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Abstract: MgTi1−x(Mn1/3Nb2/3)xO3 (x = 0–0.30) ceramics were prepared via the solid-state reac-
tion method. The phase composition, microstructure, bond characteristics, and microwave di-
electric properties of MgTi1−x(Mn1/3Nb2/3)xO3 (x = 0–0.30) were systematically investigated. The
MgTi1−x(Mn1/3Nb2/3)xO3 ceramics presented an ilmenite type with an R-3 space group, and the
secondary-phase MgTi2O5 only existed at x = 0 and 0.30. The introduction of (Mn1/3Nb2/3)4+ effec-
tively suppressed the formation of the MgTi2O5 phase. The variation trend of the dielectric constant
(εr) was the same as relative density. The quality factor (Qf ) value was enhanced by the stable
microstructure, which was caused via the lattice energy of Ti/(Mn1/3Nb2/3)-O bonds. And a high
Qf value (353,000 GHz) was obtained for MgTi1−x(Mn1/3Nb2/3)xO3 (x = 0.04) ceramics sintered
at 1250 ◦C. In addition, the introduction of Mn2+ ions with a larger ionic radius exacerbates the
distortion of TiO6 octahedra, leading to significant fluctuations in the temperature coefficient of the
resonance frequency (τf) value.

Keywords: MgTiO3 ceramic co-substitution; microwave dielectric properties; lattice energy;
octahedral distortion

1. Introduction

As 5G communication technology gradually shifts towards the millimeter wave band,
the trend towards higher frequencies has further raised the performance requirements for
microwave devices. There is an increasing demand for the miniaturization, integration,
and lightweight design of microwave circuits. Compared to traditional metallic cavity
resonators, dielectric resonators possess advantages such as miniaturization, low cost, high
reliability, and high stability. The microwave dielectric performance of materials plays
a crucial role in determining their overall performance. To meet this requirement, it is
generally necessary to have a moderate dielectric constant (εr), high quality factor (Qf ), and
near-zero temperature coefficient of resonance frequency (τf).

MgTiO3 is an ABO3 ilmenite-type structure, which has garnered considerable atten-
tion from numerous researchers due to its relatively high Qf value (Qf ~ 160,000 GHz). In
general, the microwave dielectric properties of MgTiO3 are affected by intrinsic structural
characteristics such as bond characteristics and octahedron distortion [1]. These characteris-
tics can be modified by varying cations at Mg or Ti sites. Researchers have investigated the
variations in the Qf value caused by the addition of 36 different dopants in TiO2 ceramics [2].
It was found that significant improvements in the Qf value occur when the Ti site is substi-
tuted with low-valence cations. However, the introduction of low-valence cations solely for
Ti substitution may lead to lattice defects. Therefore, to improve the microwave dielectric
properties of MgTiO3 ceramics, the intrinsic structural characteristics were tailored via the
substitution of the Ti site [3–11]. The substitution of the Ti site in a MgTiO3 ceramic with
(Mn1/2W1/2)4+ reveals that the presence of Mn2+ eliminates the detrimental effect of Ti3+ on
the Qf value of the ceramic and suppresses the formation of the secondary-phase MgTi2O5.
However, the continuous introduction of Mn2+ and W6+ ions, while suppressing Ti3+, does
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not significantly enhance the Qf value compared to pure MgTiO3 ceramics. In addition, we
have found that (Zn1/3Nb2/3)4+ can enhance the microwave dielectric properties, especially
the Qf value, and lower the sintering temperature of MgTiO3 ceramics [12]. And the τf
value was related to the structural distortion. Meanwhile, in previous works, there are
some relationships between ionic radii and the structure distortion, which relates to the
microwave dielectric properties. Furthermore, the existence of Nb5+ could suppress Ti4+

to Ti3+ and therefore enhance the Qf value [5]. Hence, based on the inhibition of Ti4+

reducibility by Nb5+ and Mn2+ ions and their larger ionic radii, the (Mn1/3Nb2/3)4+ were
considered as an alternative ion to improve the microwave dielectric properties of MgTiO3.
In the present work, MgTi1−x(Mn1/3Nb2/3)xO3 (x = 0–0.30) ceramics were synthesized via
solid-state reactions, and their phase composition, microstructure, bond characteristics, and
microwave dielectric properties were investigated. Furthermore, the correlations among
them were analyzed and established in detail.

2. Experimental Procedures

High-purity MgO, TiO2, MnCO3, and Nb2O5 powders were employed as the raw
materials to synthesize the MgTi1−x(Mn1/3Nb2/3)xO3 (x = 0, 0.04, 0.12, 0.20 and 0.30)
ceramics via the solid state reaction. The raw material was weighed according to the
stoichiometric ratio. Next, the mixed powder was placed into the ball milling jar and
milled for 4 h. The slurry was dried. Subsequently, the mixed powder was calcined at
1100 ◦C for 4 h. After calcination, the powder was ball-milled to break the agglomerates
and dried again. Subsequently, the powder was mixed with PVA (10 wt%) and pressed into
pellets under the pressure of 20 MPa. These pellets were 12 mm in diameter and 6–7 mm in
thickness. The pressed disks were pre-heated at 600 ◦C for 4 h to evaporate PVA and then
sintered at 1250–1350 ◦C for 4 h. The x = 0 sample served as a control sample.

An X-ray diffractometer (XRD) is used to determine the phase composition and crystal
structure of a sample under the conditions of Cu-Kα radiation and a scanning range
of 10◦ to 120◦. Scanning electron microscopy (SEM) is used to observe the microscopic
morphology of ceramic surfaces and is usually shared with Energy Dispersive Spectroscopy
(EDS) to analyze the elemental composition and content of the sample surface. The bulk
density (ρbulk) is measured using Archimedes’ drainage method. Here, the microwave
dielectric properties of the ceramic samples were measured based on the Hakki–Coleman
method, and the τf values were calculated from the resonance frequencies at 25 ◦C and
85 ◦C:

τf =
f (85 ◦C)− f (25 ◦C)

60 × f (25 ◦C)
× 106 (1)

3. Results and Discussion
3.1. Phase Composition and Structure Analysis

Figure 1a shows the XRD patterns of the MgTi1−x(Mn1/3Nb2/3)xO3 (x = 0–0.30) ceram-
ics obtained via sintering at 1250 ◦C. It can be observed that the major phase of MgTiO3
(R-3, PDF #06-0494) was present in all samples, while the secondary-phase MgTi2O5 (PDF
#76-2373) appeared only at x = 0 and 0.30 [13]. The results indicated that appropriate
amounts of Mn2+ and Nb5+ ions could effectively suppress the formation of the MgTi2O5
phase. Figure 1b shows the crystal structure of MgTiO3, from which it can be seen that
this structure consists of two kinds of octahedra, MgO6 and TiO6, which are arranged
alternately in the order of Mg-Ti-Mg-Ti-...... in the z-axis direction.

In order to further analyze the crystal structure of samples, the XRD patterns of the
MgTi1−x(Mn1/3Nb2/3)xO3 (x = 0–0.30) ceramics were refined by FullProf software (FullProf
2020.6) [14], and the refinement results are plotted in Figure 2. The refinement curves and
XRD patterns agreed well, indicating that the refinement results are reliable. The structural
parameters are listed in Table 1. The cell parameters (a, b, c) and cell volume (V) kept
increasing with increasing x. The main contribution to the ionic radius of (Mn1/3Nb2/3)4+

(0.703 Å), which was larger than that of Ti (0.605 Å), entered into the lattice and resulted
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in the expansion of the lattice [9,15]. By further observation, it was found that the bond
lengths showed irregular variations. There was a correlation between these chemical bond
changes and microwave dielectrics [16,17].
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3.2. Micromorphology

Figure 3 shows the microscopic morphology of MgTi1−x(Mn1/3Nb2/3)xO3 ceramics
sintered at different temperatures. In comparison to the x = 0 sample (refer to Supple-
mentary Figure S1), a discernible trend was observed where the grain size progressively
increased and the number of pores gradually diminished with the increasing value of x.
This indicated that the incorporation of Mn2+ and Nb5+ ions imparted a denser structure
to the ceramics while simultaneously resulting in the formation of delicate specks on the
surface of the samples. Upon further observation, the grain size gradually increased with
the increase in temperature at the same x. Abnormal grain growth occurred at 1350 ◦C,
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indicating that the temperature had a promoting effect on the grain growth. It also demon-
strated that the introduction of Mn2+ and Nb5+ ions could reduce the sintering temperature
of the system and improve the sintering behaviors of the ceramics.

Table 1. Lattice parameters of MgTi1−x(Mn1/3Nb2/3)xO3 (x = 0–0.30) ceramics at 1250 ◦C.

x 0 0.04 0.12 0.20 0.30

a (Å) 5.059 5.060 5.067 5.071 5.074
b (Å) 5.059 5.060 5.067 5.071 5.074
c (Å) 13.910 13.915 13.941 13.961 13.991

V (Å3) 308.31 308.55 309.98 310.86 312.00
Wf1 (%) 95.75 100 100 100 91.88
Wf2 (%) 4.25 / / / 8.12

Mg-O(1) 1 (Å) 2.034 2.055 2.050 2.031 2.058
Mg-O(1) 2 (Å) 2.175 2.167 2.175 2.171 2.170

Ti/(Mn1/3Nb2/3)-O(1) 1 (Å) 1.878 1.868 1.875 1.891 1.884
Ti/(Mn1/3Nb2/3)-O(1) 2 (Å) 2.093 2.089 2.092 2.110 2.093

Wf1: weight fraction of MgTiO3 phase; Wf2: weight fraction of MgTi2O5 phase. 1, 2 represent two distinct types of
chemical bonds that are exported using the FullProf software.
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Figure 3. The SEM images of MgTi1−x(Mn1/3Nb2/3)xO3 ceramics: (a) x = 0.04, 1250 ◦C; (b) x = 0.12,
1250 ◦C; (c) x = 0.04, 1300 ◦C; (d) x = 0.04, 1350 ◦C.

In order to analyze the elemental species and content of the ceramic surface, EDS
analysis was performed on the surface of MgTi0.96(Mn1/3Nb2/3)0.04O3 ceramics sintered at
1250 ◦C. The test areas of the ceramic surface and the elemental composition of each test
area are marked in Figure 4, from which it can be seen that both areas contained only Mg,
Ti, Mn, Nb and O elements, and Mg:(Ti, Mn, and Nb) = 1:1, which also confirms the XRD
analysis results that Mn and Nb ions enter into the lattice and form a solid solution.

3.3. Microwave Dielectric Properties

Figure 5 illustrates the trends of the εr values of MgTi1−x(Mn1/3Nb2/3)xO3 ceramics at
1250 ◦C, along with the associated influencing factors. A variation in εr is typically closely
intertwined with factors such as relative density, the presence of a second phase, and the
total distortion [18,19]. When examining the impact of relative density on the εr value
of ceramics, it is often crucial to account for the influence of porosity. To address this, a
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correction was applied to the εr value, yielding the corrected dielectric constant (εc), using
the following equation [20]:

P = 1 − ρr (2)

εc = εr(1 + 1.5P) (3)

where P is the porosity and ρr is the relative density.
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Figure 5. The impact of total distortion and porosity on the εr values of MgTi1−x(Mn1/3Nb2/3)xO3

(x = 0–0.30) ceramics, sintered at 1250 ◦C, was investigated.

Through a careful analysis of Figure 5, it becomes evident that both the actual dielectric
constant (εr) and the corrected dielectric constant (εc) exhibited an inverse trend compared
to the total distortion within the phase range from x = 0 to x = 0.04. Notably, this observation
can be attributed to the presence of a second phase, MgTi2O5, at x = 0, which displayed
a dielectric constant of εr = 17.4, while MgTiO3 exhibited εr = 17 [21,22]. Therefore, we
can infer that the influence of the second phase during this range was responsible for
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this phenomenon. In order to investigate the impact of the second phase (MgTi2O5) on
the εr value of MgTi1−x(Mn1/3Nb2/3)xO3 ceramics, we employed a mixed law equation
to calculate the theoretical permittivity (εtheo) of the ceramics. The equation utilized is as
follows [23]:

ln εtheo = V1 ln εtheo1 + V2 ln εtheo2 (4)

where V1, V2, εtheo1, and εtheo2 denote the volume fraction and theoretical dielectric constant
of each phase.

In the depicted range from x = 0.04 to x = 0.3, as observed in Figure 5, we observed
remarkable alignment between the actual dielectric constant (εr) and the total distortion (δ).
This alignment strongly suggests that the total distortion (δ) exerted the most dominant
influence on the εr value within this interval. This phenomenon can be attributed to the
direct relationship between an increase in total distortion and a subsequent rise in the ion
polarization rate, ultimately resulting in a larger dielectric constant (εr) value. Conversely,
a decrease in total distortion led to a lower ion polarization rate, consequently resulting in
a smaller εr value. The total distortion of MgO6 and TiO6 could be quantified by employing
the following equation [23]:

δ =
1
6∑

Ri −
−
R

−
R

2

(5)

An intriguing observation arises from the analysis of Figure 5, where a distinct in-
verse relationship emerged between the actual dielectric constant (εr) and the modified
dielectric constant (εc) within the interval ranging from x = 0.2 to x = 0.3. The underlying
disparity could likely be attributed to the influence of porosity on the relative density of
the ceramics, consequently impacting the variability in εr values. Moreover, it is worth
highlighting the close correspondence between the fluctuation in εr values within this range
and the variation in total distortion (δ). This suggests that the changes in εr values during
this specific interval were governed by both δ and porosity. Although the presence of a
secondary phase did contribute to the alteration in εr values, its influence appeared to be of
secondary significance.

Figure 6a demonstrates the trend of Qf values of MgTi1−x(Mn1/3Nb2/3)xO3 (x = 0–0.30)
ceramics sintered at different temperatures, and it can be seen from the figure that the
sample presented the highest Qf at x = 0.04 and a sintering temperature of 1250 ◦C. In
addition, Qf showed a decreasing trend when the x value or the temperature increased,
which indicates that Mn and Nb ions were introduced to lower the sintering temperature of
the system and also increase the Qf of the system. To further analyze the factors affecting
the Qf in this experiment, the Qf of MgTi0.96(Mn1/3Nb2/3)0.04O3 ceramics obtained via
sintering at 1250 ◦C was investigated to explore the influencing factors.
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There have been numerous studies that have delved into the factors influencing
microwave dielectric properties [24–27]. In general, Qf is mainly affected by both intrinsic
and non-intrinsic factors. Both intrinsic and extrinsic factors contribute to the total loss of a
material, where intrinsic losses primarily depend on the crystal structure, while extrinsic
losses arise from second phases, crystal defects, and porosity, among others [8,9,11,28]. In
this section, the impact of chemical bond properties on crystal structure and microwave
dielectric properties is investigated using the complex chemical bond theory.

According to the complex chemical bond theory, each compound crystal can be decom-
posed into a superposition of several binary crystal sub-formulas (AmBn), where A and B rep-
resent different types of cations and anions, respectively [17]. Thus, MgTi1−x(Mn1/3Nb2/3)xO3
(x = 0–0.30) can be decomposed into the following binary crystal sub-formulas:

MgTi1−x(Mn1/3Nb2/3)xO3 = Mg1/2O(1)1
3/4 + Mg1/2O(1)2

3/4 + Ti1−x/2O(1)1
3−3x/4

+Ti1−x/2O(1)2
3−3x/4 + (Mn1/3Nb2/3)x/2O(1)1

3x/4 + (Mn1/3Nb2/3)x/2O(1)2
3x/4

(6)

In general, lattice energy is defined as the energy required to separate one mole of a
crystal into gaseous free ions, reflecting the vibrational energy of ions and the stability of
chemical bonds within the crystal [29]. Higher lattice energy (U) results in lower internal
losses caused by lattice polarization under an electric field, leading to a higher Qf [30]. For
this purpose, we calculated the lattice energy equation based on Equations (7)–(10).

Ucal = ∑µ
Uµ

b (7)

Uµ
b = Uµ

bc + Uµ
bi (8)

Uµ
bc = 2100m

(
Zµ
+

)1.64

(dµ)0.75 f µ
c (9)

Uµ
bi = 1270

(m + n)Zµ
+Zµ

−
dµ

(
1 − 0.4

dµ

)
f µ
i (10)

The Qf value variations in MgTi0.96(Mn1/3Nb2/3)0.04O3 ceramics obtained via sintering
at 1250 ◦C are presented in Figure 6b. Meanwhile, the lattice energy and total lattice
energy of the Mg-O bond and Ti/(Mn1/3Nb2/3)-O bond in each component are plotted in
Figure 6b. It can be observed that the lattice energy of the Mg-O bond showed minimal
variation, whereas the lattice energy of the Ti/(Mn1/3Nb2/3)-O bond and the overall
total lattice energy decreased with increasing x. In addition, the lattice energy of the
Ti/(Mn1/3Nb2/3)-O bond was higher compared with that of the Mg-O bond, indicating
that the Ti/(Mn1/3Nb2/3)-O bond made a significant contribution to the total lattice energy
and had more influence on the Qf when sintered at 1250 ◦C [17]. The sample with x = 0.04
had the highest Qf value; however, the corresponding total lattice energy was lower at
this time compared to the sample with x = 0. In general, the higher the lattice energy,
the higher the Qf, but the Qf of the sample with x = 0 was lower than that of the sample
with x = 0.04 due to the presence of the second-phase MgTi2O5 (Qf = 47,000 GHz) in the
sample with x = 0 [17,31]. At x > 0.04, the trends of lattice energy and Qf were in agreement,
indicating that lattice energy and the second phase are the main factors that affected Qf in
this experiment.

τf is an essential consideration in the practicality of microwave dielectric ceramics,
which represents the temperature stability of microwave components in the operating
environment. According to Equation (11), the variation in τf is closely related to the



Crystals 2023, 13, 1050 8 of 11

dielectric constant temperature coefficient (τε), and Equation (12) is the expression for τε

obtained by differentiating the Clausius–Mossotti equation [32,33].

τf = −
(τε

2
+ αL

)
(11)

τε = (ε−1)(ε+2)
ε

[
1

αD

(
∂αD
∂T

)
V
+ 1

αD

(
∂αD
∂V

)
T

(
∂V
∂T

)
P
− 1

V

(
∂V
∂T

)
P

]
= (ε−1)(ε+2)

ε (A + B + C)
(12)

where αL is considered as a constant, 10 ppm/◦C. αD and V represent the polarizability
of the sample and the volume of a small sphere. Part A is a dependence of polarizability
on temperature; Part B represents an increase in the polarizability of a constant number
of particles with the increment in the available volume while the temperature increases;
Part C presents the decrease in the number of polarizable particles per unit volume while
the temperature increases [34]. Since the Parts B and C have similar magnitudes and
opposite signs, τε is generally determined by Part A. In addition, Part A is related to the
restoring force of chemical bonds, which is in turn correlated with the degree of structural
distortion [33]. And this structural alteration will have an impact on τf. In this section, we
analyze the effect of TiO6 octahedral distortion (∆Ti) on τf. Therefore, we calculate ∆Ti in
the system using Equation (13) and judge the magnitude of the bond-restoring force in its
different states according to the degree of distortion of the TiO6 octahedra, which is related
to the polarizability and thus affects the value of τε, which is finally reflected in τf.

∆Ti =
1
6
× ∑

(
Ri − Rave

Rave

)2
(13)

Figure 7 plots the trends of τf and ∆Ti for MgTi1−x(Mn1/3Nb2/3)xO3 (x = 0–0.30)
ceramics sintered at 1250 ◦C. From Figure 7, it can be observed that the trends of τf and ∆Ti
were opposite, with a decrease in distortion indicating an increase in recovery. Recovery is
inversely proportional to polarization capacity. Therefore, an increase in recovery leads
to a decrease in polarization capacity, resulting in a decrease in the value of Part A. This
decrease in Part A also causes a decrease in τf, thereby affecting its value and causing it to
shift in the positive direction.
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Figure 8 provides a comparative analysis of various MgTiO3-based ceramics [3–10,12,35].
However, in the case of most ion-substituted MgTiO3 ceramics, achieving high Qf values
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typically requires modifications to the structure of the oxygen octahedra. In our study, we
successfully adjusted the structure of TiO6 octahedra by introducing (Mn1/3Nb2/3)4+ sub-
stitutions. This resulted in significantly higher Qf values and improved τf values, all while
using lower sintering temperatures. Notably, the MgTi1−x(Mn1/3Nb2/3)xO3 ceramics with
x = 0.04, sintered at 1250 ◦C, exhibited the most exceptional performance. These findings
indicate that by precisely adjusting the crystal structure, it becomes possible to modify the
microwave dielectric properties, offering promising prospects for practical applications.
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4. Conclusions

The investigation of MgTi1−x(Mn1/3Nb2/3)xO3 (x = 0–0.30) ceramics revealed the pres-
ence of the MgTiO3 phase, while MgTi2O5 was exclusively detected at x = 0 and x = 0.30.
The observed variations in εr values demonstrated a correlation with the relative density
and molecular polarization rate. The P-V-L theory supports the notion that higher lattice
distortion leads to enhanced Qf values, which was evident at x = 0.04. Consequently,
the substitution of Ti sites with (Mn1/3Nb2/3)4+ ions emerged as a promising strategy for
improving the microwave dielectric properties of the ceramics. This substitution induced
significant distortions in the TiO6 octahedra, resulting in increased bond-restoring power.
These structural modifications led to the emergence of τε effects, ultimately manifested in τf
values. Remarkably, the x = 0.04 MgTi1−x(Mn1/3Nb2/3)xO3 ceramics exhibited outstanding
microwave dielectric properties when sintered at 1250 ◦C, with εr = 17, Qf = 353,000 GHz,
and τf = −69 ppm/◦C. Consequently, these MgTi1−x(Mn1/3Nb2/3)xO3 ceramics hold sub-
stantial potential for applications in microwave communications. The findings presented
in this paper also inspire novel research directions aimed at enhancing Qf values in future
ceramic products.
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