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Abstract: Flow-assisted corrosion occurs via increased dissolution and/or mechanical degradation of
protective oxide formed on the surface of construction materials in direct contact with coolant liquids.
In the present paper, this phenomenon is studied on carbon steel in an ammonia-ethanolamine-
hydrazine electrolyte by in situ electrochemical impedance spectroscopy in conditions that closely
simulate those that prevail in nuclear plant steam generators. Based on the obtained results, a
quantitative kinetic model of the process is proposed and parameterized by nonlinear regression
of experimental data to the respective transfer function. On the basis of the experimental and
calculational results, it is concluded that flow-assisted corrosion of carbon steel is limited by oxide
dissolution and cation ejection processes and the protective layer–coolant interface. Expressions
for the film growth and corrosion release processes are proposed and successfully compared to
operational data.
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1. Introduction

Flow-accelerated or flow-assisted corrosion (FAC), also denoted as erosion–corrosion,
of carbon or low-alloyed steel piping, occurs when the rate of dissolution of the protective
oxide film that forms on the internal piping surface into a stream of flowing water or wet
steam is enhanced, leading to an increased wall thinning rate [1–9]. This phenomenon is
encountered in both single and two-phase flow conditions and is the result of an increase
in the rate of corrosion or material dissolution, induced by the relative movement between
a corrosive fluid and a material surface; thus it does not involve erosion or cavitation
damage. A thin layer of iron oxide (mostly magnetite) forms on the inside surface of
carbon steel exposed to deoxygenated water in the temperature range 100–300 ◦C. This
layer protects the underlying piping from the corrosive environment and limits further
corrosion. An increase in fluid velocity, temperature, and alteration of water chemistry
can lead to magnetite dissolution at the oxide–coolant interface and its substitution by
new oxide formed at the alloy–oxide interface, resulting in material removal and thinning
of the piping [2–8]. In general, the FAC process consists of two steps. The first step
is the production of soluble iron at the oxide–water interface, while the second step is
the transfer of the soluble and particulate corrosion products to the bulk flow across the
diffusion boundary layer. Although FAC is characterized by a general reduction in pipe
wall thickness for a given component, it frequently occurs over a limited area within this
component due to local high areas of turbulence [3,5,9].

Several parameters influence the extent of degradation due to FAC, including the
geometrical configuration of the components, piping orientation, position inside the pipe,
flow Reynolds number, fluid chemistry, temperature, piping material, and flow turbulence
structure, which affect the surface shear stress and mass transfer coefficients [9–12]. The
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dissolution rate is, in fact, equal to the sum of the current densities of the dissolution of the
oxide and transfer of iron ions from the metal through the oxide layer, which emphasizes
its role as one of the controlling factors of FAC [10,11]. Several works [13–17] have been
devoted to the characterization of the thin iron oxide layers formed on the carbon steel
components under the chemical and hydrodynamical conditions prevailing within the
secondary circuit of PWR plants (de-aerated and alkaline turbulent water or wet steam).
However, the mechanism of the process has not been studied in detail with electrochemical
methods. Very recently, some new approaches, including the wire beam electrode with
electrochemical impedance spectroscopy, have shown promise in probing the initiation and
propagation of erosion-corrosion [18,19] but, to the best of our knowledge, these methods
have not been applied to steam-generator materials and environments.

In that context, the aim of the present paper is to investigate the corrosion of a typical
alloy used in steam generators (carbon steel 22K) with a specially designed setup to ensure
turbulent conditions. First, the setup and the associated hydrodynamic calculations are
described. Second, in situ chrono-potentiometric and impedance spectroscopic measure-
ments in the temperature range 100–240 ◦C in a simulated coolant of a nuclear plant steam
generator are presented and discussed. Quantitative interpretation of the impedance data
with a kinetic model allows for its parameterization in terms of interfacial rate constants,
diffusion coefficients of ionic defects, and field strength in the forming oxide. Finally, the
model is validated by comparison with operational data for FAC and directions for future
research are indicated.

2. Materials and Methods

The experiments described in the paper are performed in a recirculation loop equipped
with a special insert for a FAC study, mounted immediately after the preheater of the coolant
(Figure 1). It is constructed from a tube made of AISI 316 stainless steel that plays the role
of sample holder. The insert playing the role of flow accelerator is located in the middle of
the tube. To simulate the coolant as a single-phase flow at large Reynolds numbers, the
k-ε model was implemented using a finite element method implemented in commercial
software (Comsol Multiphysics, Burlington, MA, USA). Due to the axial symmetry of
the system, 2D calculations were performed. The fluid was modelled as pure water at
100–240 ◦C and 90 bar (density 0.95–0.82 g cm−3 and dynamic viscosity 10−3–10−4 Pa s).
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Figure 1. Scheme of the insert used to investigate flow-assisted corrosion.

Samples for working electrodes were cut from 22K steel (AISI 1022) with a nominal
composition listed in Table 1. The actual composition estimated by glow-discharge optical
emission spectroscopy is also given in the Table.

Table 1. Chemical composition of the steel used in the present investigation (wt.%, balance Fe).

22K C Cr Cu Mn Mo Ni P S Si

nominal 0.17–0.24 ≤0.25 ≤0.30 0.7–1.0 ≤0.15 ≤0.25 ≤0.035 ≤0.035 0.17–0.37

analyzed 0.22 0.23 0.04 0.91 0.12 0.40 0.012 0.02 0.31

Electrochemical measurements are carried out with a CompactStat.h10030 (Ivium Tech-
nologies, Eindhoven, The Netherlands) operating in a floating mode. In a three-electrode
configuration, a Pt plate (99.9%, Goodfellow) plays the role of a counter-electrode, whereas
the reference electrode is a Pd (99.9%, Goodfellow) cathodically polarized with 10 µA against
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another Pt to approximate the reversible hydrogen electrode (RHE). Before each measurement,
this electrode is calibrated vs. a 3 M KCl/AgCl/Ag reference (LL-type, Metrohm, Switzerland).
The potentials were recalculated to the standard hydrogen electrode scale using temperature
dependences of the RHE estimated with commercial software [20,21]. The water chemistry
used was ammonia-hydrazine-ethanolamine (AMETA, 3.0–5.0 mg kg−1 NH3, 20–100 µg kg−1

N2H4, 0.3–0.5 mg kg−1 HOCH2CH2NH2, pH25 ◦C = 9.8). To prepare the electrolyte, p.a. N2H4,
NH3 и HOCH2CH2NH2 (Sigma Aldrich) with an Fe content of less than 0.00005% were used.

Measurements were performed at 100, 130, 160, 180, 200, 220, and 240 ◦C using the
following procedure. After filling the loop with coolant, the hot part, including the flow-
through cell with the flow-accelerating insert, is compressed to 90 bars, heated up to 80 ◦C,
and purged with N2 (99.999%) for 16 h to reach a dissolved oxygen concentration <10 µg kg−1.
After reaching this value, the temperature of the flow-through cell is increased gradually
so that the highest measurement temperature (240 ◦C) is reached for ca. 2 h. Purging of
the feedwater in the reservoir with N2 continued till the end of the experiment duration
(typically 72–96 h). During the first 24 h, the inlet flow in the cell is 10 dm3 h−1, from
24–48 h it is maintained at 4 dm3 h−1, and from 48 to 72 h—increased again to 10 dm3 h−1.
Impedance spectra were measured in a frequency range of 0.5 mHz to 11 kHz with an ac
signal of 40 mV (rms) or 1 µA (rms). Spectra measured by both methods were identical
within the reproducibility limit (±1% by impedance magnitude and±2◦ by phase shift). The
interval of spectra registration is between 2 and 8 h. Linearity was checked by measuring
spectra with signal amplitudes between 10 and 40 mV, whereas causality was ensured by a
Kramers–Kronig compatibility test. For complex nonlinear least squares fitting of spectra to a
transfer function based on the proposed kinetic model, the Levenberg–Marquardt algorithm
implemented in an Origin Pro platform (Originlab, Northampton, MA, USA) was employed.

To estimate the oxide thickness, the exposed samples were galvanostatically re-
duced with a current density of −30 µA cm−2 at 22 ± 1 ◦C in a borate buffer solution
(0.1 mol dm−3 Na2B4O7 + 0.005 mol dm−3 H3BO3, pH = 9.2) de-aerated with N2. Exper-
iments were conducted in a three-electrode glass cell featuring a Pt (99.9%, Goodfellow)
plate counter electrode and a 3 M KCl/AgCl/Ag reference with an Autolab 302N poten-
tiostat/galvanostat (Metrohm Eco Chemie, Utrecht, The Netherlands). The concentration
of soluble iron generated during reduction was estimated with an ICP-OES apparatus
(Prodigy, Teledyne Leeman Labs, Mason, OH, USA).

3. Results
3.1. Hydrodynamic Calculations

The profiles of linear flow rate and Reynolds number in the flow-through cell calcu-
lated by the procedure described in the Experimental section are presented in Figure 2a,b
for a temperature of 240 ◦C. The temperature dependence of maximum values of hydro-
dynamic parameters estimated in the vicinity of the working electrode are presented in
Figure 2c. Based on the performed calculations, it can be concluded that turbulent con-
ditions are ensured in the flow-accelerating insert in the studied temperature interval.

Crystals 2023, 13, x FOR PEER REVIEW 4 of 15 
 

 

  

 

Figure 2. (a) Profiles of linear flow rate (m s−1) and (b) Reynolds number in the cell at 240 °С, (c) 
dependence of flow rate and Reynolds number on temperature. 

3.2. Influence of Temperature and Flow Rate on Corrosion Potential 
The corrosion-potential time dependences in the interval 100–240 °С are presented in 

Figure 3. 

 
Figure 3. Corrosion potential of 22К in simulated secondary coolant at temperatures from 100 to 240 
°С. 

During the first 24 h of oxidation (at a volume flow rate 10 dm3 h−1) potentials are 
lower than −0.70 V and weakly dependent on time. Decreasing the volume flow rate to 4 
dm3 h−1 leads to a displacement of the corrosion potential to more positive values regard-
less of the temperature of oxidation. The subsequent increase in the flow rate leads to a 

90 120 150 180 210 240
0.82

0.84

0.86

0.88

 v / m s-1

 Re

v 
/ m

 s
-1

t / °C

c

6×103

7×103

8×103

9×103

1×104

1×104

R
e

0 10 20 30 40 50 60 70 80
-0.80

-0.75

-0.70

-0.65

-0.60

-0.55

-0.50

E 
/ V

 v
s.

 S
H

E

t / h

 100
 130
 160
 180
 200
 220
 240

Figure 2. Cont.



Crystals 2023, 13, 1115 4 of 14

Crystals 2023, 13, x FOR PEER REVIEW 4 of 15 
 

 

  

 

Figure 2. (a) Profiles of linear flow rate (m s−1) and (b) Reynolds number in the cell at 240 °С, (c) 
dependence of flow rate and Reynolds number on temperature. 

3.2. Influence of Temperature and Flow Rate on Corrosion Potential 
The corrosion-potential time dependences in the interval 100–240 °С are presented in 

Figure 3. 

 
Figure 3. Corrosion potential of 22К in simulated secondary coolant at temperatures from 100 to 240 
°С. 

During the first 24 h of oxidation (at a volume flow rate 10 dm3 h−1) potentials are 
lower than −0.70 V and weakly dependent on time. Decreasing the volume flow rate to 4 
dm3 h−1 leads to a displacement of the corrosion potential to more positive values regard-
less of the temperature of oxidation. The subsequent increase in the flow rate leads to a 

90 120 150 180 210 240
0.82

0.84

0.86

0.88

 v / m s-1

 Re

v 
/ m

 s
-1

t / °C

c

6×103

7×103

8×103

9×103

1×104

1×104

R
e

0 10 20 30 40 50 60 70 80
-0.80

-0.75

-0.70

-0.65

-0.60

-0.55

-0.50

E 
/ V

 v
s.

 S
H

E

t / h

 100
 130
 160
 180
 200
 220
 240

Figure 2. (a) Profiles of linear flow rate (m s−1) and (b) Reynolds number in the cell at 240 ◦C,
(c) dependence of flow rate and Reynolds number on temperature.

3.2. Influence of Temperature and Flow Rate on Corrosion Potential

The corrosion-potential time dependences in the interval 100–240 ◦C are presented in
Figure 3.
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Figure 3. Corrosion potential of 22K in simulated secondary coolant at temperatures from 100 to 240 ◦C.

During the first 24 h of oxidation (at a volume flow rate 10 dm3 h−1) potentials are
lower than −0.70 V and weakly dependent on time. Decreasing the volume flow rate
to 4 dm3 h−1 leads to a displacement of the corrosion potential to more positive values
regardless of the temperature of oxidation. The subsequent increase in the flow rate leads
to a return of the corrosion potential to more negative values in the temperature range
130–220 ◦C, whereas such a return is not observed at 100 and 240 ◦C.

The interval of corrosion potentials at all temperatures is inserted in the corresponding
E-pH diagrams of the Fe–H2O system calculated by commercial software [20] in Figure 4.
At temperatures up to 180 ◦C, the thermodynamically stable corrosion product is predicted
to be the divalent iron ion FeOH+, whereas at higher temperatures corrosion potentials
are located in the magnetite stability region. These calculations indicate that both aqueous
ions and magnetite are expected to be formed during the corrosion of 22K in the AMETA
secondary coolant.
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3.3. Influence of Temperature and Flow Rate on Impedance Spectra

The impedance spectra of 22K in AMETA electrolyte at the investigated temperatures
(100–240 ◦C) and oxidation times (1–72 h) are collected in Figures 5–10 in Bode coordinates.
To facilitate the identification of processes in the high-frequency region, 95% of the elec-
trolyte resistance is subtracted from the spectra. The impedance magnitude at frequencies
approaching zero (Zf→0) that can be interpreted as the polarization resistance (i.e., the
inverse of corrosion/oxidation rate) decreases with temperature in the interval 100–180 ◦C
and increases at higher temperatures, i.e., the temperature dependence of the corrosion rate
is non-monotonous.
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Figure 5. Impedance spectra at 100 ◦C as a function of time. Points—experimental values, solid
lines—best-fit calculation according to the proposed model. Parameter is the exposure time in h.
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Figure 6. Impedance spectra at 130 ◦C as a function of time. Points—experimental values, solid
lines—best-fit calculation according to the proposed model. Parameter is the exposure time in h.
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Figure 7. Impedance spectra at 160 ◦C as a function of time. Points—experimental values, solid
lines—best-fit calculation according to the proposed model. Parameter is the exposure time in h.
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Figure 8. Impedance spectra at 180 ◦C as a function of time. Points—experimental values, solid
lines—best-fit calculation according to the proposed model. Parameter is the exposure time in h.
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Figure 9. Impedance spectra at 200 ◦C as a function of time. Points—experimental values, solid
lines—best-fit calculation according to the proposed model. Parameter is the exposure time in h.
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Figure 10. Impedance spectra at 240 ◦C as a function of time. Points—experimental values, solid
lines—best-fit calculation according to the proposed model. Parameter is the exposure time in h.
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Deconvolution of the impedance spectra indicates three processes with different
characteristic frequencies in the phase angle curves. According to the published inter-
pretation of the impedance spectra of construction materials in high-temperature water
electrolytes [22–27], the process with the highest characteristic frequency is related to the
electrical properties of the protective layer of oxide; that at intermediate frequencies, with
ion and electron transfer at the oxide–coolant interface, and the low-frequency process
is identified as the transport of point defects in the oxide. Spectra calculated using the
model described in the Discussion section are shown with solid lines and demonstrate its
ability to reproduce quantitatively both the magnitude and the frequency dependence of
experimental spectra. Thus, the data can be used to parameterize the model and estimate
rates of production of soluble iron and magnetite particles, which is attempted in the next
part of the paper.

3.4. Estimation of Oxide Film Thickness

The potential quantity of charge curves (chrono-potentiometric curves at constant
current density) in de-aerated borate buffer solution (pH 8.4) of a range of samples oxidized
for 72 h at different temperatures in AMETA coolant are collected in Figure 11.
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Figure 11. (a) Potential quantity of charge curves (chrono-potentiometric curves at constant current
density) in de-aerated borate buffer solution (pH 8.4) of a range of samples oxidized for 72 h at
different temperatures. The dashed lines show the used method of estimation of the quantity of
charge equivalent to the oxide layer thickness; (b) Calculated thickness vs. temperature dependence
using the two methods outlined in the text.

The method to estimate oxide thickness is based on the assumption that during
constant current polarization in borate buffer solution, reductive dissolution of the oxide
proceeds according to the overall reaction

Fe3O4+8H++2e− → 3Fe2++4H2O (1)

The oxide thickness is calculated using two methods—the method of tangents in
potential-charge curves, illustrated in Figure 11 via Faraday’s law with 100% coulombic
efficiency, and from the concentration of divalent iron measured by ICP-OES in the solution
after completion of polarization (once again, using Faraday’s law). The estimates obtained
via the two methods coincide with the reproducibility of the results, as shown in Figure 11
(right). These values are used to calibrate the calculations described in the following section.

4. Discussion
4.1. Description of the Model

The present model is based on the mixed-conduction model for oxide films (MCM),
in analogy to previous estimates of the rates of oxidation and corrosion of low-alloyed and
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stainless steels in simulated primary and secondary coolants of nuclear power plants [22–27].
Assuming that the protective oxide on the studied steel is magnetite, the following processes
take place at the alloy–oxide (A/O) and oxide–coolant (O/C) interfaces

(A/O) Fem
kFe→ Fe••i +2e′

(A/O) 3Fem
kO→ 3FeFe+4V••O +8e′

(O/C) Fe••i
k2Fe→ Fey+

aq + (y− 2)e′

(O/C) 4H2O + 4V••O
k2O→ 4OO+8H+

(O/C) Fe3O4+2H++2e−+2H2O
kd
� 3Fe(OH)2,aq

(O/C) H2O + 2e− → H2+2OH−

(2)

Thus, the reactions of the formation of soluble iron and hydroxide particles proceed
in parallel at the protective oxide–coolant interface. The processes at the inner and outer
interfaces are coupled by oxygen transport via vacancies and iron transport via interstitial
cations. Accordingly, the transfer function that describes the impedance of the system has
the form [27]

Z = Rel + Zox + ZO/C, ZO/C =
1

jωCO/C + R−1
O/C

, Zox =
(

Z−1
e + Z−1

ion,O ++Z−1
ion,Fe

)−1
(3)

In the above equations, the impedance of the oxide–coolant interface ZO/C is repre-
sented as a parallel combination of an interfacial capacitance CO/C and a charge transfer
resistance of a single-step reaction (water reduction with hydrogen evolution) RF/S. On
the other hand, the impedance of the protective oxide Zox is a parallel combination of the
impedances of its electric properties, Ze, and two ionic transport impedances correspond-
ing to oxygen (Zion,O) and iron (Zion,Fe), respectively. The detailed expressions of these
impedances are given below [27]

Ze ≈
RT

2jωFELCsc
ln

[1 + jωρdεε0 exp(2KL)]
1 + jωρdεε0

, K =
F

RT
E, ρd =

RT
F2De

k2O + k2Fe
kO + kFe

(4)

Zion,O ≈
RT

4F2kO(1− α)
(

1 +
√

1 + 4jω
DO K2

) , Zion,M ≈
RT

4F2kFe(1− α)
(

1 +
√

1 + 4jω
DFe K2

) (5)

In these expressions, De, DO, and DFe are the diffusion coefficients of electrons, oxygen
vacancies, and iron cation interstitials, L is the protective film thickness, E is the electric
field strength in the oxide, ε its dielectric constant, α is the part of the potential consumed
as a potential drop at the oxide–coolant interface.

According to the model, the film thickness increases with time following the equation

L(t) = L0 +
1

bO
ln
[
1 + Vm,oxkObOe−bO L0 t

]
, bO =

3αOFE
RT

(6)

Here, LO is the initial film thickness, Vm,ox—its molar volume (44.5 cm3 mol−1 for
Fe3O4), andαO—the transfer coefficient of the oxidation reaction at the alloy–oxide interface.
The rate of dissolution of Fe through the oxide is given by:

dnFe2+(t)
dt

≈ kFe exp
[
−2αFeFE

RT
L(t)

]
(7)
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The integration of the last equation gives the possibility to calculate the corrosion
release rate (i.e., the rate of generation of soluble iron ions) as the alloy thinning rate in
mm/y.

vcorr = 3.153× 108Vm,FekFe exp
[
−2αFeFE

RT
L(t)

]
(8)

Vm,Fe being the atomic volume of Fe (7.2 cm3 mol−1).

4.2. Estimation of Kinetic and Transport Parameters

Using a complex nonlinear regression of the experimental impedance spectra with
respect to the model equations by the Levenberg–Marquardt algorithm, estimates of the
kinetic and transport parameters are obtained. As mentioned already above, the calcu-
lations were calibrated with the oxide thicknesses at the end of exposure obtained by
cathodic reduction in borate buffer at room temperature. The dependences of the main
parameters, layer thickness L, field strength E, interfacial capacitance CO/C, and charge
transfer resistance RO/C at the oxide/coolant interface at the time of exposure, are collected
in Figure 12. The dependences of the remaining parameters on oxidation time were found
to be comparatively insignificant.
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Figure 12. Film thickness (L), field strength (E), interfacial capacitance (CO/C), and charge transfer
resistance (RO/C) depending on exposure time at different temperatures (◦C).

The growth of the oxide follows a direct logarithmic law at all temperatures in accor-
dance with model predictions. The field strength in the oxide decreases with time due
to the accumulation of point defects forming a space charge. It is worth noting that the
decrease of the volume flow rate at 24 h (from 10 to 4 dm3 h−1) has some influence on the
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field strength and the charge transfer resistance, whereas no influence of the subsequent
increase of flow rate at 48 h is observed. This means that the oxide formed in turbulent
conditions is weakly influenced by the hydrodynamic parameters, as inferred already from
the analysis of the experimental impedance spectra.

The temperature dependences of kinetic and transport parameters at the end of
exposure (ca. 72 h) are shown in Arrhenius coordinates in Figure 13.
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The following conclusions can be drawn on the basis of their values:

• The rate constants of electrochemical processes at the alloy–oxide and oxide–coolant
interfaces increase exponentially with temperature, as expected. The values of the
apparent activation energies are 33 ± 2 and 23 ± 2 kJ mol−1 for the reactions at the
inner and outer interfaces, values that are typical for electrochemical processes;

• The diffusion coefficients of oxygen and iron ions also follow an Arrhenius dependence
as a first approximation, the activation energy being on the order of 45 kJ mol−1. That
value is ca. two times lower than the activation energy for magnetite formation in
steam via solid-state diffusion, i.e., the transport of cations and anions most probably
proceeds via grain boundaries in the nanocrystalline oxide;

• The field strength decreases with temperature in accordance with previous calculations
for stainless steel in a borate buffer solution at 150–300 ◦C [28]. This is due to an increase
in the number of defects in the film with the temperature. It is important to mention
that the field strength in the oxide on carbon steel is much lower than that in the oxide
on stainless steel, which can be due to a different composition of the protective layer
(magnetite on carbon steel and chromite FeCr2O4 on type 316 stainless steel);

• Both the capacitance of the space charge layer in the oxide and the capacitance at
the oxide–coolant interface in general decrease with temperature. The space charge
capacitance has relatively high values, which is in accordance with the fact that
magnetite is a degenerated semiconductor with a small depletion layer width. The
interfacial capacitance values (0.5–2.0 mF cm−2) point out to its nature as a pseudo-
capacitance of an intermediate of the film dissolution or water reduction reaction.

From the point of view of recent reviews of flow-assisted corrosion [3–8], the most
interesting dependence is that of the inverse of the charge transfer resistance at the oxide–
coolant interface (RO/C

−1). This parameter passes through a maximum at ca. 160 ◦C in
accordance with operational data for the flow-assisted corrosion rate in steam generators of
both conventional and nuclear power plants. It can be argued that in the studied conditions,
the rate of flow-assisted corrosion is determined by the processes at the interface of oxide–
solution and the maximum is due to the opposing influence of two factors—magnetite
solubility, which decreases with increasing temperature [7], and the dissolution rate of the
oxide, which increases with temperature.

5. Conclusions

The flow-assisted corrosion of carbon steel type 22K in an ammonia-ethanolamine
secondary coolant of a nuclear power plant is studied by in situ EIS in the temperature
interval 100–240 ◦C at 90 bar and inlet volume flow rates 4–10 dm3 h−1. Hydrodynamic
calculations indicate that the developed flow-through cell with an accelerating insert
ensures linear flow rates up to 1 m s−1 and Reynolds numbers above 104, i.e., turbulent
conditions are reached. The influence of flow rate on corrosion potential is explained by a
change of the main thermodynamically stable product with increasing temperature (from
FeOH+

aq in the interval 100–160 ◦C to magnetite at higher temperatures). The effect of
changing the flow rate on electrochemical impedance spectra is relatively insignificant,
which means that in the present experimental conditions, corrosion rates are limited by
interfacial processes and solid-state transport and not by the convective transfer of products
in the coolant.

The results are interpreted with a quantitative kinetic model featuring two parallel
processes—growth and dissolution of oxide with soluble Fe(OH)2 as the end product
and dissolution of Fe through the protective film resulting in soluble iron ions (probably
FeOH+) as the end product. Equations for the fluxes of iron hydroxide are limited by the
dissolution rate of oxide and divalent iron ions are limited by the transport and ejection
of interstitials from the oxide. The model is calibrated by oxide thicknesses at the end of
exposure estimated via galvanostatic cathodic reduction.

The model is fully parameterized by complex nonlinear regression of experimental
impedance spectra to the respective transfer function, allowing for the rate constants of film
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formation and metal oxidation at the alloy–oxide interface, diffusion coefficients of oxygen
vacancies, and interstitial iron cations, as well as field strength in the growing oxide to be
estimated as depending on temperature (100–240 ◦C). On the basis of these calculations,
equations for oxide growth and release rates with time were derived. As a main conclusion,
the soluble iron release rate is proposed to obey the equation

vcorr(t) = 2.271× 109kFe exp
[
−2αFeFE

RT
L(t)

]
i.e., it is determined by both the rate of iron oxidation at the alloy–oxide interface, the field
strength in the oxide, and the thickness of the protective layer. The temperature dependence
of the flow-assisted corrosion rate in the present experimental conditions indicates that it
is expressed by the reciprocal value of the charge transfer resistance at the oxide–coolant
interface. Further research is needed in order to establish quantitative correlations between
iron release rates and hydrodynamic parameters in a range that covers the operational
conditions of steam generators.
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