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Abstract: This paper reports on the successful preparation of LaPO4-x wt.% LiF (x = 0–5) ceramics
using the traditional solid-state reaction method. The crystal structures, sintering behaviors, and
dielectric response at microwave and terahertz frequencies were investigated. XRD results indicate
that all the diffraction peaks were attributed to LaPO4, and no secondary phase was observed.
Rietveld refinement was conducted to analyze the variation of the crystal structure of LaPO4-x wt.%
LiF. SEM indicates that the addition of LiF significantly decreased the grain size while increasing
the apparent density of the ceramics. When x = 3, the optimum microwave dielectric properties
εr = 10.03, Q × f = 81,467 GHz, and τf = −43.79 ppm/◦C were achieved in LaPO4-3 wt.% LiF ceramic
at 750 ◦C. The infrared reflectance spectrum and terahertz time-domain spectroscopy were analyzed
and compared with the dielectric properties measured at microwave frequency to investigate the
inherent dielectric response. The findings indicate that the dielectric constant attributed to ionic
displacement polarization and oxygen vacancy is an essential factor affecting dielectric loss. Moreover,
it is worth noting that the LaPO4-3 wt.% LiF ceramic demonstrates excellent compatibility with silver
powders, suggesting its immense potential as a dielectric material in LTCC applications.

Keywords: microwave dielectric properties; rare earth phosphates; Rietveld refinement; infrared
reflectance spectrum; LTCC

1. Introduction

With the development of wireless communication and the arrival of the 5G era, the
demand for high–speed, high-capacity wireless technology in 5G communications is soar-
ing [1–3]. In the future communication field, the operating frequency will be expanded to
micron and millimeter waves. Microwave dielectric ceramics, which are essential compo-
nents in passive devices, have garnered more attention due to their exceptional performance.
The main parameters to measure the properties of microwave dielectric ceramics are the
dielectric constant (εr), quality factor (Q× f ), and temperature coefficient (τf). Among these,
εr is a physical quantity that characterizes polarizability. High-frequency communication is
characterized by low signal delay and therefore requires a low dielectric constant in the
material. Q × f described the dielectric loss of materials [4]. A high-quality factor means
high signal quality. τf determines the stability of signals and requires a value near zero to
ensure operating stability at work. In addition, to realize the device application of materials,
low-temperature co-firing technology (LTCC) is necessary [5–9].

Rare-earth phosphates exist in crystals of two structures (monazite and xenotime).
Therein, high atomic masses (La, Ce, Pr, Nd, Sm, and Eu) tend to form the monazite phase,
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and other elements (Tb, Dy, Ho, Er, Tm, Yb, and Y) form the xenotime phase. However, the
researcher mainly focused on other properties, such as luminescence and catalysis [10–12].
Narasimha et al. reported the microwave dielectric properties of LaPO4 [13]. Cho et al. pub-
lished the microwave dielectric properties of a series of rare-earth phosphates [14]. LaPO4
ceramic exhibits excellent microwave dielectric properties of εr = 10.4, Q × f = 64,556 GHz,
and τf = −56.2 ppm/◦C with a sintering temperature of 1400 ◦C and would be a good
candidate for future 5G communications. However, the high sintering temperature im-
peded the application at the passive device terminal. Therefore, reducing the sintering
temperature is meaningful work.

It is well known that the search for new ceramic systems or the addition of sintering
aids can be effective in reducing sintering temperatures. Li-based ceramics usually have a
low sintering temperature. Kamutzki et al. [15] successfully prepared LiCrSi2O6 microwave
dielectric ceramics at low temperatures by applying the plasma spark sintering method,
obtaining relatively excellent dielectric properties. However, the latter is easier to achieve
than the option of adding a sintering aid.

As the universal sintering assistant, LiF has been used in this paper. By adding LiF to
the BaFe0.5Nb0.5O3 ceramic system, Intatha et al. [16] successfully reduced the sintering
temperature and improved the sintering characteristics of the ceramics. Song et al. [17]
synthesized SrWO4−2 wt.% LiF ceramic at 850 ◦C by the traditional solid phase reaction
method with excellent microwave dielectric properties of εr = 9.03 and Q × f = 47,830 GHz.
Hao et al. [18] prepared Li2TiO3−2.5 wt.% LiF ceramic with excellent microwave dielectric
properties of εr = 24.01, Q× f = 75,500 GHz, and τf =−36.2 ppm/◦C at 950 ◦C and exhibited
good compatibility with Ag. However, adding LiF to LaPO4 ceramic to reduce the sintering
temperature has not been reported.

This article presents the preparation and investigation of LaPO4-x wt.% LiF (x = 0–5) in
terms of crystal structure, sintering behaviors, and dielectric properties at microwave and
terahertz frequencies. The phase composition, crystal parameters, and sintering behaviors
were investigated using XRD, SEM, Rietveld refinement, and apparent density. The infrared
reflectance spectrum and terahertz time-domain spectroscopy investigated the intrinsic
dielectric mechanism. In addition, the compatibility of samples with Ag has been analyzed.

2. Experimental Procedure

The LaPO4-x wt.% LiF (x = 0, 1, 2, 3, 4, and 5) system was prepared by the traditional
solid-state reaction method. High-purity powders of La2O3 (99.99%), NH4H2PO4 (99%),
and LiF (99%) as the primary raw materials were weighted stoichiometrically. The raw
powders were mixed with zirconium balls and alcohol for 24 h. Then the slurry was dried
in an oven at 80 ◦C and passed through a 60-mesh screen. The dried powders were calcined
at 1200 ◦C to form the main crystal phase. Whereafter, LiF was added as a sintering aid
and for secondary ball milling. Before being pressed into a pellet with a diameter of 10 mm
and a height of 6 mm. To bind the pellets, 12 wt.% paraffin was added. Finally, the pellets
were sintered with a heating rate of 5 ◦C/min.

The phase composition of the sample was identified using an X-ray diffractometer (Model
D/MAX-B, Rigaku Co., Tokyo, Japan) at room temperature with Cu Kα radiation. The signals
were collected in the range of 10◦–80◦. Archimedes’ drainage method was carried out to measure
the apparent density of the samples. Scanning electron microscopy (S-4800, Hitachi, Tokyo,
Japan) was implemented to observe the microstructure. The microwave dielectric properties
(εr, Q × f, and τf) of the samples were measured by a network analyzer (3656D, Ceyear Co.,
Qingdao, China) with the Hakki-Coleman method [19]. The εr and τf were determined by the
parallel plate method, and the Q × f was determined by the resonant cavity method. The
temperature coefficient can be calculated using Equation (1).

τf =
f2 − f1

(T2 − T1) × f 1
(1)
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where the resonant frequencies f 1 and f 2 are measured at T1 (25 ◦C) and T2 (85 ◦C), respec-
tively. The infrared reflectance spectrum was measured using a far infrared spectrometer
(FTIR, Bruker IFS66v, Bruker Optics, Ettlingen, Germany) at the National Synchrotron Ra-
diation Laboratory. The terahertz time-domain spectroscopy was measured by a THz-TD
spectrometer (Z3, Zomega, Plano, TX, USA) in the State Key Laboratory of New Ceramics
and Fine Technology, Tsinghua University [20–22]. The dielectric properties and loss in the
terahertz band are calculated as follows: Equations (2)–(7) [23–25].

ε′(ω)− iε′′(ω) = [n(ω)− ik(ω)]2 (2)

n∗(ω)= n(ω)− ik(ω) (3)

α(ω) =
2ωk(ω)

v
(4)

k(ω) =
α(ω)·λ

4π
(5)

ε= n2(ω)−
[

α(ω)·λ
4π

]2
(6)

tan δ =
ε′′(ω)

ε′(ω)
=

n(ω)− α(ω)·λ
2π

{
n2(ω)−

[
α(ω)·λ

4π

]2
}

(7)

where n*(ω) is the complex refractive index at terahertz frequency, n(ω) is the index of re-
fraction, k(ω)is the coefficient of extinction, v is the propagation speed of an electromagnetic
wave at terahertz, ω is the frequency of Angle, and α(ω) is the coefficient of absorption.

3. Results and Discussion

Figure 1 shows the XRD diffraction pattern of LaPO4-x wt.% LiF ceramic. The figure’s
diffraction peaks are consistent with the standard PDF card (PDF#83–0651), indicating
that the crystal structure is a single monoclinic structure with a space group of P21/c. The
absence of the diffraction peak of the second phase demonstrates that the addition of LiF
does not affect the formation of the LaPO4 main stage.

Figure 1b shows that with increasing doping of LiF, the diffraction peaks corresponding
to the (200) crystal orientations are shifted towards. According to the Bragg equation, the
lattice parameters and cell volume change as the angle shifts. The lattice parameters and
cell volume also change as the angle shifts; with increasing x, the cell volume increases
from 306.115 Å3 to 306.339 Å3 as x increases.

Figure 2 exhibits the refined XRD data using Full Prof software (FullProf_Suite Win-
dows (64 bits)). Table 1 summarizes lattice parameters and reliability factors. The smooth
red line represents the difference between the measured and theoretical values, while the
lower R-factors indicate that the refined results are reliable [26–28]. Figure 3 displays
a single-unit cell diagram of LaPO4 ceramic. The crystal cell comprises [LaO9] polyhe-
drons and [PO4] tetrahedrons. [LaO9] and [PO4] connect with oxygen along the b-axis. To
intuitively understand the microscopic morphology of LaPO4-x wt.% LiF ceramics.
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Table 1. The refinement patterns of the LaPO4-x wt.% LiF ceramics at the optimal sintering temperatures.

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5

a (Å) 6.8358 6.8359 6.8368 6.8366 6.8367 6.8371
b (Å) 7.0728 7.0743 7.0749 7.0745 7.0746 7.0748
c (Å) 6.5058 6.5043 6.5070 6.5069 6.5068 6.5069
α (◦) 90.000 90.000 90.000 90.000 90.000 90.000
β (◦) 103.295 103.276 103.268 103.270 103.272 103.273
γ (◦) 90.000 90.000 90.000 90.000 90.000 90.000

Z 4 4 4 4 4 4
Vm (Å3) 306.115 306.233 306.337 306.307 306.310 306.339

Rp 10.60 10.70 11.50 9.42 9.12 9.08
Rwp 12.30 12.30 12.30 10.90 10.40 10.50
Rewp 5.52 5.69 6.26 5.96 6.18 5.92
χ2 2.23 2.16 1.96 1.82 1.68 1.77

Figure 4 displays the SEM image, which illustrates the changes in the apparent mor-
phology of LaPO4 ceramics with the increase in the amount of LiF. As shown in Figure 4a–e,
when x = 1,2, the grain size is relatively large and the grain boundary is distinct. However,
when x ≥ 3, the grain size begins to refine, indicating that adding LiF is conducive to grain
refinement. It is worth noting that due to the melting point of LiF at 845 ◦C, a part of
LiF melts to form a liquid phase during the ceramic sintering process. When x ≥ 4, grain
boundaries begin to soften, and macroscopic defects such as pores between grains and
cracks appear on the surface, which particularly impacts the apparent density and perfor-
mance [29–31]. When the amount of LiF continues to increase, the sintering temperature
does not change significantly. Excessive LiF exists on the grain surface in an amorphous
state, and a small number of pores and cracks appear, which has an adverse effect on the
densification of ceramics. This is consistent with the trend of relative density change and
further indicates that an appropriate amount of LiF can effectively reduce the sintering
temperature and porosity. Improve the relative density of ceramics.

Figure 5 shows the apparent density of LaPO4-x wt.% LiF (x = 0–5) ceramics. Between
1250 ◦C and 1450 ◦C, the apparent density of the LaPO4 ceramic matrix increases from
4.13 g/cm−1 to 4.40 g/cm−1 with the increase in temperature, indicating that temperature
is an essential factor. Furthermore, the sintering interval of the LaPO4-x wt.% LiF ceramics
is 650 ◦C–1000 ◦C, meaning that the addition of LiF successfully reduces the sintering
temperature of ceramics. The sintering temperature decreases further with the increase in
LiF content. When x = 3, the temperature is reduced to 750 ◦C. At different x values, the
apparent density increases first and then decrease. Figure 5b shows the relative density of
ceramic samples. The shrinkage increases initially with the increase of x and reaches its
maximum value at x = 3.

Figure 6 is the dielectric constant (εr) of LaPO4-x wt.% LiF (x = 0–5) ceramics. As the
sintering temperature increases, the εr first increases and then decreases. It takes x = 3
as an example. When the temperature increases from 700 ◦C to 750 ◦C, the εr increases
from 7.08 to 10.03. However, as the temperature rises, the εr begins to decrease slowly.
The εr is affected by several factors, such as dielectric polarization, porosity, and second
equality [24,32,33]. However, the X-ray shows that the LaPO4-x wt.% LiF (x = 0–5) ceramic
is a single pure phase. The change in apparent density is the same as the dielectric constant,
so the density is the main factor affecting the dielectric constant of LaPO4 ceramics. Adding
LiF reduces the sintering temperature and promotes the densification of ceramics. Therefore,
as the temperature increases, giant permittivity is obtained. Still, when the temperature
exceeds the optimal sintering temperature, the increase in grain size destroys the crystal
structure, leading to a decrease in density and a consequent reduction in permittivity.
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Figure 7 is the quality factor (Q × f ) of LaPO4-x wt.% LiF (x = 0–5) ceramics. The
quality factor has the same variation as the dielectric constant. For instance, when x = 3,
as an example. With the temperature increasing, the Q × f increases significantly from
15,946 GHz at 700 ◦C to 81,467 GHz at 750 ◦C, and the Q × f begins to decrease as the
temperature continues to rise. Many factors affect the Q × f. These factors fall into two
categories: inherent losses and external losses. The lattice vibration mode and crystal
structure influence the inherent losses [34,35]. The sintering additive effectively reduces
the sintering temperature of LaPO4 ceramics, but the phase composition is not affected.
Thus, the main factor affecting the quality factor is density. Before reaching the optimum
temperature point (750 ◦C), the increase in temperature is beneficial to reduce the number
of pores in the ceramic, improve the density, and reduce the material loss inside the ceramic.
As the temperature continues to rise, especially to 800 ◦C, several macroscopic cracks and
pores make the interior loose, leading to the Q × f dropping to 68,791 GHz. The quality
factor finally stabilizes within the range of 68,000 GHz to 77,000 GHz.
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The temperature coefficient characterizes the thermal stability of materials. Figure 8
summarizes the trend of the temperature coefficient. The temperature coefficients are
all negative, and the change of x and τf does not change significantly. It fluctuates be-
tween −46.40 ppm/◦C and −34.71 ppm/◦C, indicating that adding LiF has little effect
on the temperature coefficient. Table 2 shows the microwave dielectric properties of
LaPO4-x wt.% LiF ceramics. In conclusion, when x = 3, the optimum microwave dielectric
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properties of LaPO4-x wt.% LiF ceramics are T = 750 ◦C, εr = 10.03, Q × f = 81,467 GHz,
and τf = −43.79 ppm/◦C.
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Table 2. List of the microwave dielectric properties of the LaPO4-x wt.% LiF ceramics.

Composition S.T (◦C) εr Q × f (GHz) τf (ppm/◦C)

x = 0 1400 8.73 44,449 −42.18
x = 1 900 9.81 53,247 −43.14
x = 2 900 9.19 62,844 −46.40
x = 3 750 10.04 81,467 −43.79
x = 4 750 9.61 43,674 −40.41
x = 5 750 8.56 33,873 −34.72

Infrared spectroscopy is an effective technique for characterizing the dielectric loss
and response of ceramics. Figure 9a displays the fit of the infrared reflectance spectrum,
obtained using the Reffit software and the classical resonator model with three parameters.
The fitted values are in good agreement with the measured values. The complex permittivity
(ε*) and reflectance (R) can be calculated using Equations (8) and (9) in the harmonic
oscillator mode [36,37]:

ε∗(ω)= ε′+ε′′= ε∞ +
n

∑
i=1

ω2
pj

ω2
oj −ω2 − iγjω

(8)

R(ω) =

∣∣∣∣∣1−
√

ε∗(ω)

1+
√

ε∗(ω)

∣∣∣∣∣
2

(9)
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In the formula, ε∞ is the optical permittivity, ωpj and ωoj are the plasma frequency
and transverse frequency, respectively, γj is the damping factor, and i is the imaginary
unit. Table 3 shows the vibration modes of 16 different phonons. The optical permittivity
obtained by infrared spectrum fitting is 2.341. Figure 9 represents the real (ε′) and imaginary
(ε′′) parts. The scattering of phonons and the overlap of peaks make the real part (ε′ = 6.83)
less than the measured dielectric constant (εr = 10.04) [37–39]. Figure 9c shows the observed
dielectric loss (2.16 × 10−4) in the same order of magnitude as the measured dielectric loss
(1.72 × 10−4), indicating that phonon vibration affects dielectric loss. Moreover, external
factors such as porosity, density, and grain distribution also affect dielectric loss. Pores can
be reduced or processes optimized to minimize losses.

Table 3. Phonon parameters obtained from the fitting of the LaPO4-3 wt% LiF ceramic.

Mode
LaPO4-3 wt.% LiF ε∞ = 2.341

ωoj ωpj γj ∆εj

1 126.5378 47.4173 7.1522 0.1404
2 157.7606 62.9653 8.1873 0.1593
3 197.1342 152.8907 23.5457 0.6015
4 214.3998 149.5696 16.9943 0.4867
5 248.9289 191.8766 30.0668 0.5941
6 288.8744 175.8852 29.1625 0.3707
7 456.4929 449.3217 332.2120 0.9688
8 537.1147 134.5086 22.1472 0.0627
9 561.8092 52.2352 7.7303 0.0086
10 577.8740 82.8326 11.3729 0.0205
11 621.9667 151.3773 26.1880 0.0592
12 951.8753 93.8768 6.2487 0.0097
13 994.1020 147.9418 11.1387 0.0221
14 1035.2952 432.4328 68.0378 0.1745
15 1091.1393 290.0738 26.4696 0.0707
16 1145.5237 128.5903 28.4676 0.0126

Infrared fitting results are easily limited by infrared pattern recognition. Terahertz time–
domain spectroscopy technology investigates the effect of lattice vibration on properties.
Figure 10 shows the dielectric response of LaPO4-3 wt.% LiF sintered at 750 ◦C in the



Crystals 2023, 13, 1035 10 of 13

frequency band of 0.5 THz~1.1 THz. The dielectric properties of the terahertz band are
derived from the refractive index and extinction coefficient.
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Figure 10. Optical and dielectric Properties of the LaPO4-3 wt.% LiF ceramic in THz frequency band:
(a) reflectance; (b) absorption coefficient; (c) dielectric constant; and (d) dielectric loss.

Figure 11 shows the change curve of the refractive index (n). The refractive index does
not increase significantly with the increase in frequency and is stable between 3.17 and 3.21.
The absorption coefficient (α) increases with the increase in frequency, which is associated
with the unit volume polarizability. The dielectric constant which extrapolated from terahertz
time-domain spectrum was in line with the value at microwave frequency [1,21,35]. At 7 GHz,
the dielectric constant of ceramics is 10.03. At 0.5 THz, the dielectric constant of the ceramic
is 10.04. Therefore, it can be inferred that the polarization mechanism of dielectric ceramic
does not change in the terahertz frequency band, in which the ionic polarization is still
dominant.
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The fitted line in Figure 11 is the linear relationship between dielectric loss and
frequency, and the slope of the matched line is 0.010, representing the vibration of the
lattice. Considering the defect in the sample, it may be the oxygen vacancy that affects the
dielectric loss. When x = 3, S.T. = 750 ◦C, the excellent optical and dielectric properties are:
n = 3.17, εr = 10.03, α = 1.28 cm−1, tan δ = 0.0039. Therefore, LaPO4-3 wt.% LiF ceramics
with low absorption coefficients and dielectric losses are optional for dielectric filters and
lenses applied in the terahertz band.

The low-temperature co-firing ceramic (LTCC) technology has garnered significant
attention due to its exceptional high-frequency characteristics, low energy consumption,
and compact size. Among the various components of LTCC, the focus of research has
been on LTCC materials. LaPO4 ceramics have a high sintering temperature (1400 ◦C).
Adding 3 wt.% LiF reduces the sintering temperature to 750 ◦C and has excellent dielectric
properties. In this study, 20 wt.% Ag powder (10 µm) and LaPO4-3 wt.% LiF ceramic
powder at 750 ◦C are mixed and co-fired at 750 ◦C for 2 h. Figure 11 shows the XRD results.
The results show that no chemical reaction occurs after co-firing LaPO4-3 wt.% LiF ceramic
and Ag, and the co-firing is a success, which provides a new idea for the future application
of LTCC [29].

4. Conclusions

In this paper, the LaPO4-x wt.% LiF (x = 0~5) ceramics are prepared by the traditional
solid-state reaction method, and the microwave dielectric properties at different frequency
bands are studied. The XRD patterns show that the ceramics crystallized in single phase
LaPO4, no secondary phase observed. Rietveld refinement by using Fullprof software. The
results show that the crystal structure of the ceramics is monoclinic and that the phase
composition of the mixture has not changed. LiF exists in the liquid phase and fills the void
in ceramic. Therefore, with the increase of LiF, the relative density of ceramic is greatly
improved compared with the matrix, the sintering temperature reduces to 750 ◦C, and
the quality factor rises to 81,466 GHz. The dielectric constant increases by 10.03, and the
temperature coefficient is−43.78 ppm/◦C (x = 3). In the microwave frequency band, the ion
shift polarization determines the dielectric constant, and the dielectric loss is mainly due
to the lattice vibration. In the THz frequency band, the main factor affecting the dielectric
constant is the ion displacement polarization, while the oxygen vacancy is the main factor
affecting the dielectric loss. At 750 ◦C, LaPO4-3 wt.% LiF ceramic powder does not react
with Ag, and the co-firing is successful, indicating that LaPO4-x wt.% LiF ceramic is an
alternative material for future LTCC technology.
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