rayleigh dissipation function
t time
V velocity
V volume
W anchoring energy
Greek Symbols
Γ torque per unit volume
Γe elastic torque
Γv viscous torque
Υ1 rotational viscosity coefficient
Υ2 irrotational torque coefficient
ηi angle-dependent viscosity functions
φ polar angle—zenithal angle
κi angle-dependent elastic functions
λs surface viscosities
ν unit normal vector
τ time constant
Ω angular velocity tensor

Appendix A

The elastic functions are defined as follows:

κ1 =
1
2
((K∗11 − K∗33) cos(2φ) + K∗11 + K∗33) (A1)

κ2 =
1
2
((K∗33 − K∗11) cos(2φ) + K∗11 + K∗33) (A2)

κ3 = (K∗33 − K∗11) sin(2φ) (A3)

κ4 =
1
2
(K∗33 − K∗11) sin(2φ) (A4)

κ5 =
1
2
(K∗11 − K∗33) sin(2φ) (A5)

κ6 = (K∗33 − K∗11)cos(2φ) (A6)

κ7 =
1
2

1
r∗
((K∗11 − K∗33) cos(2φ) + K∗11 + K∗33) (A7)

κ8 =
1
2

1
r∗
(K∗33 − K∗11) sin(2φ) (A8)

κ9 = −1
2

1
r∗2 K∗11 sin(2φ) (A9)

κ10 =
z∗

r∗
K∗11 sin2 φ− 1

2
K∗11 sin(2φ) (A10)
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κ11 =
1
2
(K∗11 − K∗33)z

∗ sin(2φ)− r∗
(

K∗11 cos2 φ + K∗33 sin2 φ
)

(A11)

κ12 =
1
2
(K∗33 − K∗11)r

∗ sin(2φ)− z∗
(

K∗11 sin2 φ + K∗33 cos2 φ
)

(A12)
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