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Abstract: The tensile creep of Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag) was tested at 150–250 ◦C and
125–350 MPa, and the effect of Ag on the high-temperature creep of Al-Cu-Mg alloys was discussed.
After the addition of Ag, the high-temperature creep performances of the alloy were significantly
improved at 150 ◦C/300 MPa and 200 ◦C/(150 MPa, 175 MPa). Then, constitutive relational models
of the alloy during high-temperature creep were built, and the activation energy was calculated to be
136.65 and 104.06 KJ/mol. Based on the thermal deformation mechanism maps, the high-temperature
creep mechanism of the alloy was predicted. After the addition of Ag, the creep mechanism of the
alloy at 150 ◦C transitioned from lattice diffusion control to grain boundary diffusion control. At
250 ◦C, the mechanism was still controlled by grain boundary slip, but as the stress index increased
and after Ag was added, the alloy fractures lead to the formation of dimples, thus improving the
high-temperature creep performance.

Keywords: Al-Cu-Mg-Ag alloy; high-temperature creep; ageing; constitutive relational model of
creep; deformation mechanism map

1. Introduction

Heat-resistant 2xxx Al alloys (e.g., 2124, 2219 and 2618 alloys) are extensively applied
in aerospace, due to their upper lightness and high heat resistance [1–4]. As the design
requirements for aerospace and aircraft are progressively increased, the required operation
temperature of Al alloys is increased accordingly. For this reason, researchers have devoted
their energies to improving the heat resistance of Al-Cu-Mg Al alloys.

As for the design of material composition, the second phase in the balanced Al-Cu-Mg
alloys mainly consists of θ, S and T phases [5]. The precipitate-phase precipitation series
can be altered by regulating the Cu/Mg ratio of Al-Cu-Mg Al alloys and through ageing
treatment. In other words, at a Cu/Mg ratio of >8, the main intensified phase is the θ’ phase.
At a Cu/Mg ratio of 4–8, the main intensified phases are the θ’ and S’ phases. The main
intensified phase is the S’ phase at a Cu/Mg ratio of 1.5–4. The coherent or semicoherent
precipitate phases formed above can more effectively improve the alloy strength, and
the S’ phase can strengthen the heat resistance of alloys. However, when the operation
temperature is above 150 ◦C, the mechanical properties of the alloys are significantly
weakened, due to the coarsening of intensified phases, which are unable to meet the
requirements for key components in aerospace aircraft. For this reason, Ag is added to
high-Cu/Mg-ratio Al-Cu-Mg alloys, in order to alter the ageing precipitate series. As a
result, the Ω phase—which is consistently below 200 ◦C and does not aggregate or grow
upwards—in minimally sized and dispersed distribution is dispersed, thus improving the
room-temperature or high-temperature strength of the alloys and increasing their thermal
stability [6,7]. As for research on the creep behaviors of aged alloys, the existing findings
on the Ag and Mg distributions of aged Al-Cu-Mg-Ag alloys are listed in Table 1 [8–13]. As
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has previously been reported, Al-Cu-Mg-Ag alloys exhibit outstanding creep performance
at high temperature, and the steady-state creep rate at 125 ◦C/265 MPa is 1.6 × 10−5 h−1,
which is lower than the 2.8 × 10−5 h−1 of Al-Cu-Mg alloys at the same conditions [14–16].
The steady-state creep rate of Al-Cu-Mg alloys at 150 ◦C/265 MPa is 3.9 × 10−4 h−1, which
is higher than the 1.3 × 10−4 h−1 of Al-Cu-Mg-Ag alloys. The creep performances of
Al-Cu-Mg-Ag alloys after different ageing treatments have been studied. The steady-state
creep rate of under-aged alloys (185 ◦C, 2 h) was 3.5 × 10−10 s−1, and that of peak-aged
alloys (185 ◦C, 10 h) was 1.12 × 10−9 s−1. The above results indicate that composition and
ageing treatment critically affect the creep properties of alloys.

Table 1. Distribution of Mg and Ag atoms in Al-Cu-Mg-Ag alloys after ageing [8–13].

Alloy Composition,
wt.% Heat Treatment Condition Ag or Mg

Detected Inside Ω

Ag or Mg Detected at
Ω/Matrix Interface

A1-4Cu-0.3Mg-0.4Ag 200 ◦C, 2 h, 10 h (Ag) (Ag)
A1-6Cu-0.45Mg-0.5Ag-0.5Mn-

0.14Zr Air cool from 500 ◦C No Ag, (Mg)

A1-4Cu-0.3Mg-0.4Ag 170 ◦C, 24 h Mg, Ag No evidence of pref. Seg
A1-4Cu-0.3Mg-0.4Ag 170 ◦C, 24 h Mg, Ag No evidence of pref. Seg

A1-6Cu-0.45Mg-0.5Ag-0.5Mn-
0.14Zr 190 ◦C, 8 h No Ag, Mg

A1-4.3Cu-0.3Mg-0.8Ag 190 ◦C, 2 h, 8 h No Ag, Mg
A1-4Cu-0.5Mg-0.45Ag 250 ◦C, 6 min Mg Ag, Mg
A1-3.9Cu-0.3Mg-0.4Ag 200 ◦C, 1000 h No Ag, Mg
A1-4.3Cu-0.3Mg-0.8Ag 180 ◦C, 2 h, 10 h No Ag, Mg

Generally, the creep behaviors of metal materials under service conditions decide
the service life of alloys [17], but the existing literature on the structural performance
control of Al-Cu-Mg alloys has focused primarily on three aspects [18–26]: (1) effect
of Ag on microstructures of alloys; (2) effect of ageing on room-temperature or high-
temperature mechanical properties of alloys; (3) creep behaviors under deformation and
thermal treatment cooperative control. However, thus far, no researcher has added rare
earth elements, Sc or Ag, to Al-Cu-Mg ternary alloys to prepare peak-aged structures
after ageing treatment, and studied the creep behaviors of this peak-aged alloy system.
According to the analysis of existing research results, it is not sufficient to improve the
high-temperature creep performance of an Al-Cu-Mg alloy by adjusting its composition
alone and combining it with heat treatment methods. If a small amount of Zr, Sc and Ag
are added on the basis of the alloy system, combined with aging treatment to give full reign
to the peak-aging effect, the high-temperature mechanical properties and high-temperature
creep properties of the alloy can be significantly improved. In this study, Al-5Cu-0.8Mg-
0.15Zr-0.2Sc(-0.5Ag) alloy has been prepared, and the microstructures and mechanical
properties of peak-aged alloys after ageing treatment have been obtained. In particular,
the effects of Ag on the creep properties of peak-aged alloys at different temperatures
and stresses were explored. Constitutive relational models of creep were also built, and
the deformation mechanism map involving dislocation quantity was plotted. Together
with microstructure characterization, the high-temperature creep fracture mechanism of
Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag) was uncovered. Thereby, the findings provide a reliable
theoretical basis for the practical aerospace applications of this alloy system.

2. Materials and Methods

High-purity Al, Mg, Sc and Ag of industrial purity, and Al-Cu, Al-Mn and Al-Zr
intermediate alloys were used to prepare Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag) alloy cast
ingots (wt%) via cast-ingot metallurgy. The composition of the alloy was listed in Table 2.
Then, the cast ingots were homogenized at 500 ◦C for 24 h, and then extruded at 430 ◦C
into bars in diameter of 20 mm. The bars were subjected to solution treatment and ageing
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in an SX-4-10-box-type resistance furnace. The solution treatment was conducted at 510 ◦C,
with heat preservation for 2 h followed by water-cooling. The ageing treatment was
conducted at 180 ◦C for 2–10 h, followed by air cooling. The peak-aged Al-5Cu-0.8Mg-
0.2Sc-0.15Zr(-0.5Ag) alloy under extruded deformation was subjected to static tensile creep
experiments under constant load in an SRD-100-microcomputer-controlled electronic creep
tester. The experiment conditions were 150 ◦C/300 MPa, 150 ◦C/325 MPa, 150 ◦C/350 MPa;
200 ◦C/150 MPa, 200 ◦C/175 MPa, 200 ◦C/200 MPa; 250 ◦C/100 MPa, 250 ◦C/125 MPa,
250 ◦C/150 MPa. All static tensile creep experiments were conducted until the specimens
fractured. The corresponding time of fracture upon creep was considered as the creep
fracture life of the alloy. The microstructures of the Al alloys after different thermal
treatments were observed and analyzed under an Axio Observer A1m optical microscope,
and the corrosion reagent was 2.5%HNO3 + 1.5%HCl + 0.5%HF. The microstructures of
the alloys in the creep deformation zone after different thermal treatments were observed
under a JEM-2100 transmission electron microscope (TEM). The electrolytic solution was
30%HNO3 + 70%CH3OH and controlled around −30 ◦C, and the voltage was 21 V. The
fracture morphology of the creep-fractured samples was observed and analyzed with an
S-3400N scanning electron microscope (SEM).

Table 2. Chemical composition of alloys (wt.%).

Alloys Cu Mg Zr Sc Ag Al

Al-Cu-Mg-Sc-Zr 5 0.8 0.15 0.2 0 Bal.
Al-Cu-Mg-Sc-Zr-Ag 5 0.8 0.15 0.2 0.5 Bal.

3. Results
3.1. Effects of Ageing on Mechanical Properties of Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag) Alloy

Figure 1 shows the mechanical performance curves of Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag)
after certain duration of ageing. Clearly, after certain duration of ageing treatment, the room-
temperature tensile strength of Al-5Cu-0.8Mg-0.15Zr-0.2Sc was enhanced after the addition of
Ag (Figure 1a), indicating that Ag can effectively improve the ageing strengthening effect on
alloys. After certain ageing time, the above alloys showed an evident ageing strengthening
effect, which was mainly divided into three stages: under-ageing, peak ageing, and over-
ageing. At the under-ageing stage, the tensile strength was enhanced with the prolonged
ageing time, and peak ageing occurred at 8th h when the tensile strength was maximized to
468.2 MPa (Al-5Cu-0.8Mg-0.15Zr-0.2Sc-0.5Ag) and 455.2 MPa (Al-5Cu-0.8Mg-0.15Zr-0.2Sc). At
the over-ageing stage, the tensile strength was slightly weakened with the prolonged ageing
time. The elongation at the break of the under-aged Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag) was
substantial, but the elongation at the break of the over-aged alloy was significantly weakened
(Figure 1b).
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Figure 2 shows the microstructure of an Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag) alloy in
under-aged (4 h), peak-aged (8 h) and over-aged (10 h) states. It can be seen from the figure
that the precipitate phase exists both inside the grain and at the grain boundaries of the
Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag) alloy in the solution and aging state. At the same aging
time, the grains of the two alloys are equiaxed, and the grain size of Al-5Cu-0.8Mg-0.15Zr-
0.2Sc-0.5Ag alloys is relatively small. The intercept method can be used to calculate the
average grain size under different holding times in Figure 2, which is about 15 µm–22 µm.
The grain size first increases then decreases with the increase in temperature, and the
amount of precipitate phase in the alloy is significantly higher than that of Al-5Cu-0.8Mg-
0.15Zr-0.2Sc alloy. At peak aging (8 h), the precipitate phase quantity of both alloys showed
an increasing trend, and at over-aging (10 h), the precipitate phase quantity of both alloys
showed a decreasing trend. The TEM electron microscopic analysis was performed on the
precipitate phase in Figure 2, as shown in Figure 3.
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for various durations (a,c,e): Al-5Cu-0.8Mg-0.15Zr-0.2Sc at 4, 8, 10 h; (b,d,f) Al-5Cu-0.8Mg-0.15Zr-
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It can be seen from the figure that a large amount of precipitate phase was produced
in the grain of the peak-aged Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag) alloy. According to the
characterization results of Figure 3a,b, the precipitate phase with a rod-like shape is θ phase
(CuAl2). The precipitate phase is an Al3Sc phase, and no S phase (CuMgAl2) was found.
The Al2Cu phase preferentially aggregates at the grain boundaries, which is consistent
with the results obtained in the studies of Al-Cu-Mg-Ag series alloys [24–28]. During the
aging process, in addition to the formation of Al2Cu precipitates inside the grains, there are
also intermittent distributions of precipitates at the grain boundaries, and precipitation-free
zones (PFZ) appear near the grain boundaries, as shown in Figure 3c,d. The addition of
the Ag element slightly increased the size of the precipitate phase at the grain boundaries
of Al-5Cu-0.8Mg-0.15Zr-0.2Sc alloy, and the width of the precipitated band at the grain
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boundary decrease. Therefore, the peak aging state Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag)
alloy with good comprehensive mechanical properties was selected to study the creep
behavior at high temperatures.
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Figure 3. TEM microstructure images of Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag) after 8 h of ageing.
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band on crystal boundary of Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag).

3.2. Effects of Ag on Tensile Creep Performance of Peak-Aged Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag)

Figure 4 demonstrates the tensile creep curves of peak-aged Al-5Cu-0.8Mg-0.2Sc-
0.15Zr(-0.5Ag) at 150, 200, 250 ◦C and external stresses of 300, 325, 350 MPa. After the
addition of Ag, the creep life of the alloys was prolonged (Figure 4a) and in particular,
the creep life was significantly extended at the external stress of 300 or 325 MPa. This
was because after Ag was added into Al-5Cu-0.8Mg-0.2Sc-0.15Zr, the content of the Ω
phase (Al2Cu) rose in the peak ageing stage achieved after long-time ageing, and the
alloy showed high thermal stability. The second-phase strengthening effect was significant
during the creep, but hindered dislocation motion, forming a dislocation pile-up cluster
that prevented creep. As a result, the creep speed was decelerated, and the stable creep
stage was extended, thus prolonging the creep life of the alloys. When the external stress
was increased to 350 MPa, which was large, the dislocation motion was aggravated, and the
dislocations were easily removed from the constraint by the second phase. As a result, the
creep rate gradually increased and the steady-state creep stage was significantly shortened,
so the creep life was not significantly prolonged. Figure 4b demonstrates the tensile creep
curves of peak-aged Al-5Cu-0.8Mg-0.2Sc-0.15Zr(-0.5Ag) at 200 ◦C and different external
stresses. Clearly, the creep life was significantly prolonged after the addition of Ag, and the
creep life of Al-5Cu-0.8Mg-0.2Sc-0.15Zr-0.5Ag at 200 ◦C/200MPa was longer than that of
Al-5Cu-0.8Mg-0.2Sc-0.15Zr at 200 ◦C/150 MPa. This was because with the temperature
rise, the atom and cavity diffusion speeds were accelerated, which facilitated dislocation
motion and creep deformation. With the presence of Ag, the peak-aged alloys separated
out abundant Ω phase, which pinned and inhibited the dislocations. At the early creep
stage, the dislocation motion was intense, and the Ω phase hindered dislocation motion,
thus decelerating creep speed. At the steady-state creep stage, the Ω phase grew upwards,
but this process depended on the diffusion and redistribution of Cu, Mg and Ag. At
200 ◦C, however, the above atom diffusion and redistribution were limited, so the Ω phase
growing speed was slow, which thereby pinned the dislocation and crystal boundaries
and inhibited the increase in steady-state creep speed. Figure 4c shows the tensile creep
curves of peak-aged Al-5Cu-0.8Mg-0.2Sc-0.15Zr(-0.5Ag) at 250 ◦C and external stresses
of 100, 125 and 150 MPa. Clearly, the presence of Ag prolonged the steady-state creep
stage and extended the creep life of the alloys to an extent. In comparison with 150 or



Crystals 2023, 13, 1096 6 of 14

200 ◦C, however, the creep life of alloys was significantly shortened after the addition of
Ag. The reason for this was that although the newly added Ag formed abundant thermally
stable Ω phase, the Ω phase grew upwards after the temperature rise, so the second phase
intensifying was weakened. Moreover, dislocation motion was intensified. These changes
contributed to creep. Hence, at this temperature, the effect of Ag on prolonging the creep
life of alloys was limited.
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The high-temperature tensile creep curves of peak-aged Al-5Cu-0.8Mg-0.2Sc-
0.15Zr(-0.5Ag) under different conditions at the steady-state creep stage were linearly
fitted, and the steady-state creep speeds can be calculated thereby (Table 3).

Table 3. Steady-state creep rates of peak-aged Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag) under the same
conditions.

Al-5Cu-0.8Mg-0.15Zr-0.2Sc

Temperatures/◦C Stress/MPa
300 325 350

150 1.85 × 10−8 s−1 4.61 × 10−8 s−1 8.31 × 10−8 s−1

Temperatures/◦C Stress/MPa
150 175 200

200 4.85 × 10−8 s−1 9.89 × 10−8 s−1 1.67 × 10−7 s−1

Temperatures/◦C Stress/MPa
100 100 100

250 1.60 × 10−6 s−1 3.63 × 10−6 s−1 6.18 × 10−6 s−1

Al-5Cu-0.8Mg-0.15Zr-0.2Sc-0.5Ag

Temperatures/◦C Stress/MPa
300 325 350

150 2.52 × 10−8 s−1 6.19 × 10−8 s−1 1.59 × 10−7 s−1

Temperatures/◦C Stress/MPa
150 175 200

200 2.16 × 10−8 s−1 2.87 × 10−8 s−1 1.24 × 10−7 s−1

Temperatures/◦C Stress/MPa
100 100 100

250 6.39 × 10−7 s−1 2.22 × 10−6 s−1 1.72 × 10−6 s−1

At the same temperature, the steady-state creep speed of Al-5Cu-0.8Mg-0.15Zr-
0.2Sc(-0.5Ag) rose in tandem with external stress, but that of the alloys increased
alongside the creep temperature and the drop of external stress, and the alloys were
very sensitive to temperature (Table 2). The creep properties of alloys before and after
the addition of 0.5 Ag were compared. Clearly, the steady-state creep speed at 150 ◦C
increased after the addition of Ag, but the increasing rate was significantly correlated
with the increase in external stress. It was apparent that the creep properties of the
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alloys with added Ag were weakened by the decrease in external stress at 150 ◦C.
The steady-state creep rate decreased at both 200 and 250 ◦C, but did not change
significantly with the increment of applied stress. It may be that the addition of
0.5 Ag enhances the high-temperature creep properties of Al-5Cu-0.8Mg-0.2Sc-0.15Zr
to an extent.

In all, Ag substantially prolonged the tensile creep life of peak-aged Al-5Cu-0.8Mg-
0.2Sc-0.15Zr(-0.5Ag), and this effect was significant under low-temperature and high-stress
conditions (150 ◦C/300 MPa), as well as medium-temperature and low-stress conditions
(200 ◦C/(150MPa, 175 MPa)).

3.3. Constitutive Relational Model of Alloy Creep

The peak-aged Al-5Cu-0.8Mg-0.2Sc-0.15Zr(-0.5Ag) had a substantial high-temperature
creep resistance (Figure 4). Reportedly, steady-state creep speed is associated with creep
temperature and stress [29]:

.
ε = Aσnexp(−Q/RT), (1)

where
.
ε is steady-state creep rate, T is creep temperature, σ is stress, A is constant, n is stress

index, Q is activation energy, and R is mol gas constant. Equation (1) is mathematically
transformed:

ln
.
ε = ln A + nlnσ− Q

R
· 1
T

(2)

Based on the above equation, when the stress is invariable, the slope of the and 1/T
curve is −Q/R. When the temperature is invariable, the slope on the curve of against lnσ
is n and the intercept is lnA − (Q/(RT)). On this basis, the stress index n and constant
A can be determined. Thus, the data on the high-temperature creep curve of peak-aged
Al-5Cu-0.8Mg-0.2Sc-0.15Zr under different conditions in Figure 4 were chosen and fitted to
obtain ln

.
ε − 1/T and −lnσ curves (Figure 5). Furthermore, we determined that n = 5.97,

A = 1.89 × 10−5, and Q = 136.65 kJ/mol.
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With the above method, we determined that n = 4.81, A = 4.27 × 10−5 and
Q = 104.06 kJ/mol during the creep of Al-5Cu-0.8Mg-0.2Sc-0.15Zr-0.5Ag. Thus, at
the steady-state creep stage of Al-5Cu-0.8Mg-0.2Sc-0.15Zr(-0.5Ag) at 150–250 ◦C, and
100–350 MPa, the relationships of creep speed with temperature and external stress
can be obtained:

Constitutive relational model of Al-5Cu-0.8Mg-0.2Sc-0.15Zr:

έ = 1.89 × 10−5 σ5.97 exp(−136,650/RT), (3)
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Constitutive relational model of Al-5Cu-0.8Mg-0.2Sc-0.15Zr-0.5Ag:

έ = 4.27 × 10−5 σ4.81 exp(−104,060/RT), (4)

3.4. Alloy Creep Life Equation and Prediction

Figure 6 shows the double-logarithm curves of steady-state creep rate and creep
fracture life of Al-5Cu-0.8Mg-0.2Sc-0.15Zr(-0.5Ag) at 150, 200 and 250 ◦C. Clearly, the
double-logarithm curves of creep fracture time and steady-state creep speed are linear, so
the creep life meets the Monkman-Grant relation [30]:( .

ε
)βtf = CMG, (5)

where
.
ε is steady-state creep speed, tf is time of fracture, CMG is constant (related to the

material and testing temperature), β is the slope of the double-logarithm curve between
creep life and steady-state creep speed. Then, the β and CMG were calculated under
different creep conditions (Table 4). Based on the Monkman–Grant relational models, the
creep life of Al-5Cu-0.8Mg-0.2Sc-0.15Zr(-0.5Ag) was predicted and compared with the
testing results (Figure 7).
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Table 4. The β, and CMG of Al-5Cu-0.8Mg-0.2Sc-0.15Zr(-0.5Ag) under different conditions.

Alloy Temperature/◦C β CMG

Al-5Cu-0.8Mg-0.2Sc-0.15Zr
150 0.61 1.34 × 10−2

200 0.6 1.29 × 10−2

250 0.62 1.57 × 10−2

Al-5Cu-0.8Mg-0.2Sc-0.15Zr-0.5Ag
150 0.88 1.96 × 10−2

200 0.77 1.88 × 10−2

250 0.8 1.73 × 10−2
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The Monkman–Grant models can accurately predict the creep life of Al-5Cu-0.8Mg-
0.2Sc-0.15Zr(-0.5Ag) at 150, 200 or 250 ◦C and under various external stresses (Figure 7).
The maximum and minimum relative errors of the predicted results are 8.33% and 0.90%,
respectively, indicating that the creep life models are applicable.

4. Discussion

Deformation mechanism maps, also called the phase maps of metal hot deformation,
are theoretically based on the constitutive relational models based on diffusion control, the
constitutive relational models based on grain boundary slide, and the constitutive relational
models based on dislocation slide control. The high-temperature deformation mechanisms
of metal materials all obey a velocity control equation:

.
εi = Ai

(
b
di

)p
· D

K · T · b2 ·
(σi

E

)n
, (6)

where
.
εi is the steady-state strain rate; σi is stress; E is Young’s modulus; di is grain size, b

is the Burgers vector; k is Boltzmann’s constant; D is the diffusion coefficient (including the
grain boundary diffusion coefficient Dgb and the lattice diffusion coefficient DL); and Ai, n
and P are material constants. The main parameters used in the deformation mechanism
map plotting are listed in Table 5. Constitutive relational models 1©– 5©, 2©– 5©, 5©– 6©, 6©– 7©,
6©– 2©, 2©– 3©, 2©– 1©, 2©– 4©, 6©– 3©, 7©– 3©, 1©– 4© and 3©– 4© in Table 4 were all solved, and

the coordinates (σ/E,d/b)i of the key points in the deformation mechanism maps were
determined. The internal dislocation root count of single crystal grains can be computed as
follows [31]:

ni = 2[(1− v)πdiτi]/(Gb), (7)

where ni is the number of internal dislocation roots in the crystal grains, v is Poisson’s ratio
and τi is the shear stress (MPa), τi = 0.5σi. The ni was solved and marked at the intersec-
tion point on each deformation mechanism map. The above constitutive equations were
solved. Then, RWS deformation mechanism maps were plotted on a plotting software with
modulus compensation stress as X-axis, and grain size with Burgers vector compensation
as Y-axis (Figure 8).
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Figure 8. Steady-state controlling deformation mechanism maps for aluminum alloy at different
temperatures (a) 150 ◦C; (b) 250 ◦C.

The experimental data of creep of Al-5Cu-0.8Mg-0.2Sc-0.15Zr(-0.5Ag) under various
conditions were analyzed to determine the grain size with Burgers vector compensation
and to determine the stress with modulus compensation under different temperatures and
different strain rates (Table 6).
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Table 5. The main parameters of the deformation mechanism map for Al-5Cu-0.8Mg-0.2Sc-
0.15Zr(-0.5Ag).

Creep Process Equation

� Diffusional creep

1© Coble [32] .
ε = 50

(
Dgbb

/
d3
)(

Eb3
/

kT
)
(σ/E)

� Grain boundary sliding(GBS)

2© Lattice-diffusion controlled [33] .
ε = 6.4× 109

(
DL
/

d2
)
(σ/E)2

3© Pipe-diffusion controlled [34] .
ε = 3.2× 1011α

(
Dp
/

d2
)
(σ/E)4

4© Grain boundary diffusion controlled [35] .
ε = 5.6× 108

(
Dgbb

/
d3
)
(σ/E)2

� Slip creep

5© Harper–Dorn [36] .
ε = 1.7× 10−11

(
DL
/

b2
)(

Eb3
/

kT
)
(σ/E)

6© Lattice-diffusion controlled (dislocation climb creep) [37] .
ε = 1011

(
DL
/

b2
)
(σ/E)5

7© Pipe-diffusion controlled (dislocation climb creep) [38] .
ε = 5× 1012

(
Dp
/

b2
)
(σ/E)7

The material constants used for Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag) alloy

γ = 0.33 E = 7.2 × 105 MPa

b = 0.255 nm [39]
DW,L = ∑

i
XiD∗i,L = 1.58× 10−4 exp

(
−278,300

RT

)
m2/s

DW,gb = Dp = ∑
i

XiD∗i,gb = 1.38× 10−2 exp
(
−178,800

RT

)
m2/s

k = 1.38 × 10−23 J/K [36–38]

Table 6. Experimentally calculated data on creep of Al-5Cu-0.8Mg-0.2Sc-0.15Zr(-0.5Ag).

Alloy Temperature/◦C

Normalized Grain
Size with Burgers

Vector Compensation
(d/b) × 10−7

Normalized Flow Stress
of Modulus

Compensation (σ/E) × 104

Strain Rate
έ/(10−8·s−1)

Al-5Cu-0.8Mg-0.2Sc-
0.15Zr 150 6.7~9.7 11.2~43.9 1.85~618

Al-5Cu-0.8Mg-0.2Sc-
0.15Zr 250 8.9~10.9 2.6~17.8 1.85~618

Al-5Cu-0.8Mg-0.2Sc-
0.15Zr-0.5Ag 150 9.7~12.7 13.2~49.9 1.85~618

Al-5Cu-0.8Mg-0.2Sc-
0.15Zr-0.5Ag 250 10.4~13.9 4.69~19.0 1.85~618

The deformation mechanism of the creep of 5Cu-0.8Mg-0.2Sc-0.15Zr(-0.5Ag) was
deduced from Table 5 and Figure 8. At the deformation temperature of 150 ◦C, the
high-temperature creep of Al-5Cu-0.8Mg-0.2Sc-0.15Zr fell within the dislocation polygon
(137)(224)(64)(13)(3)(3), indicating that the creep mechanism of this alloy was a dislocation
glide mechanism with a stress index of 4 and was controlled by grain boundary slip. At
the deformation temperature of 250 ◦C, during deformation, this alloy fell within the
dislocation polygon (2)(10)(2)(0), indicating that the creep mechanism at this temperature
was a grain boundary slip system with a stress index of 1 and controlled by diffusion. At
the deformation temperature of 150 ◦C, the high-temperature creep of Al-5Cu-0.8Mg-0.2Sc-
0.15Zr-0.5Ag fell within the dislocation polygon (9)(87)(137)(3)(0), indicating that the creep
mechanism of this alloy was a dislocation glide mechanism with a stress index of 2 and
controlled by grain boundary sliding. At the deformation temperature of 250 ◦C, during
deformation, this alloy fell within the dislocation polygon (10)(12)(23)(259)(69), indicating
that the creep mechanism at this temperature was a grain boundary slip mechanism with a
stress index of 4 and controlled by diffusion. It was observed that after the addition of Ag,
the creep mechanism at 150 ◦C transitioned from lattice diffusion control to grain boundary
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diffusion control, but at 250 ◦C, the mechanism was controlled by grain boundary slip, and
the stress index was observed to increase. It is apparent that the addition of Ag enhances
the high-temperature creep properties of Al-5Cu-0.8Mg-0.2Sc-0.15Zr.

Figure 9 shows the creep fracture morphology of Al-5Cu-0.8Mg-0.2Sc-0.15Zr at 150 ◦C
and at stresses of 300 or 350 MPa. The creep fractures of the alloy at 150 ◦C/300 MPa
contained certain amounts of dimples and torn edges as well as a few shallow pores
on the crystal boundary (Figure 9a,b). As the stress increased further to 350 MPa, the
number of cavities at the crystal boundary of creep fractures also increased significantly,
and the pores were aggregated. This was because, during creeping of aged alloys, as the
stress was increased, the dislocations further reduced the constraint of the second-phase
particles, so that the crystal boundaries were weakened and slip and torsion occurred
more easily, leading to the formation of hollows. As a result, the number of hollows was
increased. At the same time, as the creep proceeded, the small hollows gradually grew
upwards, aggregated and expanded to form long strips and even fractures. Nevertheless,
the fractures of this alloy under the above creep conditions were clearly ductile.
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Figure 9. Creep fracture morphology of Al-5Cu-0.8Mg-0.2Sc-0.15Zr under different stresses (150 ◦C):
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Figure 10 shows the creep fracture morphology of Al-5Cu-0.8Mg-0.2Sc-0.15Zr-0.5Ag
at 150 ◦C and under stress conditions of either 300 or 350 MPa. Clearly, the creep fractures
of the alloy with added 0.5Ag were still ductile, and the number of dimples increased.
When the external stress was at 350 MPa, the speed of pore aggregation, growth and
expansion was reduced, which inhibited the expansion of holes near crystal boundaries. It
was observed that the addition of 0.5Ag enhanced the creep property of alloys.
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Figure 11 shows the creep fracture morphology of Al-5Cu-0.8Mg-0.2Sc-0.15Zr(-0.5Ag)
at 200 ◦C and under stress conditions of 150 MPa. Clearly, after the addition of 0.5Ag,
dimples increased notably in both number and depth, and were found to coexist with torn
edges. This was because more precipitate phase was formed after the addition of Ag, which
caused the dimples to form and be distributed evenly. Hence, the creep life of Al-5Cu-
0.8Mg-0.2Sc-0.15Zr-0.5Ag was significantly prolonged under the above creep conditions.
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5. Conclusions

The peak-aged Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag) alloy, which had outstanding com-
prehensive mechanical properties, was tested under different conditions in terms of its
high-temperature creep performance.

(1) Ag prolonged the high-temperature creep life of peak-aged Al-5Cu-0.8Mg-0.2Sc-
0.15Zr, and this effect was significant under conditions of 150 ◦C/300 MPa or 200 ◦C/(150 MPa,
175 MPa).

(2) The stress indices of peak-aged Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag) during high-
temperature tensile creep were 5.97 and 4.81, and the activation energy was 136.65 and
104.06 KJ/mol. Accordingly, constitutive relational models between creep speed and creep
temperature or stress were built:

Constitutive relational model of Al-5Cu-0.8Mg-0.2Sc-0.15Zr:

έ = 1.89 × 10−5 σ5.97 exp(−136,650/RT), (8)

Constitutive relational model of Al-5Cu-0.8Mg-0.2Sc-0.15Zr-0.5Ag:

έ = 4.27 × 10−5 σ4.81 exp(−104,060/RT), (9)

(3) Monkman–Grant creep life models of Al-5Cu-0.8Mg-0.2Sc-0.15Zr(-0.5Ag) were
built and utilized in order to predict the creep life of the alloys at temperatures of 150,
200 and 250 ◦C, and under different stresses. The maximum and minimum relative errors
of the predicted results are 8.33% and 0.90%, respectively, indicating that the models
are applicable.

(4) RWS deformation mechanism maps involving dislocation quantity were plotted,
and the high-temperature creep mechanism of Al-5Cu-0.8Mg-0.15Zr-0.2Sc(-0.5Ag) was
predicted. At 150 ◦C, the creep mechanism, after the addition of Ag, transitioned from
lattice diffusion control to grain boundary diffusion control, but at 250 ◦C, the mechanism
was still controlled by grain boundary slip, and the stress index was observed to increase.
After Ag was added, dimples were formed upon fracturing and tended to be evenly
distributed, which effectively enhanced the high-temperature creep properties of the alloys.
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