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Abstract: The optical temperature sensor utilizing the fluorescence intensity ratio (FIR) has garnered
significant attention in the past few years due to its rapid response, robust anti-interference capability,
remote control feature, and other advantages. In this study, the high-temperature solid-phase
approach was used to fabricate a variety of double perovskite-structured La2MgSnO6: Bi3+, Sm3+

(LMS: Bi3+, Sm3+) phosphors. The Rietveld refinement data of XRD and the Gaussian fitting of the
emission peak of LMS: 0.02Bi3+ phosphor indicated Bi3+ occupies three lattice sites. The calculation
and analysis of average lifetime and energy transfer efficiency substantiated the presence of energy
transfer from Bi3+ to Sm3+, with a transfer efficiency of up to 59.07%. The emission intensity of
LMS: 0.02Bi3+, 0.05Sm3+ at 403 K maintains 50.2% at the condition of room temperature. The FIR
fitting and calculation demonstrated that LMS: 0.02Bi3+, 0.05Sm3+ phosphor possessed good optical
temperature sensitivity, with a maximum absolute sensitivity Sa-max of 0.0055 K−1 and a maximum
relative sensitivity Sr-max of 0.88% K−1, demonstrating its valuable potential applications for optical
temperature sensors.

Keywords: phosphors; fluorescence; sensitivity; temperature sensors

1. Introduction

The application of phosphors is no longer limited to the field of lighting, but also
widely used in non-contact temperature sensors, fingerprint recognition, night vision
detection, etc. [1–3] Compared to general contact temperature sensors, non-contact optical
temperature sensors have the advantages of fast response, strong corrosion resistance,
and remote control [4]. The optical temperature sensors utilize the linear discrepancy in
the thermal stability of two luminescent ions in the matrix. Researchers have prepared a
variety of phosphors for non-contact temperature sensors and obtained good experimental
parameters in relative sensitivity and sensitivity [4,5]. For example, Sinha et al. [5] prepared
the dual emission phosphors CaMoO4: Er3+, Yb3+ with a high sensitivity of 7.21× 10−3 K−1

in the high-temperature range of 535–760 K. Wei [6] et al. synthesized the SrY2O4: Bi3+, Eu3+

phosphors, calculating a relative sensitivity of 0.86% K−1 at 433 K and an absolute sensitivity
of 0.0433K−1 at 563 K by opposite temperature dependence and corresponding fluorescence
ratios for the fluorescence intensity of Bi3+and Eu3+. A higher sensitivity is a key factor for
non-contact fluorescent temperature sensors; therefore, a good matrix may be an intrinsic
factor in improving its sensitivity when applied to temperature sensors. The energy transfer
process that occurs in dual-emitting phosphors applied as temperature sensors is brought
on by the sensitizer’s excitation energy being transmitted to the activator. For example,
Pankratov [7] et al. synthesized the LaPO4: Ce3+, Tb3+ phosphor, proposing two novel
models for the energy transfer from Ce3+ to Tb3+ in LaPO4. Van [8] et al. prepared the
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LiYF4: Pr3+, Yb3+ phosphor, proving that the dominant energy transfer is caused by cross-
relaxation between Pr3+ and Yb3+. Over the past few years, lots of double-layer perovskite
phosphors with an A2BB’O6 structure have been reported, for instance, La2MgTiO6: Sm3+,
Eu3+, Gd2MgTiO6: Bi3+, Mn4+, Gd2ZnTiO6: Bi3+, Y2MgTiO6: Mn4+, and La2MgGeO6:
Bi3+, Sm3+. [9–13] The stannate compound La2MgSnO6 with a double perovskite structure
makes a good host due to the favorable lattice sites for Mn, Cr, and Bi ions, etc. For instance,
Lu [14] et al. developed the La2CaSnO6/La2MgSnO6: Mn4+ phosphor with outstanding
optical performance; Wu [15] et al. synthesized the LaMg0.5(SnGe)0.5O3: Cr3+ phosphor, by
adding Ge4+, calculating its luminous intensity has increased by 1.6 times and the intensity
at 150 ◦C is approximately 80% of the ambient temperature. The results mentioned above
suggest the La2MgSnO6 is a fascinating host matrix.

This work prepared stannate phosphors La2MgSnO6: xBi3+ (x = 0.01, 0.02, 0.04, 0.06,
0.08, LMS: xBi3+), La2MgSnO6: ySm3+ (y = 0.01, 0.03, 0.05, 0.07, 0.09, LMS: ySm3+), and
La2MgSnO6: 0.02Bi3+, ySm3+ (y = 0.01, 0.03, 0.05, 0.07, 0.09, 0.11, LMS: 0.02Bi3+, ySm3+)
employing the conventional high-temperature solid-state strategy. The XRD diffraction
pattern showed that the sample’s diffraction peaks closely matched those of the reference
card. By refining the XRD of the sample, corresponding to unit cell parameters and bond
length information were obtained, and the perovskite “tolerance factor” was calculated.
The relationship between the “tolerance factor” and the fluorescence spectrum was further
explored. According to the photoluminescence spectrum, the luminescence intensity of
LMS: xBi3+ fluctuates as the Bi3+ concentration increases. By analyzing the emission spectra
of LMS: 0.02Bi3+, ySm3+, the basis for energy transfer between Bi3+ and Sm3+ could be
found. In addition, thermal quenching reasons and thermal activation energy calculations
were conducted for the thermal stability under co-doping conditions.

2. Experimental

La2MgSnO6: xBi3+ (x = 0.01, 0.02, 0.04, 0.06, 0.08), La2MgSnO6: ySm3+ (y = 0.01, 0.03,
0.05, 0.07, 0.09), and La2MgSnO6: 0.02Bi3+, ySm3+ (y = 0.01, 0.03, 0.05, 0.07, 0.09) phosphors
were synthesized through conventional high-temperature solid-state reaction. Using La2O3
(99.99%, Aladdin), MgO (99.99%, Aladdin), SnO2 (99.99%, Aladdin), Bi2O3 (99.9%, Aladdin),
and Sm2O3 (99.99%, Aladdin) as raw materials, we weighed them stoichiometrically. The
mixtures were thoroughly ground in the agate mortar. After that, the mixtures were put
in an alumina crucible and fired for 10 h in a tube furnace to 1450 ◦C. The samples were
ground into fine powders after reaching room temperature in preparation for a series
of tests.

The X-ray diffractometer (Rigaku, Ultima IV, Tokyo, Japan) with Cu−Ka radiation
was used to record the samples’ X-ray diffraction patterns. The scanning electron micro-
scope (SEM) measurements were made on the samples’ micromorphology and elemental
composition using a Hitachi SU8010 (Chiyoda City, Tokyo, Japan). The photolumines-
cence (PL) and photoluminescence excitation (PLE)spectra, fluorescence decay curve, and
temperature-dependent emission spectra of samples were determined using the FLS980
(Edinburgh, UK) fluorescence spectrophotometer.

3. Results and Discussion

The LMS is the standard double perovskite structure of A2BB’O6 with a monoclinic
system P21/n space group with sites A, B, and B’ filled by La, Mg, and Sn, respectively.
Figure 1a shows the schematic diagram of its crystal structure, in which Mg and Sn form
MgO6 and SnO6 octahedra with six oxygen atoms, respectively, and Mg has two sites: Mg1
and Mg2 in the crystal structure. Mg2 and Sn occupy the same site. In addition, the vertex
O atoms of the octahedra of Mg1O6 and Mg2/SnO6 are shared, and the two ligands are
arranged alternately to build a structure layer with long-range order. The La atoms and
seven oxygen atoms form a LaO7 decahedron embedded in the middle of the structure
layer, forming a double perovskite structure of the LMS. The Rietveld refinement result of
LMS is shown in Figure 1b and Table 1.
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Figure 1. (a) Schematic diagram of LMS crystal structure; (b) refinement result of LMS.

Table 1. Cell parameters and refined data of LMS phosphor.

Formula LMS

Space group P21/n
Cell parameter (Å) a = 5.6362, b = 5.7228, c = 8.01927

Volume (Å3) 258.66
Structure type Double perovskite

Rwp (%) 9.67
Rp (%) 6.02
χ2 (%) 2.48

Figure 2 gives the XRD patterns of LMS: xBi3+, 0.03Sm3+(x = 0–0.08). The standard card
(No. PDF#01-075-8478) and all of the diffraction peaks match perfectly, which demonstrates
that the LMS crystal structure is unaffected by the doped ions. The main peak at 2θ angles
from 31.0 to 32.0◦ shifts to a low angle first and then to a high angle as a function of the
Bi3+ doping concentration. According to Bragg’s diffraction Formula (1) [16,17]:

2d sin θ = nλ (1)

where d is the atomic plane spacing, λ is the wavelength of the incident ray, θ represents
the half diffraction angle, and n is an integer. When Bi3+(r = 1.03 Å, CN = 6) with a
larger ionic radius occupies Mg2+ (r = 0.72 Å, CN = 6) and Sn4+ (r = 0.69 Å, CN = 6)
with smaller ionic radius, the lattice expands and the cell volume increases, resulting in
the main diffraction peak move to a smaller angle. Although Bi3+ often exists in three
coordination environments of five, six, and eight, the occupancy of seven-coordination
of Bi3+ has also been reported [18]. Therefore, when Bi3+ is doped at a concentration of
less than 0.02 mol, Bi3+ mainly occupies the sites of Mg2+ and Sn4+, but La is slightly
replaced and forms the third luminescent center. When the concentration of Bi3+ is more
than 0.2 mol, the smaller Bi3+ mainly replaces the larger La3+ site [14], Mg2+ and Sn4+ are
slightly replaced by Bi3+, which leads to lattice shrinkage and volume reduction, and a
small shift to a high angle occurs in the diffraction peak. The above results are all attributed
to the abundant sites of the LMS environment. Figure 3 depicts the particle morphology
and elemental mapping images, illustrating that La, Mg, Sn, O, Bi, and Sm are uniformly
distributed in the LMS: 0.02Bi3+, 0.05Sm3+ sample and further demonstrating the successful
incorporation of the doped ions. For perovskite-structured crystals, the lattice distortion
can be characterized by the tolerance factor Tf. The closer Tf is to the value 1, the closer it is
to the ideal cubic structure, indicating that the structure is the most stable and the distortion
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is the smallest [19–22], which is most conducive to the formation of effective and stable
luminescent centers for activator ions. The following is the calculation Formula (2) [22]:

Tf =
RA+RO√

2
(

RB+RB’
2 +RO

) (2)

where RA, RB, RB’, and RO represent the ionic radius of each ion of the A2BB’O6 perovskite-
type (RO = 1.4 Å, which is the ionic radius of O2−), respectively. The calculated Tf of
the matrix is 0.8400, Tf < 1, indicating that LMS is a monoclinic phase structure. We also
calculate Tf for samples doped with different concentrations of Bi3+, as shown in Table S4.
When the concentration of Bi3+ increases, Tf values are all below 1, and the absolute value of
the difference from 1 also increases, indicating that the massive doping of Bi3+ enhanced the
lattice distortion of LMS, which gradually weakened of the stability of the matrix structure
and could not provide a stable luminescence site. Thus, when the amount of Bi3+ is more
than 0.02 mol, Bi3+ preferentially occupies the La3+ site, but the number of luminescent
centers remains unchanged, which were Mg1O6, Mg2/SnO6, and LaO7, respectively.
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Rietveld structure refinement is carried out on LMS: xBi3+ (x = 0.01–0.08) with the
standard card. The crystallographic information can be seen in Figure S1 and Table S1 (see
Supplementary Materials). All reliability factors are all less than 10%, indicating the high
reliability of the refined data. From the bond length information in Tables S2 and S3, the
average bond lengths in the matrix LMS are 2.750, 2.024, and 2.240 Å for LaO7 decahedron,
MgO6 octahedra, and SnO6 octahedra, respectively. When Bi3+ is introduced, the average
bond lengths of LaO7 decahedron, MgO6 octahedra, and SnO6 octahedra in the LMS:
0.02Bi3+ are 2.913, 2.120, and 2.111 Å, respectively. The bond length of other ligands all
slightly increase except the MgO6 octahedron, leading to the deterioration of the stability
of the crystal structure and the increase of lattice distortion.
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To study the fluorescence characteristics of Bi3+ in LMS, Figure 4a exhibits the PLE and
PL spectra of LMS: 0.02Bi3+. Under the monitor at 406 nm, the PLE spectrum of Bi3+ shows
narrow-band excitation at 200–400 nm, and the strongest excitation wavelength is caused
by the 1S0→3P1 transition of Bi3+ at 336 nm. Broadband emission waveband from 350 to
550 nm can be seen under excitation at 336 nm, with the peak value occurring at 406 nm,
covering the near ultraviolet and blue regions, which is attributed to the 3P1→1S0 transition
of Bi3+. The wavelength of this region tends to coincide with the excitation spectrum of
other activator ions, which is why Bi3+ is often used as a sensitizer ion. Figure 4b exhibits
the LMS: xBi3+ PL spectra, the strength of the emission peak does not always increase as
the Bi3+ concentration rises. When the concentration of Bi3+ is 0.02 mol, concentration
quenching occurs, and the luminescence gradually decreases.

The critical distance between ions during concentration quenching is evaluated by
Formula (3) [23]:

Rc = 2
(

3V
4πxc N

) 1
3 (3)

where Rc represents the critical distance, V is the unit cell’s volume, xc is the critical
concentration, and N represent the number of cations in a unit cell. In the LMS: 0.02Bi3+

sample, V = 260.61 Å3, xc = 0.02, N = 8, the calculated Rc is 18.39 Å. The critical distance is
greater than 5 Å, manifesting that the electric multipole interaction causes the concentration
quenching of Bi3+. The Dexter Formula (4) can be used to determine the interaction
type [24,25]:

I
x = k

1+β(x)
θ
3

(4)
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where x refers to the critical concentration of Bi3+, I is the luminous intensity, k and β are
constants, and the θ value can define the type of interaction mechanism. Figure 4c depicts
the function of log (I/x) versus log (x), and the slope value is−1.54. The θ equals 4.6, which
approaches 6. Thus, dipole–dipole interaction is what causes the concentration quenching
of Bi3+. As given in Figure 4b, when the concentration of Bi3+ increases from 0.01 to 0.02,
the emission spectrum of Bi3+ shows a redshift, which is related to the strength of the
crystal field in LMS.
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The crystal field splitting describes the splitting between energy levels. The calculation
of crystal field splitting is given by Formula (5) [26,27]:

Dq = 1
6 Ze2 r4

R5 (5)

where the crystal field splitting energy is represented by Dq, Z is the charge of anions, e is
the electronic charge, the d wave function’s radius is represented by r, and R is the bond
length following the substitution of Bi3+. When the concentration of Bi3+ is more than
0.02 mol, there is a red shift of 6 nm, indicating the Bi3+ (r = 1.03 Å, CN = 6) preferentially
occupies La3+ (r = 1.1 Å, CN = 7) site. Due to the shorter bond distance of RBi-O compared
to RLa-O, the crystal field splitting energy increases, leading to the spectral redshift. This is
also evidence that the diffraction peak shift of LMS: xBi3+ exhibits abnormality. As shown
in Figure 4d, Gaussian fitting is performed on the emission peak of LMS: 0.02Bi3+, and
three emission peaks are obtained, indicating that there are three emission centers Bi1, Bi2,
and Bi3 [28] during the doping process of Bi3+. When Bi3+ enters the matrix and occupies
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La3+, Mg2+, and Sn4+ sites, three different emission centers are formed. Three emission
centers form together a photoluminescence spectrum, which indicates that the LMS matrix
can provide an excellent crystal environment for luminescent centers.

The Formula (6) presented by Van Uitert [29] can be used to calculate the Gaussian
peaks corresponding to each emission center:

E
(
cm−1) = Q×

[
1−

(
V
4

) 1
V × 10−

nEar
80

]
(6)

where E is the activator ion’s emission position, Q is the boundary of the free ionic state’s
lower energy position, V represents the activator ion’s valence, the value n represents the
coordination number of the activator ion’s occupied sites, Ea is the electronic affinity of
the atom forming anion, and r is the substituted ion’s ionic radius. For LMS: 0.02Bi3+, the
ionic radius and coordination number (r = 1.1 Å, CN = 7) of La3+ are larger than those of
Mg2+ (r = 0.72 Å, CN = 6) and Sn4+ (r = 0.69 Å, CN = 6). Therefore, the Bi3 emission center
generated at the 409nm emission peak (3.03 eV) is caused by Bi3+ occupying the La3+ site,
the Bi1 emission center generated at the 431 nm emission peak (2.88 eV) is caused by Bi3+

occupying the Mg1 site, and the Bi2 emission center generated at the 454nm emission peak
(2.73 eV) is caused by Bi3+ occupying the Mg/Sn site.

Figure 5a depicts the PL spectra of LMS: ySm3+ phosphors with different concen-
trations under excitation at 336 nm. The PL spectrum range covers the red region of
550–750 nm, with four distinct emission peaks located at 570, 607, 653, and 709 nm,
respectively. These peaks are attributed to the electronic transitions of 4G5/2→6H5/2,
4G5/2→6H7/2, 4G5/2 → 6H9/2, 4G5/2 → 6H11/2 of Sm3+ [30], and the strongest excitation
peak occurs at 605 nm. Concentration quenching happens at y = 0.05 as Sm3+ concentration
rises. The PLE spectrum of LMS: 0.05 Sm3+ and the PL spectrum of LMS: 0.02 Bi3+ are
shown in Figure 5b. It can be seen that many excitation peaks appear in the PLE spectrum
range of Sm3+ is 300–500 nm, which is caused by the unique energy level structure of Sm3+.
The strongest excitation peak is situated near 400 nm, which overlaps greatly with the
emission peak of Bi3+. Therefore, it is possible that energy will be transferred from Bi3+

to Sm3+ in the co-doped sample, according to preliminary findings. To further explore
the link between energy transfer from Bi3+ to Sm3+. Figure 5c exhibits the PL spectra of
LMS: 0.02 Bi3+, ySm3+ (y = 0.01–0.11) at different concentrations. Two separate distinctive
peaks are visible in the 350–700 nm region. The blue emission of 350–500 nm belongs to
the characteristic peak of Bi3+, and the orange-red emission of 550–700 nm ascribes to the
characteristic peak of Sm3+. The results after spectral integration and normalization of the
two characteristic peaks are given in Figure 5d. It is evident that when Sm3+ concentration
rises, the luminous intensity of Bi3+ drops linearly, while the luminous intensity of Sm3+

keeps rising until concentration quenching happens, indicating that under excitation at
336 nm, the energy of Bi3+ is transferred to Sm3+.

The luminescent decay curves of LMS: 0.02 Bi3+, ySm3+(y = 0–0.09) are measured
under excitation at 336 nm in order to further study the energy transfer relationship from
Bi3+ to Sm3+, as shown in Figure 6a–g. The fluorescence decay curves are fitted using the
double exponential Formula (7) [31]:

I(t) = A1 exp
(
−t
τ1

)
+ A2 exp

(
−t
τ2

)
(7)

where the luminescent intensity of LMS: 0.02 Bi3+, ySm3+ is represented by I(t) at time t,
A1 and A2 are fitting constants, and the lifetimes for quick and slow decays are τ1 and τ2,
respectively. Then, the average luminescent lifetime is determined by Formula (8) [32]:

τ = A1τ1
2+A2τ2

2

A1τ1+A2τ2
(8)
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The luminescence center lifetime of Bi3+ decays from 140 to 61.41 ns with a minimum
lifetime of 57.29 ns as the concentration of Sm3+ rises, indicating the indeed energy transfer
from Bi3+ to Sm3+. As shown in Figure 6g, when the concentration of Sm3+ is higher than
0.03mol, the lifetime tends to be flat, which is related to the quenching of concentration.
The presence of concentration quenching affects the energy transfer efficiency between
sensitizer ions and activator ions. The energy transfer efficiency can be determined by
Formula (9) [33]:

ηT = 1− τ
τ0

(9)

where ηT represents the energy transfer efficiency between sensitizer ions and activator
ions, and τ and τ0 are the lifetime of Bi3+ doped and without doped Sm3+, respectively.
The calculated efficiency diagram is shown in Figure 6h, with the increase of Sm3+ doping
concentration, the energy transfer efficiency gradually rises and stabilizes as Sm3+ doping
concentration rises. These all verify the efficient energy transfer between Bi3+ and Sm3+.

Figure 7a displays the thermal stability of LMS: 0.02 Bi3+, 0.05 Sm3+ phosphor excited
at 336 nm. All emission peaks decrease to varying degrees as the temperature increases
from 303 to 503 K. The luminous intensity of Bi3+ at 406 nm decays to 41.5% at 403 K, while
Sm3+ at 607 nm attenuates to only 59.6% of the initial temperature (303 K). The inset figure
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displays that Bi3+ has worse thermal stability Sm3+. The activation energy of phosphors
can be determined using the Arrhenius Formula (10) [34,35]:

IT = I0
1+Aexp(−∆E

kT ) (10)

where the luminous intensity at T temperature is characterized by IT, the initial lumines-
cence intensity is represented by I0, A is a constant, and k is the Boltzmann constant, the
activation energy is determined by ∆E. The relationship between ln (IT/I0 − 1) and 1/kT
is plotted in Figure 7b, with the ∆E being represented by the negative slope. The ∆E of
Sm3+ is 0.29 eV, while the ∆E of Bi3+ is 0.21 eV. Usually, the thermal stability and activation
energy of phosphors are positively connected. Therefore, the luminous intensity of Sm3+ is
less affected by temperature than Bi3+. The luminescence of Bi3+ is greatly affected by tem-
perature, besides being related to its low activation energy, and the most essential reason
is that Bi3+ luminescence is based on the transition of electron configurations of 6s2 and
6s16p1. This electron configuration has no outer barrier and electrons are exposed outside,
and the transition is easily affected by the surrounding environment, such as coordination
number, temperature, etc. However, the electronic configuration of Sm3+ belongs to 4fn,
and the luminescence of this ion has unique characteristics, such as narrow emission peaks,
long fluorescence lifetime, and difficult movement of emission peaks. These characteristics
are mainly attributed to the stable transition environment created by the shielding of Sm3+

with 5 d and 6 s orbitals [13]. Figure 7c shows the variation of luminescence intensity of
LMS: 0.02 Bi3+, 0.05 Sm3+ from 303 to 503 K. The total luminescence intensity decreases by
49.8% when the temperature is 403 K, indicating good thermal stability of the phosphor.
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Figure 7. (a) Thermal stability diagram LMS: 0.02 Bi3+, 0.05 Sm3+ phosphor and the change of
normalized intensity of Bi3+ and Sm3+ (inset); (b) fitting diagram of activation energy of LMS:
0.02 Bi3+, 0.05 Sm3+ phosphor; (c) luminous intensity variation of LMS: 0.02 Bi3+, 0.05 Sm3+ phosphor
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The difference of fluorescence thermal stabilities of Bi3+ and Sm3+ have a specific
nonlinear relationship with temperature. Many literatures have reported to the realization
of temperature sensors based on the thermal stability differences of these two ions [36,37],
which makes it possible for LMS: 0.02 Bi3+, 0.05 Sm3+ phosphor to be used in optical
temperature sensors. The ratio of the luminescent intensity of Bi3+ to Sm3+ is defined as
FIR (fluorescence intensity ratio), which can be converted from the above Formula (10) to
the following Formula (11) [38]:

FIR = ISm
IBi

=
I(0,Sm)

I(0,Bi)

1+ABi exp
(
− ∆EBi

kT

)
1+ASm exp

(
− ∆ESm

kT

) ≈ B + Cexp
(
−∆E

kT

)
(11)

where I(0, Sm) and I(0, Bi) represent the luminescent intensity of the initial temperature
(303 K) of Sm3+ and Bi3+ at the T temperature. B, C, and ∆E are all fitted parameters. The
fitting results are shown in Figure 8a, the fitting variance is 99.70%, indicating that the
fitting parameters are highly credible. In addition, the FIR increases exponentially from
0.198 to 0.610 with the increase of temperature from 303 to 503 K. The performance of optical
temperature sensors is characterized by absolute sensitivity Sa and relative sensitivity Sr,
which can be characterized using the following formulas [39,40]:

Sa =
∣∣∣ ∂FIR

∂T

∣∣∣ = Cexp
(
−∆E

kT

)
× ∆E

kT2 (12)

Sr =
∣∣∣ ∂FIR

∂T
1

FIR

∣∣∣× 100% =
Cexp(− ∆E

kT )
B+Cexp(− ∆E

kT )
× ∆E

kT2 (13)
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The above two formulas show that both Sa and Sr are related to FIR. As shown
in Figure 8b, both sensitivities present an upward trend as the temperature rises. The
maximum value of Sa and Sr are 0.0055 and 0.88% K−1 at 503 K, respectively.

Table 2 compares the sensitivity of phosphors used as optical temperature sensors
with previous results. Obliviously, the LMS: 0.02Bi3+, 0.05Sm3+ phosphor have a slight
advantage in absolute sensitivity and a more pronounced advantage in relative sensitivity.
These all indicate that the potential application of LMS: 0.02Bi3+, 0.05Sm3+ phosphor in
optical temperature sensors.

Table 2. Comparison of sensitivity between LMS: 0.02Bi3+, 0.05Sm3+ phosphor, and other phosphors
as optical temperature sensors.

Compounds Temperature Range (K) Sa-max
(K−1)

Sr-max
(%K−1) Ref

BaY2F8:Yb3+/Ho3+ 330–425 0.0057 0.6051 [41]
Y2O3: Tb3+/Eu3+ 313–513 0.0261 0.683 [42]

LiY9(SiO4)6O2: Ce3+/Dy3+ 300–400 — 0.43 [43]
La2ZnTiO6: Bi3+/Eu3+ 293–573 0.0032 1.23 [44]
NaYTiO4: Yb3+/Er3+ 308–618 0.0045 — [45]

Ca2MgWO6: Er3+/Yb3+ 303–573 0.126 0.11 [46]
La2MgSnO6: Bi3+/Sm3+ 303–503 0.0055 0.88 This work

4. Conclusions

The conventional high-temperature solid-state approach was used to synthesize the
LMS: xBi3+ (x = 0.01–0.08) and LMS: 0.02 Bi3+, ySm3+ (y = 0.01–0.11) phosphors. The refined
data exhibits that the main peak of the XRD spectrum changes irregularly with a rise in
Bi3+ concentration. The optimal emission concentration for Bi3+ is 0.02 mol. when the
concentration of Bi3+ exceeds 0.2 mol, the emission spectrum is red-shifted. The three
luminescence centers of Bi3+ were demonstrated using Gaussian fitting and Van Unitert’s
formula. By analyzing fluorescent spectra and luminescent decay curves, the mechanism
and efficiency of energy transfer from Bi3+ to Sm3+ were validated and computed. The
maximum efficiency of energy transfer is 59.07%. In terms of thermal stability, the emission
intensity remains 50.2% of the initial intensity at 403K. Finally, the optimal values for the
relative and absolute sensitivity were obtained by fitting the FIR fluorescence index at
503 K, with 0.0055 K−1 and 0.88% K−1, respectively. These results demonstrate that LMS:
Bi3+, Sm3+ phosphor is a promising candidate material for optical thermometry.
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