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Abstract: In this study, we present an intrinsic device parameter method based on a single device for
disordered polymer field-effect transistors (PFETs). Charges in disordered polymer semiconductors
transport through localized states via thermally activated hopping, of which field-effect mobility
and contact resistance are gate-bias-dependent. By considering the parameters expressed as gate
bias-dependent power laws, dividing drain current with transconductance (Ids/gm method) leads to
the current–voltage relation decoupled from the contact effect. Following this derived relationship,
the intrinsic field-effect mobility and the contact resistance of the PFETs are extracted and found to be
consistent with those using the four-probe method. Thus, we can state that the proposed method
offers practical benefits for extracting the intrinsic device parameters of disordered PFETs in terms of
using a single transfer characteristic of the devices.
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1. Introduction

In recent decades, solution-processable polymer field-effect transistors (PFETs)
have received considerable attention due to their massive potential for applications in
flexible displays, logic circuits, and wearable devices [1–4]. Especially, donor–acceptor
(D–A)-type semiconducting copolymers containing donor or acceptor moieties such as
diketopyrrolopyrrole (DPP), isoindigo, naphthalenediimides (NDI), benzothiadiazole,
and indacenodithiophene (IDT), exhibit remarkable field-effect mobilities exceeding
10 cm2 V−1 s−1 [5–9]. However, the inevitable contact resistance in transistors generally
results in under or overestimating field-effect mobility [10–12]. Thus, the device param-
eters should be carefully determined. To extract device parameters decoupled from the
contact effects, several approaches have been suggested, such as measuring potential
distribution in the channel by placing the voltage probes (i.e., four-probe method) [13],
extracting the channel conductance by varying the channel length (i.e., transmission
line measurement or transfer length measurement) [14], and eliminating contact effects
using the drain current and transconductance (i.e., Y-function method) [15]. While there
is progress, they often require specific channel geometries, rendering their general ap-
plication to PFETs. In the case of the differential method [16,17], TFTs that have different
channel lengths should be used for the extraction. However, if we use multiple devices
for the parameter extraction, the deduced results can be erroneous due to uniformity is-
sues. In addition, the Y-function method could be used for the extraction using a single
device, but the results could be carefully examined for disordered semiconductors [18].
The Y-function method is established for Si-based transistors, of which the parameters
are considered to be gate-bias independent. However, due to the localized states, the pa-
rameters of the disordered semiconductor-based PFETs are gate-bias dependent [19,20].
For these reasons, we regard simple and reliable intrinsic parameter extraction methods
using a single device are required for disordered semiconductor-based PFETs.

Here, we explore an intrinsic device parameter method for disordered polymer field-
effect transistors (PFETs). By considering the field-effect mobility and contact resistance as
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the gate bias-dependent power-laws [21,22], the current-voltage relation decoupled from
the contact effect is derived by dividing the drain current with transconductance (Ids/gm
method). With this relation, the contact resistance and intrinsic mobility are successfully
extracted using a single device, and the parameters are found to be consistent with those
by the four-probe method. Hence, we regard our proposed method as a simple and reliable
extraction method using a single device for disordered PFETs.

2. Materials and Methods

Bottom-gate, top-contact (BGTC) polymer field-effect transistors (PFETs) were fab-
ricated, as shown in Figure 1a. A chemically cleaned 300 nm-thick p+-Si/SiO2 wafer
was used as the substrate, and hexamethyldisilazane (HMDS) was spin-casted and ther-
mally annealed at 150 ◦C for 60 min in a nitrogen atmosphere to minimize the interface
traps [23]. Poly [2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)
thieno [3,2-b]thiophene)], (DPP-DTT, Mw (~75,000) with a PDI of 2.5), and poly(2,5-bis(3-
tetradecylthiophen-2-yl)thieno [3,2-b]thiophene) (PBTTT, Mw (~50,000) with a PDI of 3.0)
were purchased from 1-Material, Inc and Sigma-Aldrich, respectively. Then, polymer
semiconducting materials were dissolved in chloroform at concentrations of 10 mg/mL,
spin-casted, and subsequently thermally annealed at 150 ◦C for 60 min in nitrogen. Next,
50 nm thick Au source and drain electrodes were deposited by thermal evaporation and
patterned using a shadow mask. For a passivation layer, poly (methyl methacrylate) PMMA
was dissolved in n-butyl acetate at a concentration of 80 mg/mL, spin-casted, and cured
at 80 ◦C for 60 min. Finally, the layers were patterned by reactive etching with Ar gas
to mitigate the side-current effects on the devices [24]. The channel width and length of
PFETs were 1000 and 360 µm, respectively. The surface morphologies of the films were
scanned with an atomic force microscope (XE100, Park Systems, Suwon, Korea). The
geometric capacitance of the dielectric was measured to be 10.9 nF cm−2 at 1 kHz using an
LCR meter (HP4284A, Agilent Technologies, Santa Clara, CA, USA). The current-voltage
(I–V) characteristics of the transistors were investigated with a semiconductor parameter
analyzer (Model HP4155C, Agilent Technologies). The extrinsic field-effect mobility of the
PFETs in the linear regime was extracted using Equation (1).

µlin =
1

CiVds

L
W

∂Ids
∂Vgs

(1)

where Ids is the drain current, Vgs is the gate voltage, Ci is the geometric dielectric capaci-
tance, Vds is the drain voltage, and L and W are the channel length and width, respectively.
In addition, by measuring the potentials in the channel with the voltage probes (V1 and V2),
the intrinsic field-effect mobility (µint) and contact resistance (Rc) were estimated, which
are given by Equations (2) and (3) [13,18]:

Vch =
(V2 − V1)

(L2 − L1)
(L), Vc = Vds − Vch (2)

µint =
1

CiVch

L
W

∂Ids
∂Vgs

, Rc =
Vc

Ids
(3)

where Vds, V1, and V2 are the drain voltage and measured voltages with potential probes,
and L1, L2, and L are the distance from the source electrode to the first, second, and drain
electrodes, respectively. In this study, the voltage probing electrodes (V1 and V2) were
placed at 120 and 240 µm in the channel.
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Figure 1. (a) Optical microscopy image of the polymer field-effect transistors (PFETs) with a four-
point probe configuration. (b) Transfer characteristics (Ids vs. Vgs) of PFETs. Inset: chemical structures
of the PBTTT. (c) Output characteristics (Ids vs. Vgs) of the PBTTT-based PFETs.

3. Results

Figure 1b displays the representative transfer characteristics (Ids vs. Vgs) of the PBTTT-
based PFETs; it exhibits p-type characteristics, of which the field-effect mobility (µext) from
the transconductance was estimated to be ~0.009 cm2 V−1 s−1 along with a high on/off
ratio (>103). The gate leakage current level was maintained as low as 10−10 A. Figure 1c
presents the corresponding output characteristics (Ids vs. Vds) of the PFETs. Then, for
extracting the intrinsic referential parameters of the PFETs, we investigated the transfer
characteristics with the four-probe method. Please see the material and methods section for
more information on the four-probe method. Figure 2a shows the measured channel and
contact potentials as a function of the gate bias at the drain bias of –1, −3, and −5 V. As seen
in Figure 2b,c, regardless of the applied drain bias, the contact resistance (Rc) was gradually
decreased to be ~8.9 × 105 Ω cm at Vgs= −40 V, and the intrinsic field-effect mobility (µint)
was estimated to be ~0.010 cm2 V−1. Thus, it is highly believed that the gate-bias-dependent
intrinsic device parameters are precisely extracted by the four-probe method. However,
placing the voltage–probing electrodes in specifically designed electrode geometries, such
as interdigitated or circle-type source-drain electrodes, can be challenging. In addition,
to our best knowledge, device parameter extraction methods using a single device for
disordered semiconductors are scarcely reported [16]. Hence, we have tried to establish
reliable extracting methods for disordered semiconductor-based thin-film transistors using
a single transfer characteristic.
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As reported elsewhere, charges in disordered semiconductors transport through
localized states via thermally activated hopping, of which the intrinsic field-effect mobility
(µint) and the contact resistance (Rc) can be expressed as gate bias-dependent power laws
in Equation (4) [25–28]. In addition, as depicted in Figure 2a, the voltage drop (IdsRc) is
considered almost independent of the gate bias, which leads to the condition α + β + 1 = 0.
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Hence, the drain current (Ids) and transconductance (gm) can be expressed as gate bias-
dependent power laws as in Equations (5) and (6):

µint = µint,0
(
Vgs − Vth

)α, Rc = R0
(
Vgs − Vth

)−(β) (4)

Ids =
µint,0Ci

W
L
(
Vgs − Vth

)α+1Vds

1 + µint,0R0Ci
W
L

(5)

gm =
∂Ids
∂Vgs

=
(α + 1)µint,0Ci

W
L
(
Vgs − Vth

)αVds

1 + µint,0R0Ci
W
L

(6)

where µint,0, R0, and α are the coefficients and the exponents of the power law of the
intrinsic field-effect mobility and the contact resistance, respectively. Then, the coefficient
of α and the threshold voltage (Vth) can be estimated by dividing the drain current with
the transconductance (Ids/gm) as in Equation (7),

Ids
gm

=

(
Vgs − Vth

)
(α + 1)

(7)

Moreover, the coefficient of contact resistance (R0) can be given by Equations (8) and (9), of
which the drain current (Ids) can be described in terms of extrinsic and intrinsic mobility.

Ids =
µint,0Ci

W
L
(
Vgs − Vth

)α+1Vd

1 + µint,0R0Ci
W
L

= µextCi
W
L
(
Vgs − Vth

)
Vds (8)

R0 =
(
(1+α)
µext,0

− 1
µint,0

)
L

CiW
f or Vgs − Vth = 1 V

≈
(

(α)
µext,0

)
L

CiW
i f µint,0 ≈ µext,0

(9)

where µext,0 is the coefficient of the extrinsic field-effect mobility. After deducing the
coefficient contact resistance (R0), the contact-effect removed drain current (Ids,int) can be
determined by removing the contact resistance from the total resistance, and the resulting
intrinsic mobility can be extracted as in Equations (10) and (11), respectively.

Ids, int =
Vds
Rch

=
Vds

Vds
Ids

− R0
(
Vgs − Vt

)−(α+1)
(10)

µint =
1

CiVD

L
W

∂Ids,int

∂Vgs
(11)

Figure 3a shows the extraction plot of Ids/gm for PBTTT-based PFETs. The coefficient
of α and the threshold voltage (Vth) is extracted to be 0.51 and 9.41 V, 0.56 and 11.33 V, and
0.59 and 11.82 V, at the drain biases of −1, −3, and −5 V, respectively. In addition, the
coefficient contact resistance (R0) was extracted to be 0.85, 2.55, and 2.30 × 109 Ω cm at
the drain biases, respectively. Then, the contact resistances and intrinsic mobilities were
estimated as in Figure 3b, 3c, and 3d, respectively. Although the deduced coefficients of α
and the threshold voltages (Vth) are slightly different at the given biases, the consequential
contact resistances (Rc) and the intrinsic field-effect mobilities (µint) are deduced to be
almost the same values; Rc was gradually decreased to be ~3.2 × 106 Ω cm at Vgs= −40 V,
and µint was extracted to be ~0.015 cm2 V−1, which comparable with those obtained by
the four-probe method. Please note that when we tried to extract parameters using the
Y-function method for the PFETs, as depicted in Figure S1, only gate-bias-independent
parameters were estimated, of which the field-effect mobility was slightly overestimated
to be 0.017 cm2 V−1, and the contact resistance was underestimated to be 2.1 × 106 Ω cm,
respectively. As estimated by the 4-probe method and the Ids/gm method, the parameters
should be gate-dependent. Thus, we strongly believe that the proposed extraction method
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of the Ids/gm method is simple and promising for extracting the intrinsic parameters using
a single device. Please note that the intrinsic mobility from the 4-probe method and the
extrinsic mobility of the HMDS-treated PBTTT TFTs (at Vgs − Vth = 1 V) was almost the
same as extracted to be 0.0012 and 0.0013 cm2 V−1 s−1, respectively. Thus, we tried to
derive the relations based on the assumption in Equation (9) (µint,0 ≈ µext,0). However, it
is still unconfirmed whether the proposed extraction method is reliable for other PFETs.
Hence, to ensure that the Ids/gm method is applicable in more general, we have fabricated
PFETs using another organic semiconductor of DPP-DTT, and the device parameters of the
PFETs are analyzed in the same manner.
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Figure 4a shows the representative transfer characteristics of the DPP-DTT PFETs.
It displays p-type characteristics, and the extrinsic field-effect mobility is estimated to
be ~0.021 cm2 V−1 s−1 with a high on/off ratio (>104). Figure 4c displays the extraction
plot of Ids/gm for DPP-DTT PFETs, of which the coefficient of α and the threshold voltage
(Vth) is extracted to be 0.68 and −5.91 V, respectively. Remarkably, although the DPP-
DTT PFETs show Schottky characteristics in output characteristics of Figure 4b, intrinsic
mobility, and contact resistance are estimated to be almost the same as ~0.029 cm2 V−1

and ~1.5 × 106 Ω cm at Vgs= −40 V with those by the 4-probe method in Figure 4d. This
indicates the proposed method can effectively rule out the contact effect from the drain
current. Furthermore, to gain insights into the device analyses using the method, we
have fabricated octadecyltrichlorosilane (OTS)-treated DPP-DTT PFETs, and the device
parameters are compared with those of the HMDS-treated DPP-DTT PFETs. Figure 5a
shows the representative transfer characteristics of the PFETs. Figure 5b,c exhibit the
estimated intrinsic motilities and contact resistances of the PFETs by the Ids/gm method,
respectively. Noteworthy, compared to HMDS-treated PFETs, OTS-treated PFETs exhibit
enhanced p-type characteristics. The hole current at Vgs = −40 V increases over ten times
(from ~10−7 to ~10−6 A), and the threshold voltage of the PFETs clearly shifts from −5.91 to
1.35 V. As a result; the field-effect mobility massively improves up to 0.351 cm2 V−1 s−1. In
addition, the mobility of the OTS-treated PFETs increases in the given applied bias regime,
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which can be expressed with the power law. However, the field-effect mobility of the
HMDS-treated PFETs increases up to the gate bias of −15 V, but slightly decreases beyond
the voltage, probably due to charge scattering in the channel [29–31]. We posit that these
enhancements of the PFETs would be mainly attributed to the improved coplanarity and
interchain connectivity of the donor–acceptor (D–A)-type conjugated copolymers by the
surface treatment with OTS. As seen in Figure 5c,d, nano-fibril microstructures with large
grains can definitely be found in OTS-treated DPP-DTT films. The root mean square (RMS)
surface roughness of OTS-treated DPP-DTT films was measured to be 0.87 nm, while that
of HMDS-treated DPP-DTT films was 0.62 nm. Hydrophobic characteristics of the OTS, as
in Figure S2, would allow the conjugated copolymers to interact and aggregate strongly
with each other, leading to enhanced intermolecular interactions. As a result, the charge
scattering is minimized in the PFETs, enhancing the field-effect mobility. Moreover, the
contact resistance of the OTS-treated PFETs was also significantly decreased to ~105 Ω cm,
which compared to that of the HMDS-treated PFETs of ~106 Ω cm. The enhanced ordering
of the polymers leads to improved charge carrier injection from the source electrode to the
π-electron orbitals of the polymers, decreasing the contact resistance of the PFETs [32,33].
The extraction plot and the output characteristics (Ids vs. Vds) of the OTS-treated DPP-DTT
PFETs are depicted in Figure S3. The observed device performances of the PFETs appear
primitive, and parameter estimations using other polymer semiconductors, such as n-type
or ambipolar semiconducting polymers, would be required to prove the method is applica-
ble in more general. In addition, probably due to the charge scattering, the deduced contact
resistance and mobility by the Ids/gm method are slightly under and overestimated than
those by the 4-probe method. As the gate bias increases, the discrepancy between the ob-
served mobility and the power-law modeled field-effect mobility (µint = µint,0(Vgs − Vth)α)
would increase and result in the underestimation of the coefficient of α. As a result, the
deduced contact resistance and mobility could be slightly under and overestimated than
those by the 4-probe method. For PBTTT PFETs, the channel scattering effect could be
greater than those in D–A type semiconducting copolymers of DPP-DTT, resulting in more
deviated parameters. However, the estimated contact resistances by both methods are in
order, and the differences in the mobilities are in the suborder of 10−3 cm2 V−1 s−1. Thus,
we regard the parameter extraction method of the Ids/gm method as reliable. The extracted
device parameters, such as field-effect mobility and contact resistance of the devices, are
summarized in Table 1.

Table 1. Summary of device parameters for the PFETs used in this study.

Semiconductors Extraction Methods µ (cm2 V−1)
Power Law
Exponent

Rc at −40 V
(Ω cm)

HMDS-treated
PBTTT

Trans. method 0.009 Not available Not available
Four-probe method 0.010 Not available 8.9 × 105

Ids/gm method 0.015 0.59 3.2 × 106

Y-function method 0.017 Not available 2.1 × 106

HMDS-treated
DPP-DTT

Trans. method 0.023 Not available Not available
Four-probe method 0.029 Not available 1.6 × 106

Ids/gm method 0.028 0. 68 1.2 × 106

OTS-treated
DPP-DTT Ids/gm method 0.351 0.18 4.8 × 104
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4. Conclusions

In this study, we investigate an intrinsic device parameter extraction method for disor-
dered polymer field-effect transistors (PFETs). Due to the localized states of the disordered
polymer semiconductors, the field-effect mobility and contact resistance are strongly depen-
dent on the gate bias. In addition, because of the inevitable contact and uniformity issues
of the PFETs, extraction methods based on multiple devices should be carefully applied for
the extraction. However, by considering the parameters as gate bias-dependent power laws
and dividing the drain current with transconductance (Ids/gm method), current-voltage
relations decoupled from the contact effect can be derived using a single transfer character-
istic of the PFETs. Furthermore, the gate-dependent parameters, which are consistent with
those obtained by the four-probe method, are successfully extracted using the relations.
Moreover, using the proposed method, we can figure out that the enhanced device per-
formances of the OTS-treated DPP-DTT PFETs are attributed to the minimized scattering
and reduced contact resistance. Thus, we strongly believe that our proposed parameter
extraction method based on a single device is a simple and reliable method for an in-depth
study of device performance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst13071075/s1, Figure S1: Device parameter analyses of the
HMDS-treated DPP-DTT PFETs using the Y-function method; Figure S2: Contact angle images of
droplets DI water on the substrates; Figure S3: Device parameter analyses of the OTS-treated DPP-
DTT PFETs.
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