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Abstract: The electronic and optical properties of finite GaS nanoribbons are investigated using
density functional theory calculations. The effect of size, edge termination, and chemical modification
by doping and edge passivation are taken into account. The dynamical stability is confirmed by
the positive vibration frequency from infrared spectra; further, the positive binding energies ensure
the stable formation of the considered nanoribbons. Accurate control of the energy gap has been
achieved. For instance, in armchair nanoribbons, energy gaps ranging from ~ 1 to 4 eV were obtained
in varying sizes. Moreover, the energy gap can be increased by up to 5.98 eV through edge passivation
with F-atoms or decreased to 0.98 eV through doping with Si-atoms. The density of states shows
that the occupied molecular orbitals are dominated by S-atoms orbitals, while unoccupied ones are
mostly contributed to by Ga orbitals. Thus, S-atoms will be the electron donor sites, and Ga-atoms
will be the electron acceptors in the interactions that the nanoribbons might undergo. The nature
of electron–hole interactions in the excited states was investigated using various indices, such as
electron–hole overlapping, charge–transfer length, and hole–electron Coulomb attraction energy.
The UV-Vis absorption spectra reveal a redshift by increasing the size in the armchair or the zigzag
directions. Chemical functionalization shows a significant influence on the absorption spectra, where
a redshift or blueshift can be achieved depending on the dopant or the attached element.

Keywords: GaS nanoribbons; size and edge termination; chemical functionalization; electronic and
optical properties

1. Introduction

Two-dimensional (2D) materials showed and still show exceptional physical and
chemical properties that make them one of the top candidates for next-generation tech-
nology [1–7]. Two-dimensional materials are ultrathin and ultralight materials from a
single layer, e.g., graphene [8], silicene [9], transition metal dichalcogenides (TMD) [10],
and mxenes [11], or a few layers, such as layered graphene [12], phosphorene [13], and
heterostructures [14,15]. Their unique properties render them promising in a wide range
of applications, including electronics [16,17], optoelectronics [18,19], spintronics [20,21],
quantum computing [22,23], sensors [24,25], catalysis [26,27], energy storage [28,29], and
photovoltaic [30,31]. Among 2D materials, monolayer GaS has been recently investigated
and introduced for different applications, such as hydrogen evolution reactions [32], Li-ion
batteries [33], nonlinear optics [34], photodetectors [35], and gas sensors [36]. A monolayer
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of GaS consists of S-Ga-Ga-S, which is two inner layers from Ga-atoms sandwiched be-
tween two layers of S-atoms. It is a semiconductor with a wide band gap of ~3.33 eV that is
wider than its bulk counter [37,38]. The electronic, magnetic, and mechanical properties
of monolayer GaS have been extensively investigated [38–42]. However, the effect of size,
edge termination, and doping on the electronic and optical properties of 2D-GaS quantum
dots is still unexplored.

Two-dimensional quantum dots (2DQDs) are small-sized 2D materials ~20 nm or
lower with additional control over their properties by size and edge type [43–47]. In these
nanodots, the electronic and optical properties can be tuned by tuning the size, where
decreasing the size of a material increases its electronic and optical energy gap [48–52].
Another important factor that can improve the properties of quantum dots toward the
required application is chemical functionalization which can be achieved by doping [53],
vacancies [54,55], or attaching chemical groups [56–59]. The capacity to control the physical
and chemical properties using these factors has greatly widened the application range
of 2DQDs. For instance, hBN quantum dots modified with different chemical groups
show a high capacity to detect metal ions with boosted adsorption energy compared
to the pristine nanodots [60] and noticeable fluorescence quenching [61]. Additionally,
chemically modified graphene, phosphorene, TMD, and mxenes quantum dots have also
been investigated for sensing and removal of different pollutants [62–67]. Two-dimensional
quantum dots are promising for catalysis because of their abundant active sites, large
specific surface area, energy gap engineering, superior photo-trapping, multi exciton
generation [68]. For instance, Mohanty et al. reported that MoS2 QDs are highly performant
catalysts for oxygen evolution reaction (OER) with a low overpotential of ~0.37 e [69].
Antimonene nanoclusters show an even lower overpotential of ~0.31 V for OER at the
edges [70]. In the field of photovoltaic, three main characteristics are required to achieve
highly efficient solar cells. (a) Charge separation on donor and acceptor layers for efficient
collection of electrons and holes at the terminals, (b) tiny conduction band offset, and
(c) suitable donor energy gap for the adsorption of incident sunlight. These requirements
have been achieved in edge-functionalized phosphorene [71] and graphene/silicene [72]
quantum dots with noticeable high power conversion efficiency.

In this article, we study the electronic and optical properties of GaS quantum dots
or, more specifically, finite nanoribbons. The effect of size, edge termination, and doping
are taken into account. The pristine nanoribbons are semiconductors characterized by a
wide energy gap that can be decreased to 0.98 eV by doping with Si-atoms or increased
to 5.98 eV by edge passivation with F-atoms. Consequently, a wide range of applications
can be offered for these finite GaS nanoribbons. The optical properties are also affected by
chemical modification, where redshift or blueshift in the UV-Vis spectra can be obtained
depending on the dopant or the edge passivation element.

2. Computational Model

The structure optimization, electronic, and optical properties are investigated using
density functional theory (DFT) calculations as implemented in Gaussian 16 [73]. The
considered functional is the long-range-corrected WB97XD that yields improved accuracy
for non-covalent interactions [74,75]. We also consider the LANL2DZ basis set [76] that
gives acceptable results accuracy at moderate computational power [77,78]. The considered
structures are fully optimized through the minimization of the energy by setting the self-
consistent field (SCF) conversion criterion to 10−8. This means that the SCF convergence
requires both <10−8 root-mean-square (RMS) change in the density matrix and <10−6

maximum change in the density matrix. All the investigated nanoribbons were built
using Gauss View [79]. The optical calculations are performed using time-dependent DFT
calculations for the first twenty excited states. For a review of the nature of the excited
states and how they are predicted using TD-DFT calculations, see [80,81]. All the hole and
electron parameters, such as the overlap between electron and hole density distributions
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(Sr index), used to describe the nature of the excited states are calculated using Multiwfn
software [82].

3. Results and Discussion

Figure 1 shows the finite nanoribbons before and after chemical modification. The
GaS nanoribbons with armchair termination are shown in Figure 1a–c. The effect of the
armchair edge size is taken into account by considering nanoribbons with two (a), four (b),
and six (c) hexagons on the armchair edge. The acronym “GaS-3-nANR” will be used to
define the GaS nanoribbons with armchair termination, where three is the fixed number
of edge hexagons in the zigzag direction, and n is the number of armchair edge hexagons,
n = 2, 4, and 6. The zigzag nanoribbons (GaS-2-nZNR) and the wider one (GaS-3-6ZNR)
are shown in Figure 1e–h, respectively. We then select the GaS-3-6ANR for further chemical
modifications, namely edge passivation and doping. In order to clearly introduce the
considered structures, their molecular formulas are calculated. For instance, the GaS-3-
2ANR shown in Figure 1a,d consists of 28 Ga atoms and 28 S atoms, and its molecular
formula is then Ga28S28. The molecular formulas of all the considered nanoribbons are
provided in Table A2 in Appendix D.
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Figure 1. (a–d) GaS nanoribbons with an armchair edge (GaS-3-nANR) and (e–h) zigzag edge. The
chemical modifications by edge hydrogenation (GaS-3-ANR-H) and doping (GaS-3-ANR-2C) are
shown in (i) and (j), respectively.

3.1. Structure Stability

The stability of the GaS nanoribbons is investigated by calculating the binding energy
and by performing frequency calculations. The binding energy (Eb) is calculated from
the equation; Eb = (NGaEGa + NSES + NdEd + NpEp − Et)/Nt. With NGa, NS, and Nt are
the numbers of Ga, S, and the total number of atoms, respectively. In cases of chemical
modifications, Nd and Np represent the number of dopant and passivating atoms, respec-
tively. EGa, ES, Ed, Ep, and Et are the corresponding total energies of the Ga, S, d, and p
atoms and the final compound, respectively. The calculated binding energies are positive,
and their values range from 3.7 to 3.9 (eV). These values are also shown for each structure
in Figure A1 of Appendix A. The positive values indicate the stable formation of GaS
nanoribbons with comparable values to that of other two-dimensional quantum dots such
as phosphorene and antimonene nanodots [65,83]. This considerable binding energy is
a result of the strong covalently bonded S-Ga-Ga-S atoms that facilitated the fabrication
of stable two-dimensional GaS nanoflakes [35]. The values of Eb in Figure A1 show that
increasing the length of the nanoribbon in both armchair and zigzag directions leads to an
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increase in the binding energy. Furthermore, passivation with hydrogen slightly decreases
Eb, while doping with two carbon atoms increases it. The infrared (IR) spectra obtained
from frequency calculations are the second tool used here to confirm the dynamical stability
of the considered structure. The positive vibrational frequencies obtained from the IR
spectra shown in Figure A1 indicate that there are no saddle points on the potential energy
surface, and all the structures are dynamically stable. It can also be used as a characteristic
tool to identify the GaS nanoribbons in experimental synthesis, where the pristine GaS
nanoribbon has its vibrational IR peaks at low frequencies, around 500 (cm−1), as seen in
Figure A1. While doping with 2O atoms, for instance, introduces two IR peaks at frequen-
cies equal to 600 and 800 cm−1. Furthermore, edge passivation with H-atoms introduces
two IR peaks at a frequency of ~2000 cm−1.

The structural properties are also investigated by calculating the bond length, dihedral,
and bond angle. Table 1 depicts the optimized structural parameters of GaS-nanoribbons
and provides information on bond lengths, bond angles, and dihedral angles. None of the
analyzed nanoribbons have a flat surface, as indicated by dihedral angles ranging from
21.290 to 174.94 degrees. Variations in chemical compositions among the nanoribbons result
in differences in intermolecular bond lengths and bond angles. For example, increasing
the length of armchair edges leads to increased Ga1-S2, Ga3-S4, and Ga7-S8 bond lengths,
as given in Table 1. See Figure 1a for the selected eight atoms. Passivating GaS-3-6ANR
with hydrogen causes changes in bond lengths. Some bond lengths, such as Ga1-S2 and
Ga7-S8, increase, while others, such as Ga3-S4 and S4-Ga5, decrease. Doping GaS-3-6ANR
with 2C (presumably carbon) leads to increased Ga1-S2, Ga3-S4, S4-Ga5, and Ga7-S8 bond
lengths. None of the systems under study (GaS-3-2ANR, GaS-3-4ANR, GaS-3-6ANR, GaS-
2-2ZNR, GaS-2-4ZNR, GaS-2-6ZNR, GaS-3-6ANR-H, and GaS-3-6ANR-2C) exhibit planar
side views. This implies that no Ga atom lies in the same plane as any other S atom. To
summarize, the findings indicate that the bond angles in GaS-nanoribbons fall within a
specific range. Passivation with hydrogens and doping with carbon have contrasting effects
on bond lengths. Additionally, the structures of the analyzed nanoribbons are not planar,
with Ga and S atoms occupying different planes.

Table 1. Some important structural properties for GaS-3-2ANR, GaS-3-4ANR, GaS-3-6ANR, GaS-2-
2ZNR, GaS-2-4ZNR, GaS-2-6ZNR, GaS-3-6ANR-H, and GaS-3-6ANR-2C such as bond length (Å),
dihedral, and bond angles (◦).

NRs

Design Ga1-S2
(Å)

Ga3-S4
(Å)

S4-Ga5
(Å)

Ga7-S8
(Å)

Ga1-S2-Ga3
(◦)

S4-Ga5-S6
(◦)

Ga1-S2-Ga3-S4
(◦)

Ga1-S2-Ga3-S8
(◦)

Ga3-S4-Ga5-S6
(◦)

GaS-3-2ANR 2.275 2.427 2.416 2.325 90.454 109.2 170.1 60.1 167.9

GaS-3-4ANR 2.280 2.441 2.327 2.338 89.550 113.4 172.4 64.7 170.8

GaS-3-6ANR 2.278 2.434 2.329 2.334 89.455 113.5 172.2 64.5 170.4

GaS-2-2ZNR 2.331 2.591 2.294 2.718 87.868 109.5 172.7 66.2 174.9

GaS-2-4ZNR 2.329 2.531 2.297 2.606 88.799 109.6 173.9 66.8 173.9

GaS-2-6ZNR 2.541 2.374 2.381 4.944 93.307 113.9 174.3 62.3 158.1

GaS-3-6ANR-H 2.335 2.378 2.321 2.383 115.37 120.3 86.0 21.2 135.6

GaS-3-6ANR-2C 2.279 2.443 2.332 2.336 89.151 114.5 158.1 47.3 171.6

3.2. Electronic Properties
3.2.1. Pristine Nanoribbons

In order to study the electronic properties, the partial density of states (PDOS) and the
highest occupied/lowest unoccupied molecular orbitals (HOMO/LUMO) are employed.
The PDOS shown in Figure 2a–f was obtained by further analysis of the Gaussian output
file using the GaussSum software that calculates the percent contribution of each atom
to the molecular orbitals [84]. The PDOS spectra are shifted to 0 eV by setting the x-axis
to E-EF, with EF being the Fermi level, EF = EHOMO + ELUMO/2. It is observed from the
PDOS that the occupied molecular orbitals are mostly contributed to by S-atoms (red
peaks) in both armchair and zigzag GaS nanoribbons. On the other hand, the unoccupied
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molecular orbitals are mainly contributed to by Ga-atoms, as seen by the blue peaks above
the 0 energy in Figure 2a–f. These results are also found in the HOMO/LUMO distributions
shown in Figure 2h–j. Where the HOMO cubs mostly distribute on S-atoms and the LUMO
cubs on Ga atoms. For example, Figure 2i,j shows that the HOMO distributes on the edge
G-atoms while the LUMO distributes on S-atoms on the other side. The HOMO/LUMO of
GaS-3-6ANR is not shown because it is similar to that of GaS-3-4ANR in (h). The localized
distribution of HOMO cubes explains their origin from the lone pairs electrons in S atoms,
while the LUMO shows extended distribution mostly on the Ga-Ga bond. Only in a few
cases, such as Figure 2a,f, the HOMO is mainly by Ga atoms at the edges (see Figure 2g,k)
due to the high deformation, especially at the edges.
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The energy gap (Eg), which is defined as the difference between the energy of the
LUMO (ELUMO) and the energy of the HOMO (EHOMO), is also shown in PDOS plots.
We found that Eg decreases by increasing the size of the ANR (see Figure 2a–c, which
agrees with the quantum size effect. The case of ZNR is slightly different, where the
energy gap increases from 2.56 eV in GaS-2-2ZNR to 2.82 eV in GaS-2-4ZNR and then
decreases to 2.17 eV in GaS-2-6ZNR. To figure out the main trend of the energy gap, we
perform additional calculations on GaS-2-8ZNR and found that Eg decreases to 2.01 eV.
Furthermore, calculations on the wide-ZNR in Figure 1h confirm that the energy gap
decreases by increasing the size in the zigzag direction. Thus, the energy gap decreases by
increasing size in the armchair or zigzag directions.
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In contrast, increasing the width of the ANR or ZNR, see Figure A2 of Appendix B,
leads to an increase in the energy gap which disagrees with the quantum confinement
effect. This peculiar behavior is a result of the edge effect, where in thinner nanoribbons,
the edge atoms have higher deformation than in wider ones which in turn results in the
formation of low-energy molecular orbitals that decreases the energy gap in the first case.
For instance, the edge reconstruction of GaS-2-6ZNR (Figure 2k) after optimization leads
to the formation of interactive Ga-atoms at the edge with low-energy molecular orbitals
that forms the HOMO and the LUMO. While in the case of GaS-3-6ANR, as shown in
Figure A2, the optimized structure is not highly deformed. Furthermore, the HOMO and
LUMO distribute on S and G-atoms, respectively, not only on G-atoms.

3.2.2. Chemical Modification

The chemical modification that could occur during experimental synthesis or precisely
added is an efficient tool to manipulate the electronic properties of the pristine GaS nanorib-
bons. It is considered here by (a) substitutional doping of 2S atoms with 2B, 2C, 2Si, 2N,
2O, and 2S atoms and (b) edge passivation of Ga-atoms with H, F, and Cl atoms. Doping
and edge passivation have a significant effect on the electronic properties, as shown by
PDOS and the HOMO/LUMO distributions in Figure 3. For example, the energy gap of
the pristine GaS-3-6ANR increases from 1.07 eV to 2.78 or 3.72 eV by doping with 2B or
2O atoms, see Figure 3a,b. In contrast, it can be decreased to 0.98 eV by doping with 2Si
atoms. In the case of increasing the energy gap, the dopant acts like a passivating element
with a negligible contribution to the PDOS (Figure 3a,b). Thus the dopants replace the low
energy S- peaks with their peaks that are deeper in the valance band, and eventually, the
energy gap increases. This is also seen in the HOMO distribution on the S atoms and not
on the dopants in Figure 3d,e. On the other hand, dopants that decrease the band gap, such
as Si, participate by some of their molecular orbitals to the low energy orbitals, as seen in
Figure 3g,j. By edge passivation, a further increase in the energy gap, up to 5.98 eV, can
be achieved by attaching F-atoms to Ga at edges, see Figure 3f. Therefore, the electronic
properties of GaS nanoribbons can be efficiently tuned to be a semiconductor with tiny,
wide, or even insulator energy gaps by chemical modification.

It is worth mentioning that we also calculated the vertical ionization potential (IP)
and the vertical electron affinity (EA) to test the accuracy of the DFT calculations. IP
is calculated as the difference between the ground state energy of the cation and that
of the neutral structure. EA is the difference between the ground state energy of the
neutral and the anion. Then the energy of the HOMO (EH) is compared with IP, and the
HOMO-LUMO energy gap is compared with the fundamental energy gap (Eg0 = IP-EA).
These comparisons are made for selected structures, namely GaS-3-6ANR, GaS-3-6ANR-2B,
GaS-3-6ANR-2C, and GaS-3-6ANR-H. The calculations given in Table A1 of Appendix C
indicate that the values of IP and Eg0 are slightly different from the corresponding EH
and Eg, respectively, for structures with wide energy gaps such as GaS-3-6ANR-2B and
GaS-3-6ANR-H. On the other hand, this difference increases in structures with low energy
gaps, as shown in Table A1 for GaS-3-6ANR and GaS-3-6ANR-2C. This little correlation
between ionization potential/electron affinity and EH/EL is expected in DFT calculations
due to the approximation employed for the exchange–correlation function [85].
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related HOMO and LUMO are given in (g–j).

3.2.3. Quantum Stability

Important quantum stability chemical (QSC) parameters such as dipole moment (µ),
chemical potential (ρ), electronegativity (χ), and chemical hardness (η) were calculated
using the HOMO energy (EH) and the LUMO (EL) [86–89]. These QSC parameters are
obtained from the following equations ρ = EH+EL

2 , χ = − EH+EL
2 , andη = EL−EH

2 . It is
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important to note that structures with high values of µ exhibit an asymmetry in their
electronic charge distribution. Among the structures examined, GaS-3-6ANR has the
highest magnitude of µ, as indicated in Table 2, followed by GaS-3-6ANR-2C. This suggests
that GaS-3-6ANR experiences more active intramolecular charge transfer compared to other
structures. On the other hand, GaS-2-4ZNR has the most negative ρ value with respect
to other systems, implying that it has higher electrons escaping than other structures.
Electronegativity, which is a measure of the tendency of an atom or a structure to attract
electrons, has high values, which indicates that GaS nanoribbons have a high tendency
to attract electrons. The highest values of χ were observed in nanoribbons with zigzag
termination and doped ones, namely GaS-2-4ZNR with χ = 6.22 and GaS-3-6ANR-2C with
χ = 5.91. Passivation with H-atoms decreases χ to 5.21, which is a result of the passivation of
edge Ga-atoms. Since chemical hardness (η) is a measure of the resistance to charge transfer,
then GaS-3-6ANR-H has the highest resistance toward charge transfer, while GaS-3-6ANR
has the lowest resistance. Therefore, we conclude that the reactivity increases by increasing
size and doping and decreases by passivation. In the first case, there is an increase in the
active sites coming from edge atoms or the dopant that eventually boosts electronegativity
and decreases the chemical hardness. In the second case, these decrease by passivating
edge atoms.

Table 2. The HOMO energy (EH), the LUMO energy (EL), chemical potential (ρ), electronegativity
(χ), chemical hardness (η), and dipole moment (µ) for selected GaS nanoribbons with and without
chemical modification.

Compounds EH (eV) EL (eV) ρ (eV) χ (eV) η (eV) µ (D)

GaS-3-2ANR −7.29 −3.58 −5.44 5.44 1.85 18.0
GaS-3-4ANR −6.71 −4.75 −5.73 5.73 0.98 91.1
GaS-3-6ANR −6.31 −5.23 −5.77 5.77 0.54 164.5
GaS-2-2ZNR −7.30 −4.74 −6.02 6.02 1.28 34.6
GaS-2-4ZNR −7.63 −4.81 −6.22 6.22 1.41 48.3
GaS-2-6ZNR −6.42 −4.26 −5.34 5.34 1.08 20.3
GaS-3-6ANR-H −7.70 −2.72 −5.21 5.21 2.49 65.1
GaS-3-6ANR-2C −6.62 −5.19 −5.91 5.91 0.72 141.9

3.3. Characterization of Excited States

The characterization of excited states plays a crucial role in understanding the elec-
tronic structure and properties of molecules. Various indices have been developed to
describe the nature of excited states, including overlap between electron and hole density
distributions (Sr index), centroid coordinates of holes and electrons (D index), hole–electron
Coulomb attraction energy (Ec), hole–electron degree of separation (t index), and charge–
transfer length (∆r). Table 3 presents data on various indices, including D, Sr, t, Ec, and
∆r. To select representative states, the first excitation state, S1, has been chosen. The ∆r
index measures the charge–transfer length during electron excitation. Excitations can be
categorized as local excitation (LE) if a hole and an electron are found nearby. Or it can
be charge–transfer excitation (CT) when there is significant spatial separation resulting in
noticeable charge density displacement. Based on the values of ∆r, it can be inferred that the
transitions from the ground state (S0) to the excited state S1 in GaS-2-2ZNR predominantly
exhibit local excitations (LE). This is evident from the significantly low ∆r indices, with a
suggested criterion of 2.0 Å to distinguish between LE and CT excitations according to the
original paper on ∆r [90]. On the other hand, for the other molecular structures listed in
Table 3, the ∆r indices are higher than 2, indicating the predominance of CT excitations.
This finding is supported by the D index values in Table 3, where the distances between
the centers of the hole and electron isosurfaces (Chole and Cele centroids) are considerably
close to each other in GaS-2-2ZNR, resulting in a small D index value for S1 compared to
the other states. These results provide evidence for LE excitation in GaS-2-2ZNR and CT
excitation in the other GaS-based materials in their S1 excited states.
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Table 3. Charge–transfer length (∆r), centroid coordinates of holes and electrons (D), electron–hole
overlap (Sr), hole–electron degree of separation (t), and hole–electron Coulomb attraction energy (Ec)
for GaS nanoribbons in S1 excited state.

Compounds ∆r (Å) D (Å) Sr (au) t (Å) Ec (eV)

GaS-3-2ANR 12.68 4.66 0.30 2.48 2.63
GaS-3-4ANR 39.93 20.63 0.002 18.76 0.68
GaS-3-6ANR 20.78 8.73 0.24 4.79 1.89
GaS-2-2ZNR 14.20 6.50 0.16 4.61 1.74
GaS-2-4ZNR 1.93 0.14 0.89 −1.67 4.10
GaS-2-6ZNR 20.78 8.73 0.24 4.79 1.89
GaS-3-6ANR-H 19.56 3.75 0.34 −2.22 0.67
GaS-3-6ANR-F 5.66 3.58 0.17 −1.63 0.27
GaS-3-6ANR-2C 63.94 33.84 0.000 32.03 0.41
GaS-3-6ANR-2N 12.31 6.18 0.34 0.58 0.97
GaS-3-6ANR-2O 6.10 0.85 0.43 −1.33 2.92
GaS-3-6ANR-2B 15.43 1.19 0.44 −2.24 1.54
GaS-3-6ANR-W 8.84 4.31 0.29 2.49 2.79

The Sr index is then examined, and it is observed that the Sr indices for GaS- are
relatively large compared to the other molecular structures. This is attributed to the low
value of the D index. Further, In the S0→S1 transition of GaS-2-4ZNR, the Sr value is high,
reaching 0.89. This indicates an overlapping between the hole and electron in GaS-2-4ZNR
in the S1 excited state, unlike the other studied molecular structures in the same excited
state (see Table 3). The t-indices for the excitations from the ground state (S0) to the S1
excited state are negative for GaS-2-2ZNR, GaS-3-6ANR-H, GaS-3-6ANR-F, GaS-3-6ANR-
2O, and GaS-3-6ANR-2B. This suggests a very low degree of separation between the holes
and electrons in the S1 state of these structures. Conversely, the positive t-index values
for the other studied molecular structures indicate a high degree of separation between
the holes and electrons in their S1 excited states. The hole–electron Coulomb attractive
energy listed in Table 3 is closely related to the characteristics of electron excitation, with
the D-index being the most influential factor. As the D-index increases, the Coulomb
attractive energy weakens. As shown in Table 3, the hole–electron Coulomb’s attractive
energy for GaS-2-4ZNR (Ec = 4.10 eV) in the S1 state is larger than that in the other studied
structures. This observation is consistent with the lower D-index value in the S1 state of
GaS-2-4ZNR compared to the other studied structures, suggesting a stronger Coulomb
attraction between the hole and electron.

3.4. Optical Properties

In this section, we study the UV-Vis absorption spectra of different GaS nanoribbons.
Specifically, GaS-3-2ANR, GaS-3-4ANR, GaS-3-6ANR, GaS-3-6ANR-H, GaS-3-6ANR-F,
GaS-3-6ANR-2C, GaS-3-6ANR-2N, GaS-3-6ANR-2O, GaS-3-6ANR-2B, GaS-4-6ANR, GaS-2-
2ZNR, GaS-2-4ZNR, and GaS-2-6ZNR. The resulting spectra are shown in Figure 4, and
the relevant parameters are provided in Table 4. Our main objective in this section is to
investigate the influence of increasing the length of both the armchair and the zigzag edges
on the computed electronic absorption spectra. Additionally, we explore the impact of
passivation with hydrogen and fluoride, as well as doping with carbon, nitrogen, oxygen,
and boron, on the UV-Vis absorption spectra of GaS-3-6ANR.
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Figure 4. (a,b) The UV-Vis absorption spectra of GaS-nanoribbons show the effect of size increase in
the armchair (ANR) and zigzag (ZNR) directions. The absorption spectra of GaS-3-6ANR before and
after width increasing (GaS-4-6ANR), doping (with 2B, 2C, 2N, 2O), and edge passivation with H-
and F-atoms.

Table 4. The calculated excited state (ES), maximum wavelength (λmax), transition energy (TE),
electronic transition (ET), oscillator strength (f ), and transition coefficient (TC).

Nanoribbon ES λmax TE (eV) ET f TC

GaS-3-2ANR 14 454.34 2.72 H-4→L 0.038 0.35
GaS-3-4ANR 16 590.58 2.09 H-29→L 0.01 0.25
GaS-3-6ANR 3 616.13 2.01 H-49→L 0.06 0.21
GaS-2-2ZNR 13 773.36 1.60 H-5→L 0.03 0.47
GaS-2-4ZNR 8 1088.1 1.14 H-2→L+1 0.01 0.23
GaS-2-6ZNR 3 1504.15 0.82 H→L 0.19 0.18
GaS-3-6ANR-H 9 304.04 3.95 H-27→L 0.01 0.10
GaS-3-6ANR-F 13 313.38 3.96 H-28→L 0.04 0.19
GaS-3-6ANR-2C 14 692.02 1.79 H-2→L+2 0.40 0.71
GaS-3-6ANR-2N 8 541.14 2.29 H-1→L+2 0.01 0.68
GaS-3-6ANR-2O 4 644.09 1.93 H-1→L+11 0.09 0.37
GaS-3-6ANR-2B 7 558.25 2.22 H-1→L+2 0.02 0.66
GaS-4-6ANR 3 616.16 2.01 H-49→L 0.001 0.10

Since the absorption spectra originate from the electronic transitions between occupied
and unoccupied molecular orbitals (MOs), the effects due to size and chemical modification
on the optical absorption peaks should agree with the effects observed in the electronic
properties. For the effect of increasing the size in the armchair or the zigzag directions, it is
observed that the main absorption peak is redshifted to higher wavelengths in agreement
with the decrease in the electronic energy gap. Namely, the maximum absorbance wave-
lengths (λmax) for GaS-3-2ANR, GaS-3-4ANR, and GaS-3-6ANR are 454.34 nm, 590.58 nm,
and 616.13 nm, respectively. The corresponding electronic transitions are H-4→L, H-29→L,
and H-49→L, respectively, as seen in Table 4. This means that the low energy transitions
(H→L and neighbors) are not the main transitions for GaS-nANR, especially for GaS-3-
6ANR. Similarly, λmax increases by increasing the zigzag edge size, as shown in Figure 4
and listed in Table 4. Chemical modifications show a significant influence on the absorp-
tion spectra of GaS-3-6ANR, where a redshift or a blueshift can be achieved, as shown in
Figure 4b. For instance, passivating GaS-3-6ANR with hydrogen and fluoride atoms results
in a blueshift in the absorption spectrum; namely, λmax becomes 304.04 and 313.38 nm,
respectively. Doping with 2N and 2B leads to a blueshift to lower wavelengths of 541.14
and 558.25 nm, respectively, which agrees with the behavior of the electronic energy gap
after passivation and doping. In contrast, doping with 2C and 2O causes a redshift. The
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case of doping with 2O atoms does not agree with the increase in electronic energy gap by
doping with 2O atoms. This is because the main optical transition is from H-1→L+11; thus,
the optical excitation energy is now defined by the energy difference between these states
and not between the H→L as in the ideal case with the electronic energy gap.

4. Conclusion

In summary, the structure stability and electronic and optical properties of finite GaS-
nanoribbons are investigated using density functional theory calculations. The effects of
the size, edge type, and chemical modification are taken into account. The stability of
the considered structures is confirmed by two factors (a) the positive binding energy and
(b) the positive vibrational frequencies responsible for the infrared absorption peaks. The
considered nanoribbons are semiconductors with an energy gap that can be smoothly tuned
by size (in the range from 1 eV to 3.7 eV) or by chemical functionalization (in the range
from 0.98 to 6 eV). For example, passivating Ga-atoms at the edges by F-atoms significantly
increases the energy gap to ~ 5.98 eV, while doping the pristine GaS nanoribbon with
Si-atoms decreases the energy gap to 0.98 eV. The partial density of states reveals that the
density peaks representing the occupied orbitals are mostly contributed to by S-orbitals,
while the unoccupied ones are dominated by Ga molecular orbitals. This means that sulfur
atoms are the electron-donating sites, and the Ga-atoms are the electron-acceptor ones. The
distributions of the highest occupied and lowest unoccupied molecular orbitals confirm
the results. Several indices have been calculated, such as charge–transfer length (∆r),
electron–hole overlaying (Sr), and hole–electron Coulomb attraction energy (Ec), that help
in understanding electron–hole interactions in the excited states. The calculated UV-Vis
absorption spectra indicate a redshift toward higher wavelengths by increasing the size in
the zigzag or armchair direction, which agrees with the decrease in the electronic energy
gap by size increasing. On the other hand, redshift (by doping with C atoms) or blueshift
(passivation with H-atoms) can be achieved by chemical functionalization.
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Appendix A

The infrared (IR) spectra of the pristine and chemically modified GaS finite nanorib-
bons are shown here. It is observed that all the considered structures have positive vibra-
tional frequencies responsible for the IR absorption peaks. It is also observed that pristine
GaS nanoribbons have several IR absorption peaks distributing at low frequencies ~ from
300–500 cm−1. The chemical modification introduces additional IR peaks at higher frequen-
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cies. For instance, the additional two peaks appear around 2000 cm−1 after passivation
with H-atoms, see Figure A1i.
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Appendix B

The partial density of states (PDOS) and the corresponding HOMO/LUMO of the
wider armchair and zigzag nanoribbons are shown in Figure A2.
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Figure A2. (a,b) PDOS of the wider armchair and zigzag GaS finite nanoribbons. (c–f) Their HOMO
and LUMO distributions.

Appendix C

In this section, we provide the calculated values of the ionization potential (IF), electron
affinity (EA), and the fundamental energy gap (Eg0) to compare them with the HOMO,
LUMO energies, and the HOMO-LUMO energy gap.

Table A1. The energy of HOMO (EH), the energy of LUMO (EL), the ionization potential (IP), the
electron affinity (EF), the HOMO-LUMO energy gap (Eg), and the IP-EF fund energy gap (Eg0).

Compounds EH (eV) EL (eV) IP (eV) EF (eV) Eg (eV) Eg0 (eV)

GaS-3-6ANR −6.31 −5.23 5.93 5.78 1.07 0.15
GaS-3-6ANR-2C −6.62 −5.19 6.14 5.45 1.43 0.69
GaS-3-6ANR-2B −7.67 −4.89 7.18 5.18 2.78 2.04
GaS-3-6ANR-H −7.70 −2.72 7.49 3.16 4.98 4.34

Appendix D

For a better understanding of the atomic composition of the investigated structures,
their molecular formulas are given in Table A2.

Table A2. The molecular formulas for the considered GaS nanoribbons.

Nanoribbon Molecular Formula Nanoribbon Molecular Formula

GaS-3-2ANR Ga28S28 GaS-3-6ANR-F Ga84S84F20
GaS-3-4ANR Ga56S56 GaS-3-6ANR-2C Ga84S82C2
GaS-3-6ANR Ga84S84 GaS-3-6ANR-2N Ga84S82N2
GaS-2-2ZNR Ga20S20 GaS-3-6ANR-2O Ga84S82O2
GaS-2-4ZNR Ga36S36 GaS-3-6ANR-2B Ga84S82B2
GaS-2-6ZNR Ga52S52 GaS-4-6ANR Ga108S108
GaS-3-6ANR-H Ga84S84H20 GaS-3-6ZNR Ga78S78
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