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Abstract: Diamond-coated tools often fail due to coating graphitization and delamination caused by
poor coating adhesion, large contact stress, and thermochemical reactions. To address these issues,
this research utilized a combination of micro-nano double-layer diamond coating, WS2 coating,
and micro-textures. The WS2 coating inhibits the graphitization of the diamond coating through a
transfer film mechanism, while the micro-textures and nanocrystalline diamond coating store WS2,
resulting in a prolonged lubrication life. Additionally, the influence of micro-texture on coating-
substrate residual stress and coating-substrate mechanical interlocking was discussed, and it was
proved that proper micro-textures effectively improve the coating adhesion. Under the same cutting
flux conditions, taking coating peeling as the judging standard, the cutting distance of textured
WS2/Micro-Nano diamond coating tool is more than three times that of ordinary, diamond-coated
tools, which greatly improves the service life of the tool.

Keywords: microtextures; WS2; Diamond-coated tools; coating adhesion; graphitization

1. Introduction

Diamond-coated tools have the advantage of high hardness, good wear resistance, low
friction coefficient, and anti-stickiness, which are the best coated tools for processing high
abrasive materials, such as graphite, carbon fiber, and high silicon aluminum alloy [1–3].
However, the graphitization of diamonds and the delamination of coating are noteworthy
problems in the machining process. Especially in the machining of ferrous metals, the
graphitization of diamonds is particularly serious [4]. Diamond is a metastable structure
at room temperature; at high temperatures, carbon atoms separated from the tool surface
can easily diffuse into the interstitial locations of the iron lattice, accelerating the wear of
the coating [5]. Cutting heat and friction energy during the cutting process accelerated the
conversion of diamond into graphite [6,7]. In addition, residual stress, coating-substrate
interface defects, and external stress on the diamond coating are the main reasons for the de-
lamination of the diamond coating [8,9]. Therefore, how to improve the anti-graphitization
and anti-coating peeling ability of diamond-coated tools has become the focus of research
in recent years.

Methods to inhibit graphitization of diamond tools are generally divided into ultrasonic-
vibration-assisted cutting, liquid nitrogen cooling, low-temperature plasma-assisted cutting,
surface nitriding treatment, tool lubrication, etc. [4,10,11]. Controlling the contact time of
diamond and iron, reducing cutting temperature, and hindering the contact of tool-chip are
the key thoughts of these methods. However, ultrasonic-assisted cutting brings repeated
impact on the tool; crack initiation and expansion occur at the diamond-coating-substrate
interface [12], which promotes the coating to peeling. The presence of lubricating fluid
can form a lubricating film on the tool-chip-contacted surface. On the one hand, the heat
generated by cutting is reduced, and on the other hand, the contact between the tool and
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the workpiece is prevented, and the diffusion of elements is also suppressed. However,
Chai [13] pointed out that the hydrodynamic pressure helps to introduce more liquid to
the tip of the crack by means of squeezing, further enhancing the driving force of the crack
tip. Consequently, liquid lubrication can inhibit the graphitization of diamonds-coated
tools but increases the probability of diamond coating delamination. In this paper, the solid
lubricant coating (SLC) was used to block the contact between C and Fe elements, decrease
the cutting heat, and inhibit the graphitization of diamond coating. The application of SLC
on cutting tools is widely studied, which significantly reduces cutting force and cutting
temperature [14,15]. Excellent performance in reducing tool wear and is a very promising
method for tool lubrication. The most commonly used solid lubricating coatings are WS2,
MoS2, and graphite [16,17]. The good lubricity results from the layered structure of these
soft coatings, which form transfer films under stress, and shear occurs between the middle
layers of the coating [18]. An excellent synergy was formed by SLC and micro-textures.
The solid lubricating coating has non-Amontonian frictional behavior and obtains a smaller
coefficient of friction under the action of the micro-textures [19]. The composite effect of
micro-textures and solid lubricating coating achieves good cutting performance on the
tool [20,21].

Enhancing the coating adhesion, improving the quality of the diamond coating, and
reducing the external stress and residual stress of the coating are the main methods to
inhibit the delamination of the diamond coating [22–24]. In recent years, surface micro-
textures have been used to improve the adhesion of the coating, and the mechanical
interlocking phenomena between coating, base, and larger coating-base contact area are
the main reasons for the increasing adhesion [25]. In addition, Meng et al. [26] consider
that micro-textures were conducive to coatings in terms of wettability, phase composition,
roughness and hardness, and specific surface area, which could enhance the interfacial
properties of PVD coatings. This study exhibits innovation by applying solid lubricant
coatings on diamond-coated cutting tools and synergizing with microtextures in the hopes
of enhancing coating adhesion and reducing diamond graphitization. It avoids the negative
effects of liquid nitrogen cooling zones and liquid lubricants on diamond-coated cutting
tools, providing a fresh perspective for the development of such tools.

2. Experimental Details

The micro-texture of pits was processed by UV nanosecond laser at the position
near the cutting edge in the front of the turning tool, as shown in Figure 1I, and the
diameter of the micro-texture was about 30 µm. The tool material is cemented carbide
YG6 (6% Co + 94% Co), which was etched by a high peak power ultraviolet nanosecond
laser with a power >7W and 1.5 MHZ repetition frequency. The surface of the sample
was polished to remove the metal melt, which was produced by the laser shock wave,
and the Co content of the surface was reduced with chemical reagents. The attack of the
WC grains was performed using Murakami’s solution (1.5 g K3Fe(CN)6 +1.5 g KOH +
20 mL H2O) for 15 min. In order to decrease the surface Co content, a wet chemical attack
with an acid solution (3H2SO4 + 7H2O2) for 30 s. A total of 2 g diamond powder with a
particle size of 5 µm was added to 30 mL acetone to form a suspension, and the tool was
crystallized by an ultrasonic cleaner. Immersing the tool in the suspension for 15 min to
implant diamond crystals ultrasonically. Subsequently, clean the turning tool with acetone
for 5 min. Preparation of diamond coatings by Hot Wire Chemical Vapor Deposition
(HFCVD, FHL600) as shown in Figure 1II. The tools were placed into the chamber, the
temperature of the hot filament was regulated at 2200–2300 ◦C, and the distance between
the filament and the sample was 9 mm. Firstly, the microcrystalline diamond coating is
grown on the turning tool, and then the nanocrystalline diamond coating is grown on top
of the microcrystalline diamond coating. The specific experimental parameters are shown
in Table 1.
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The microstructure is detected by SEM (Inspect S50). The displacement loading ex-
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depth microscope can obtain pictures of different depths and stitch them into three-di-
mensional images. The Raman spectrometer is used to detect the crystal structure of C 
and analyze the graphite phase in the diamond. A series of cutting experiments were per-
formed on an S1-CA6140 lathe (Figure 2). Figure 1 and Table 1 show the experimental 
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Figure 1. The preparation process of textured WS2/Diamond-coated tool. (I) The processing of
microtextures (II) HFCVD (III) RFMS.

Table 1. The process parameters of the diamond coating.

Process Parameters
Microcrystalline

Nanocrystalline
Nucleation Stage Growth Stage

Cavity pressure (Pa) 2500 1500 500
Filament temperature (◦C) 2250 2250 2250

CH4 (sccm) 23.5 10.5 36
H2 (sccm) 600 600 600

Deposition time (min) 60 240 90

In this research, the WS2 coating was used to reduce the chip contact and inhibit the
wear and graphitization of the diamond coating, but the adhesion between the diamond
and WSx was poor. In the experiment, the physical vapor deposition technology was used to
prepare the W layer as the interlayer between the diamond and WS2. WC is formed between
the W layer and diamond coating, resulting in a strong binding force [27]. Additionally,
W and WS2 form a metal bond, which greatly improves the diamond coating and soft
coating. After the diamond coating was grown, the interlayer W was deposited on the tool
by DC magnetron sputtering, and WS2 was deposited on W by radio frequency magnetron
sputtering (RFMS, MS-200), as shown in Figure 1III. W and WS2 form a metal bond,
which greatly improves the diamond coating and soft coating. The specific experimental
parameters are shown in Table 2.

Table 2. The process parameters of WS2 coating.

Process Parameters WS2 W

Cavity pressure (Pa) 1 0.8
Power (W) 110 72

Bias supply (V) −70 −120
Ar (sccm) 28 28

Deposition time (min) 120 4
Power type Radio frequency Direct current

The microstructure is detected by SEM (Inspect S50). The displacement loading
experiment utilizes a Rockwell indentation testing machine with a load of 1471N. The
ultra-depth microscope can obtain pictures of different depths and stitch them into three-
dimensional images. The Raman spectrometer is used to detect the crystal structure of C and
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analyze the graphite phase in the diamond. A series of cutting experiments were performed
on an S1-CA6140 lathe (Figure 2). Figure 1 and Table 1 show the experimental setup and
experimental conditions, respectively. The bar was clamped on a lathe and machined
with different turning tools, and the wear of the tools after cutting was observed. Cutting
tests were carried out on the lathe using WS2/Micro-Diamond Coating tool (W/MDCT),
WS2/micro-nano diamond coating tool (W/MNDCT), and textured WS2/micro-nano
diamond coating tool (T-W/MNDCT). All cutting tests were carried out under the same
conditions (Table 3). The wear pattern of the tools and coating peeling were observed to
judge the cutting performance of the tools.
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Table 3. Cutting test conditions.

Machine Tool S1-CA6140

Tool specifications T31305F Maker: Zigong Great Wall
Tool material YG6 (94% WC, 6% Co)
Bar material 45# (EN C45)
Rotational speed of bar 200 r/min
Depth of cut 0.3
Feed rate 0.12

3. Fundamental Research
3.1. Failure Forms of Diamond-Coated Tools

As the main failure mode of Diamond-coated tools, coating delamination is the core
issue that must be addressed. The coating peeling area includes the cutting edge, rake face,
and other parts with large force (Figure 3a). During the cutting process, the cutting position
is subjected to a very large reaction force. The pyramid-shaped grains of the microcrystalline
diamond could form a micro-cutting effect on the chips, and the large external stress (σe)
could be generated accordingly (Figure 3b). The high temperature caused by the cutting
heat is transferred to the coating-substrate interface, and the difference in the thermal
expansion coefficient of the coating-substrate causes thermal stress (σt). Additionally,
residual stress (σr) exists in the coating-substrate system during the preparation process
(Figure 3c) [28]. The above-mentioned total stress (The sum of σe, σr, and σt) is greater
than the interfacial bond strength(σf) could cause the coating to peel off, as shown in
Equation (1).

σe + σr + σt>σf (1)
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coating (b) Stress analysis of coating-based systems (c) The cross-section of coating-substrate systems.

Wear is another failure model for diamond-coated tools. Especially in cutting ferrous
metals, the high temperature, large stress, and catalytic action of ferrous metals accelerate
the wear of diamond coatings [29]. Plowing wear of the diamond coating on the front
cutter surface was found after machining the ferrous metal (Figure 4a). As an ultrahard
material, the appearance of plow scratches on the surface of diamond coating show that
chemical wear occurs. The Raman spectroscopy provides a fast, non-destructive means of
characterizing carbon materials. The single sharp peak at 1332 cm−1 corresponds to the
vibration of the sp3 diamond lattice. The G peak (1500–1580 cm−1) represents disordered
carbon [30]. Compared with the unworn diamond coating, the range of the G peak is
significantly increased, and the intensity of the D peak is decreased, indicating that the
diamond coating has undergone graphitization during the wear process. Additionally, fur-
rows appeared on the worn surface, indicating that the diamond coating was transformed
into softer graphite. Based on the above analysis, the fundamental reason for the wear
of Diamond-coated tools is the graphitization of diamonds. The high temperature, large
stress, and the reaction of diamond and iron at high temperatures during cutting play an
important role in the graphitization process.
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3.2. The Mechanism of Action of Solid Lubricating Coatings

In the process of machining, there are three factors affecting the graphitization of
diamonds coating, which are high temperature, Fe catalysis, and stress [31,32]. High
temperature and intimate contact between diamond and iron not only transform diamond
into graphite but also transform iron into a hexagonal structure. The transformation of
bcc iron to hcp iron plays an important role in the graphitization of diamonds. This path
is favorable energetically and geometrically for the subsequent diffusion of carbon into
iron or the actual formation of a chemical reaction to form iron carbide (Fe3C) [33]. WS2
crystals were prepared in the vacuum environment, arranged in sheets, and perpendicular
to the sample surface. Under the action of external force, WS2 crystals are redirected. The
crystals are transformed from a columnar arrangement to a layered structure, as shown
in Figure 5. It not only blocks the contact between the chip and the blade surface but also
reduces the shear stress and frictional heat of the coating. The layered structure with large
surface energy is easily adsorbed on Fe chips to form agglomerates, which reduces the Fe
content on the coating surface.
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Figure 5. WS2 inhibits the graphitization of diamonds.

The cutting lengths of the three cutting edges (A, B, C; I, II, III) are 50.2 m, 100.4 m, and
150.7 m, respectively. The cutting edge and rake face of CVD diamond-coated turning tools
and WS2/CVD diamond-coated turning tools have corresponding wear. With the increase
in cutting distance, the cutting area is continuously affected by external stress and cutting
heat. The cutting edge of the turning tool and the crater area of the rake face showed coating
wear and delamination (Figure 6a), while the wear area of the WS2/CVD Diamond-coated
turning tool did not show delamination (Figure 6b). The CVD Diamond-coated turning tool
appear a large area of delamination in the crater wear, while WS2/CVD Diamond-coated
turning tool only has local wear. It is proved that WS2 coating is an effective means to
restrain the wear and delamination of diamond coatings.
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3.3. Effect of Micro-Textures on Adhesion Properties of Diamond Coatings

Micro-textures effectively improve the anti-wear and antifriction properties of the rake
face and also affect the adhesion properties of the coating [34]. Displacement loading tests
were conducted on textured and non-textured diamond-coated samples using an indenta-
tion testing machine. As shown in Figure 7a, uniform diamond coatings are prepared on
textured cemented carbide by hot wire chemical vapor deposition (HFCVD). In order to
explore the effect of micro-textures on the adhesion properties of diamond coatings, the
Rockwell indentation tests were used to induce the delamination of the coating. Figure 7b
shows the edge cracks of the indentation produced circumferential cracks, but radial cracks
were rarely observed. Figure 7c,d show two types of crack propagation of texture edge
coating. The indentation causes the diamond coating to peel off and expose the cemented
carbide, a part of the circumferential crack bypasses the micro-textures, and the other part
extends to the edge of the texture, causing fracture of the diamond coating.

Crystals 2023, 13, x FOR PEER REVIEW 7 of 18 
 

 

Figure 6. Wear and delamination of coatings. (a) CVD Diamond-coated tools (b) WS2/CVD Dia-
mond-coated tool. A/I: 50.2 m B/II: 100.4 m C/III: 150.7 m. 

3.3. Effect of Micro-Textures on Adhesion Properties of Diamond Coatings 
Micro-textures effectively improve the anti-wear and antifriction properties of the 

rake face and also affect the adhesion properties of the coating [34]. Displacement loading 
tests were conducted on textured and non-textured diamond-coated samples using an in-
dentation testing machine. As shown in Figure 7a, uniform diamond coatings are pre-
pared on textured cemented carbide by hot wire chemical vapor deposition (HFCVD). In 
order to explore the effect of micro-textures on the adhesion properties of diamond coat-
ings, the Rockwell indentation tests were used to induce the delamination of the coating. 
Figure 7b shows the edge cracks of the indentation produced circumferential cracks, but 
radial cracks were rarely observed. Figure 7c and Figure 7d show two types of crack prop-
agation of texture edge coating. The indentation causes the diamond coating to peel off 
and expose the cemented carbide, a part of the circumferential crack bypasses the micro-
textures, and the other part extends to the edge of the texture, causing fracture of the dia-
mond coating. 

(a)

Diamond coating

Texture

 (b)

Indentation area

Crack evolution region

 

(c)

Circumferential crack

Indentation

 

Crack propagation

Indentation

Cemented carbide

(d)  
Figure 7. The indentation test causes the peeling of the textured coating. (a) Textured diamond coat-
ing. (b) Indentation. (c) Circumferential cracks. (d) Fracture of texture edge coating. 

The crack propagation at the interface is the main reason for the delamination of the 
diamond coating, which makes the coating lose its bonding with the substrate, and the 
buckling phenomenon of the diamond coating occurs due to the action of intrinsic stress. 
As shown in Figure 8, the three-dimensional morphology of the indentation was observed 
by ultra-depth-of-field microscopy, and it was found that a higher bulge was generated 
around the indentation, which was due to the height difference caused by the buckling of 
the diamond coating. At the same load of 1471N, the indentation area of the textured coat-
ing-substrate system is larger, indicating that the texture reduces the strength of the sub-
strate. However, it is observed that the buckling range of the textured diamond coating is 
smaller than that of the untextured coating from the contour plot. Obviously, micro-tex-
tures enhance the adhesion of the diamond coating. 

Figure 7. The indentation test causes the peeling of the textured coating. (a) Textured diamond
coating. (b) Indentation. (c) Circumferential cracks. (d) Fracture of texture edge coating.



Crystals 2023, 13, 1034 8 of 18

The crack propagation at the interface is the main reason for the delamination of
the diamond coating, which makes the coating lose its bonding with the substrate, and
the buckling phenomenon of the diamond coating occurs due to the action of intrinsic
stress. As shown in Figure 8, the three-dimensional morphology of the indentation was
observed by ultra-depth-of-field microscopy, and it was found that a higher bulge was
generated around the indentation, which was due to the height difference caused by the
buckling of the diamond coating. At the same load of 1471N, the indentation area of the
textured coating-substrate system is larger, indicating that the texture reduces the strength
of the substrate. However, it is observed that the buckling range of the textured diamond
coating is smaller than that of the untextured coating from the contour plot. Obviously,
micro-textures enhance the adhesion of the diamond coating.
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The effect of mechanical interlocking of micro-textures on coating-substrate adhesion
is shown in Figure 9. Regardless of residual stresses and fracture of the coating, a stronger
adhesion between the coating and the substrate occurs than that of the non-textured coating.
Strong mechanical interlocking was formed between the membrane substrates. The texture
density is πr2/ab = α. If the toughness of the coating is high enough, the coating-substrate
adhesion is only related to the texture profile and the shear and tensile strength of the
interface, as shown in Equations (2)–(4).

σbab = σbπr2/α = Fi (2)

(τb sin θ + σb cos θ)πr2 + σb

(
ab− πr2

)
= Fj (3)

θ = arctan f ′(x) (4)

where τb is the shear strength of the interface, σb is the tensile strength, θ is the angle
between the tangent direction of the interface curve and the Y axis, f (x) is the profile
function, a is the length, r is the texture radius, and Fi is Textured coating adhesion, F is the
non-textured coating adhesion.



Crystals 2023, 13, 1034 9 of 18

Crystals 2023, 13, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 9. Micro-textured coating-substrate mechanical interlocking. 

However, as shown in Figure 7, the fracture of the coating at the edge of the textures 
indicates that the toughness of the coating affects the coating-substrate mechanical inter-
locking of the texture. Therefore, the model considering coating fracture is more reasona-
ble. The fracture of the microtextured edge diamond coating exists in two forms: cracks 
perpendicular to the interface and cracks parallel to the interface. The shear strength, frac-
ture strength, thickness of diamond coating and the size of micro-textures affect the me-
chanical properties of the coating-substrate system. The shear force and normal force that 
the textured diamond coating could bear are shown in Equation (5). The fracture position 
of textured coating can be determined by the formula. 

1 2

3 2

+
+

i i

i d i

j d i

F S
F S S
F S S

σ

σ

σ
σ σ
τ σ

 =
 =
 =

 (5)

where σd is the tensile strength of the interface, τd is the shear strength of the interface, a 
and b are the side lengths, and σ and τ are the tensile strength and shear strength of the 
diamond coating, respectively. S1 is the parallel fracture area, S2 is the interface fracture 
area, and S3 is the vertical fracture area. Their calculation formulas are:S1 = π[r2 − (r − h)2], 
S2 = πr2(1/α − 1), S3 = 2πrh. 

Micro-textures produce a mechanical interlocking effect between coating and sub-
strate, which produce the coating adhesion are increased to a certain extent. However, the 
selection of micro-texture size is very critical. It is mentioned in the relevant literature that 
the above normal bond force is 200 MPa, and the tensile strength and shear strength of 
CVD diamond coating are 580 MPa and 348 MPa [35]. The calculated area is assumed to 
be 0.1 × 0.1 mm, and the radius of the texture and the thickness of the coating are variables. 
As shown in Figure 10, Fσi represents the force required for the coating to peel off when 
the fracture occurs parallel to the interface. Fσj represents the force required for the coating 
to peel off when the fracture position occurs perpendicular to the interface. As the thick-
ness of the diamond coating increases, the normal delamination force of the diamond 
coating shows an obvious upward trend. When the texture radius is small, and the coating 
thickness is large, the curved surfaces of the two forces intersect, forming a demarcation 
line, and the position of the fracture becomes parallel to the interface. Compared with the 
untextured samples, the effect of texture on improving the adhesion of coating is very 
obvious. 

Figure 9. Micro-textured coating-substrate mechanical interlocking.

However, as shown in Figure 7, the fracture of the coating at the edge of the tex-
tures indicates that the toughness of the coating affects the coating-substrate mechanical
interlocking of the texture. Therefore, the model considering coating fracture is more
reasonable. The fracture of the microtextured edge diamond coating exists in two forms:
cracks perpendicular to the interface and cracks parallel to the interface. The shear strength,
fracture strength, thickness of diamond coating and the size of micro-textures affect the
mechanical properties of the coating-substrate system. The shear force and normal force
that the textured diamond coating could bear are shown in Equation (5). The fracture
position of textured coating can be determined by the formula.

Fi = Sσi
Fσi = S1σd + S2σi
Fσj = S3τd + S2σi

(5)

where σd is the tensile strength of the interface, τd is the shear strength of the interface, a
and b are the side lengths, and σ and τ are the tensile strength and shear strength of the
diamond coating, respectively. S1 is the parallel fracture area, S2 is the interface fracture area,
and S3 is the vertical fracture area. Their calculation formulas are: S1 = π[r2 − (r − h)2],
S2 = πr2(1/α − 1), S3 = 2πrh.

Micro-textures produce a mechanical interlocking effect between coating and substrate,
which produce the coating adhesion are increased to a certain extent. However, the selection
of micro-texture size is very critical. It is mentioned in the relevant literature that the above
normal bond force is 200 MPa, and the tensile strength and shear strength of CVD diamond
coating are 580 MPa and 348 MPa [35]. The calculated area is assumed to be 0.1 × 0.1 mm,
and the radius of the texture and the thickness of the coating are variables. As shown in
Figure 10, Fσi represents the force required for the coating to peel off when the fracture
occurs parallel to the interface. Fσj represents the force required for the coating to peel off
when the fracture position occurs perpendicular to the interface. As the thickness of the
diamond coating increases, the normal delamination force of the diamond coating shows
an obvious upward trend. When the texture radius is small, and the coating thickness is
large, the curved surfaces of the two forces intersect, forming a demarcation line, and the
position of the fracture becomes parallel to the interface. Compared with the untextured
samples, the effect of texture on improving the adhesion of coating is very obvious.
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Under the premise of considering the fracture of diamond coating, the fracture strength
and coating thickness of the diamond coating has a significant effect on the normal delam-
ination force of the textured diamond coating. The adhesion of diamond coating can be
greatly improved by increasing the toughness of the coating and choosing the appropriate
texture size and thickness of the coating.

3.4. Effect of Micro-Textures on Residual Stress of Diamond Coating

In addition, due to the particularity of the CVD process, the residual stress gener-
ated inside the coating-substrate system and micro-textures affect the stress state of the
coating. The stress distribution characteristics of the texture edge were analyzed by thermal-
structure coupling simulation, as shown in Figure 11. There is a stress concentration at
the edge of the texture. Excessive stress greatly promotes the propagation of cracks inside
the diamond coating, and the large difference between the stress in the coating and sub-
strate also results in the propagation of interfacial cracks. In coating-substrate systems,
normal stress is the main cause of opening-type cracks (Type I). It can be observed in
Figure 11b that there is normal compressive stress in the coating inside the micro-texture,
which undoubtedly strengthens the coating-substrate mechanical interlocking effect of
the micro-texture. At the texture edge, there is tensile stress inside the substrate, so the
toughness of the substrate has a significant effect on the adhesion of the coating-substrate
system. During the cooling process of the coating-substrate system, the shear stress of the
coating exhibits symmetry, as shown in Figure 11c, and the stress state inside the coating
is opposite to that of the substrate. In order to explore the variation law of stress near the
interface, a line segment is inserted at the interface near the texture edge, and it is found
that the equivalent stress of the texture edge is larger, and the minimum stress exists in the
region near the texture edge. The stress state at the coating-substrate interface inside the
texture is compressive stress, which gradually transforms into tensile stress as the distance
increases.
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In conclusion, the microtextures suppressed the propagation of interfacial cracks and
enhanced the adhesion properties of the coatings. Without considering the residual stress,
the mechanical interlocking effect of the coating substrate produced by the texture is the
main reason that affects the adhesion performance. The fracture strength, coating thickness,
radius, and area ratio of micro-textures of the coating significantly affect the delamination
force of the coating. In addition, the existence of micro-texture also affects the residual
stress of diamond coating, which puts forward higher requirements on the toughness of
diamond coating and substrate. The high toughness of diamond coating and substrate
becomes the premise of forming the coating-substrate mechanical interlocking.

4. Study on Cutting Performance of Textured Diamond-coated Cutting Tools
4.1. Textured Diamond-Coated Tools

Micro-textures were fabricated at the rake face by UV nanosecond laser, diamond
coatings, and WS2 coatings were deposited by HFCVD and RF magnetron sputtering
technology, as shown in Figure 12.
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It is worth noting that the form of our diamond coating is micron diamond coating as
the main body, and there is a thin nano diamond coating at the top (Figure 13), which is
conducive to reducing the micro-cutting effect of micron crystal formation and forming
space for storing solid lubricating coating, and is beneficial to reduce external stress [36],
and the reduction in external stress is conducive to less delamination probability, as shown
in Equation (1). The grain size is controlled by the methane content of the gas source and
the pressure in the chamber. The key to depositing nanocrystalline diamond coating is to
improve the secondary nucleation rate of the diamond coating. From a nanoscale thermo-
dynamic point of view, the nucleation of CVD diamond takes place in the stable region of
the carbon thermodynamic equilibrium phase diagram; in the competitive growth with
graphite, due to the additional pressure induced by the curvature of the nanocrystalline
surface, the diamond shape nuclei are formed prior to graphite, and the role of hydrogen
atoms is to etch the graphitic phase and promote the sp3 hybridization of carbon. Increas-
ing the carbon source concentration can increase the nucleation density and secondary
nucleation rate.
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Figure 13. Micro-nanocrystalline diamond coating.

As shown in Figure 14a, WS2 and diamond coatings of the same thickness are de-
posited, and there is a transition layer W between them. The crystals of WS2 form a sheet
structure and grow perpendicular to the interface. The bonding force between the sheets is
small, leading to the evolution of cracks in the coating (Figure 14b). The lamellar crystal
structure and the small van der Waals forces between the crystals are the basis for the
lubrication of the coating.
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4.2. Anti-Delamination and Anti-Wear of Textured Diamond-Coated Cutting Tools

W/MNDCT and T-W/MNDCT exhibited distinct wear states at the same cutting
parameters and cutting distance, as shown in Figure 15. The most severely worn area
is the crater area, where the cutting temperature is the highest, accompanied by huge
positive compressive stress and shear stress. In the worn area, the micrograins that are
worn into planes can be clearly observed (Figure 15a). As the WS2 coating and surface
nanocrystals wear away, the microcrystals gradually participate in the friction process at
the tool-chip interface. A stagnant layer appears in the local area of the rake face of the
tool, as shown in Figure 15b. Once the coating was worn through, delamination of the
diamond coating appeared immediately due to the direct exposure of the coating-substrate
interface to the action of cutting chips (Figure 15c,d). Obviously, the coating delamination
of diamond-coated tools with textures on the rake face is effectively suppressed. As shown
in Figure 15e–h, the loss of WS2 and the wear of the diamond coating also appear on the
rake face, but there was no delamination of the coating. The main reason lies in the capture
and reuse of WS2 transfer film by micro-textures and the interlocking effect of coating
substrate generated by micro-textures. Therefore, the micro-textures effectively enhance the
coating adhesion, but the micro-textures near the cutting edge produce secondary shear and
increase the cutting force, so the position design of the texture is also particularly important.
Figure 15d,h show different states on the rake face of the tool under the same cutting
amount and cutting time. The rake face of the non-textured tool has a large area of coating
peeling off, while the surface of the textured tool has no obvious coating peeling. This
proves that micro-texture plays an important role in inhibiting coating peeling and wear.
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(c) Coating worn through by chip (d) Coating delamination (e) Initial wear stage of textured tool
(f) Coating wear (g) Crater wear of textured tool (h) Final wear pattern.
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In order to further reduce the external stress(σe) on the coating, reduce the friction
coefficient at the interface, and at the same time ensure sufficient storage of WS2 in the
intergranular space, a thin nanocrystalline diamond coating was proposed to cover the
microcrystalline diamond coating. The method, on the one hand, increases the contact
radius of the diamond coating grain tip and reduces the interface shearing action. On
the other hand, a larger surface roughness is obtained, which is beneficial for storing
WS2 and suppresses the loss of WS2. In the cutting process of diamond-coated tools, the
micro-crystals increase the micro-cutting force between chips, workpieces, and coating. On
the other hand, it could increase the external stress on the coating (Figure 16). Growing
a thin layer of nanocrystalline diamond coating on the microcrystalline diamond coating
can not only avoid too-sharp diamond exposure but also copy the surface morphology
of the microcrystalline to form wave peaks and troughs, which are used to store solid
lubricating coatings.
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In order to understand the coating wear process of the rake face more clearly, the
representative wear topography characteristics were observed and discussed. The synergis-
tic effect of WS2 coating and micro/nanodiamond coating is the key to achieving friction
reduction and wear resistance on the tool front surface. The movement and distribution of
material on the knife-chip contact area can be understood through the morphology of the
tool front surface, and the principle of friction reduction and wear resistance can be further
understood. The nanocrystals of the diamond coating are in the shape of a cauliflower, and
the existence of the base microcrystals leads to the undulating shape of the nanocrystal
coating as a whole, which with many peaks and troughs (Figure 17a). In the initial stage
of the tool-cutting process, the micro-texture captures the transfer film to form a storage
of solid lubricant, and the surface of the diamond coating is covered by WS2 to realize
the lubrication of the tool (Figure 17b). Figure 17c–e reveals the wear process on the tool
surface. With the flow of chips, WS2 is lost due to its own transfer film mechanism. In
contrast, the cauliflower-like diamond grains penetrate the WS2 coating and bear part of
the normal load, which inhibit the loss of the WS2 coating. As the WS2 is depleted, the
nanocrystalline diamond coating gradually participates in interfacial friction. After the
nanocrystalline diamond coating wears, the SLC stored in the valley gradually participates
in friction. When the cauliflower particles are worn, the microcrystalline diamond coating,
nanodiamond coating, and SLC coexist at the friction interface. The WS2 coating in the
grain gap participates in the friction process and minimizes the sticking phenomenon.
Therefore, the textured WS2/micro-nano diamond coating tool not only own the synergistic
friction-reducing effect of the microtextures-SLC but also has the effect of the nanodiamond
coating to inhibit the loss of WS2, which improves the self-lubricating properties of the
tools. Figure 17f–i show the EBS images at the later stage of wear, observing the elemental
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distribution on the surface. Most of the micro-textures produced secondary shearing, and
a large amount of iron was stored inside the textures. There is a white reflective area in
Figure 17g, and EBS shows that there are a large number of carbon atoms in this area, but
there is no W atom (Figure 17h,i), which proves that the WC on the tool substrate is not
exposed, and there is a diamond coating on the surface.
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Figure 17. Micro-morphology of rake face. (a) Nanocrystal diamond coating (b) Initial wear (c) Dis-
tribution of Fe and S elements (d) Nanodiamonds exposed after WS2 loss (e) Secondary shearing
(f) Storage area of solid lubricant (g) Crater wear (h) Distribution of Fe and C elements (i) Distribution
of W element.

4.3. Element Change and Oxidation of WS2 on the Rake Face

Figure 18a,b show the comparison of element distribution in the early and late stages
of wear in the tool crescent area, respectively. The detection of crescent craters shows that
W and S elements are decreasing and Fe elements are increasing, which is caused by the
loss of WS2 and secondary shear. It is worth noting that there are more W elements than S.
On the one hand, W has a stronger response to the energy spectrum, and on the other hand,
WS2 decomposes and oxidizes at high temperatures, and the distribution of O elements
verifies this conclusion. The diamond coating is exposed after WS2 depletion, leading to a
sharp increase in the detected C element content.
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Figure 18. Element distribution of crater. (a) Element distribution in the early stage (b) Element
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The full width at half maximum (FWHM) of the sp3 carbon peak of the micro-nano
composite diamond coating is significantly different from that of the microcrystalline
diamond coating. The broadening of the sp3 carbon peak FWHM and the decrease in the
crystallinity of diamond (the increase in defects and nonlinearity) have a direct relationship,
and the broadening of the diamond peak is also related to the content of sp2 carbon [37].
Figure 19 shows that the ratio of the sp2 carbon peak to the sp3 carbon peak (In/Idiamond)
increased after the cutting test, proving that the graphitization of diamonds occurred
during the cutting process, which was related to the high temperature, oxidation reaction
and the reaction between Fe and C under cutting conditions. The Raman spectrum of
the solid lubricating coating in the interstices of the cauliflower-like nanodiamond grains
has obvious characteristic peaks of WS2, WO3, and graphite, which proves that the solid
lubricating coating in the interstices is a mixture of WS2, WO3, and graphite. The oxidation
reaction of WS2 produces WO3, which also has a certain lubricating effect under high-
temperature conditions. The diamond grains generate graphite at the interface, and the
graphite transfers into the grain gap and continues to participate in the interface friction,
increasing the lubricating performance of the tool-chip interface.
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5. Conclusions

The purpose of this study is to address the challenges associated with the delamination
of diamond coatings and tool wear while avoiding issues of diamond coating fracture
and peeling caused by liquid lubrication and cooling-induced temperature reduction. It is
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especially suitable for use in situations where severe friction occurs. The key findings of
this research are summarized as follows.

1 WS2 forms agglomerates that enclose iron debris at the interface of the abrasive pair,
resulting in a reduction in iron content at the interface and effectively preventing the
graphitization of the diamond coating.

2 Microtexturing enhances the adhesion performance of the diamond coating; however,
stress concentration is observed at the edges of the texture.

3 The combination of microtexturing with WS2 in the micro/nanodiamond coatings
acts as a reservoir for WS2.

4 The textured WS2/micro-nanodiamond-coated cutting tools have demonstrated ex-
cellent wear and peel resistance, with a wear resistance performance exceeding that
of diamond-coated cutting tools by more than three times.

Author Contributions: Z.Z.: Methodology, Experiment, Data curation, Writing—original draft. X.Q.:
Experiment, Writing—review & editing. S.M.: Conceptualization, Supervision. Y.L.: Validation. L.W.:
Investigation, Simulation. X.Z.: Simulation, Writing—review & editing. All authors have read and
agreed to the published version of the manuscript.

Funding: This project is supported by the Science Fund of Shandong Laboratory of Advance Materials
and Green Manufacturing (Yantai) (AMGM2023F01) and the Science Fund of Jiangsu Provincial Key
Laboratory of Precision and Micro Manufacturing Technology (JX23KH008).

Data Availability Statement: Data available on request from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ramasubramanian, K.; Arunachalam, N.; Rao, M.R. Wear performance of nano-engineered boron doped graded layer CVD

diamond coated cutting tool for machining of Al-SiC MMC. Wear 2019, 426–427, 1536–1547. [CrossRef]
2. Zhuang, G.; Zong, W.; Tang, Y.; Cui, Z. Crystal orientation and material type related suppression to the graphitization wear of

micro diamond tool. Diam. Relat. Mater. 2022, 127, 109182. [CrossRef]
3. Xu, J.; Ji, M.; Davim, J.P.; Chen, M.; El Mansori, M.; Krishnaraj, V. Comparative study of minimum quantity lubrication and dry

drilling of CFRP/titanium stacks using TiAlN and diamond coated drills. Compos. Struct. 2019, 234, 111727. [CrossRef]
4. Jiang, G.; Jianguo, Z.; Yanan, P.; Renke, K.; Yoshiharu, N.; Paul, S.; Xiaobin, Y.; Baorui, W.; Dongming, G. A critical review on

the chemical wear and wear suppression of diamond tools in diamond cutting of ferrous metals. Int. J. Extrem. Manuf. 2019, 2,
012001. [CrossRef]

5. Zou, L.; Yin, J.; Huang, Y.; Zhou, M. Essential causes for tool wear of single crystal diamond in ultra-precision cutting of ferrous
metals. Diam. Relat. Mater. 2018, 86, 29–40. [CrossRef]

6. Bulla, B.; Klocke, F.; Dambon, O.; Hünten, M. Influence of Different Steel Alloys on the Machining Results in Ultrasonic Assisted
Diamond Turning. Key Eng. Mater. 2012, 523–524, 203–208. [CrossRef]

7. Tang, Q.; Yin, S.; Chen, F.; Huang, S.; Luo, H. New technology for cutting ferrous metal with diamond tools. Diam. Relat. Mater.
2018, 88, 32–42. [CrossRef]

8. Feng, J.; Qin, Y.; Liskiewicz, T.W.; Beake, B.D.; Wang, S. Crack propagation of a thin hard coating under cyclic loading: Irreversible
cohesive zone model. Surf. Coat. Technol. 2021, 426, 127776. [CrossRef]

9. Ma, D.-D.; Xue, Y.-P.; Gao, J.; Ma, Y.; Yu, S.-W.; Wang, Y.-S.; Xue, C.; Hei, H.-J.; Tang, B. Effect of Ta diffusion layer on the adhesion
properties of diamond coating on WC-Co substrate. Appl. Surf. Sci. 2020, 527, 146727. [CrossRef]

10. Brinksmeier, E.; Gläbe, R.; Osmer, J. Diamond Cutting of FeN-Layers on Steel Substrates for Optical Mould Making. Key Eng.
Mater. 2010, 438, 31–34. [CrossRef]

11. Zou, L.; Huang, Y.; Zhou, M.; Yang, Y. Effect of cryogenic minimum quantity lubrication on machinability of diamond tool in
ultraprecision turning of 3Cr2NiMo steel. Mater. Manuf. Process. 2017, 33, 943–949. [CrossRef]

12. Bounif, K.; Abbadi, M.; Atlati, S.; Nouari, M.; Selvam, R. Modeling and Numerical Simulation of the Cracking of a Diamond-
Coated Cutting Tool during Machining. Key Eng. Mater. 2019, 820, 29–39. [CrossRef]

13. Chai, H. Multi-crack analysis of hydraulically pumped cone fracture in brittle solids under cyclic spherical contact. Int. J. Fract.
2007, 143, 1–14. [CrossRef]

14. Lian, Y.; Chen, H.; Mu, C.; Deng, J.; Lei, S. Experimental Investigation and Mechanism Analysis of Tungsten Disulfide Soft Coated
Micro-Nano Textured Self-Lubricating Dry Cutting Tools. Int. J. Precis. Eng. Manuf. Technol. 2018, 5, 219–230. [CrossRef]

15. Suarez, M.P.; Marques, A.; Boing, D.; Amorim, F.L.; Machado, Á.R. MoS2 solid lubricant application in turning of AISI D6
hardened steel with PCBN tools. J. Manuf. Process. 2019, 47, 337–346. [CrossRef]

https://doi.org/10.1016/j.wear.2018.12.004
https://doi.org/10.1016/j.diamond.2022.109182
https://doi.org/10.1016/j.compstruct.2019.111727
https://doi.org/10.1088/2631-7990/ab5d8f
https://doi.org/10.1016/j.diamond.2018.04.012
https://doi.org/10.4028/www.scientific.net/KEM.523-524.203
https://doi.org/10.1016/j.diamond.2018.06.022
https://doi.org/10.1016/j.surfcoat.2021.127776
https://doi.org/10.1016/j.apsusc.2020.146727
https://doi.org/10.4028/www.scientific.net/KEM.438.31
https://doi.org/10.1080/10426914.2017.1376077
https://doi.org/10.4028/www.scientific.net/KEM.820.29
https://doi.org/10.1007/s10704-006-9047-0
https://doi.org/10.1007/s40684-018-0022-9
https://doi.org/10.1016/j.jmapro.2019.10.001


Crystals 2023, 13, 1034 18 of 18

16. Rosenkranz, A.; Costa, H.L.; Baykara, M.Z.; Martini, A. Synergetic effects of surface texturing and solid lubricants to tailor friction
and wear—A review. Tribol. Int. 2020, 155, 106792. [CrossRef]

17. Li, C.; Duan, L.; Tan, S.; Zhang, W.; Pan, B.; Chikhotkin, V. Study on the effectiveness of WS2 and CaF2 on the performances of
self-lubricating micro impregnated diamond bits. Int. J. Refract. Met. Hard Mater. 2019, 84, 105021. [CrossRef]

18. Lu, Z.; Zhang, C.; Zeng, C.; Ren, S.; Pu, J. A novel design by constructing MoS2/WS2 multilayer film doped with tantalum toward
superior friction performance in multiple environment. J. Mater. Sci. 2021, 56, 17615–17631. [CrossRef]

19. Zhang, Z.; Feng, W.; Lu, W.; Du, X. Preparation and tribological properties of micro-textured diamond/WSx coatings. Surf. Coat.
Technol. 2020, 403, 126369. [CrossRef]

20. Gajrani, K.K.; Sankar, M.R.; Dixit, U.S. Environmentally friendly machining with MoS2-filled mechanically microtextured cutting
tools. J. Mech. Sci. Technol. 2018, 32, 3797–3805. [CrossRef]

21. Xing, Y.; Deng, J.; Wu, Z.; Liu, L.; Huang, P.; Jiao, A. Analysis of tool-chip interface characteristics of self-lubricating tools with
nanotextures and WS2/Zr coatings in dry cutting. Int. J. Adv. Manuf. Technol. 2018, 97, 1637–1647. [CrossRef]

22. Zheng, K.; Gao, J.; Hei, H.; Wang, Y.; Yu, S.; He, Z.; Tang, B.; Wu, Y. Design and fabrication of HfC, SiC/HfC and HfC-SiC/HfC
interlayers for improving the adhesion between diamond coatings and cemented carbides. J. Alloys Compd. 2020, 815, 152405.
[CrossRef]

23. Xiang, D.; Su, Z.; Li, Y.; Zhang, Z. The effect of laser texture on adhesion and tribological properties of boron-doped diamond film
on WC-Co cemented carbide. Diam. Relat. Mater. 2022, 130, 109469. [CrossRef]

24. Zhang, Z.; Lu, W.; Feng, W.; Du, X.; Zuo, D. Effect of substrate surface texture on adhesion performance of diamond coating. Int.
J. Refract. Met. Hard Mater. 2021, 95, 105402. [CrossRef]

25. Zhang, K.; Deng, J.; Ding, Z.; Guo, X.; Sun, L. Improving dry machining performance of TiAlN hard-coated tools through
combined technology of femtosecond laser-textures and WS2 soft-coatings. J. Manuf. Process. 2017, 30, 492–501. [CrossRef]

26. Meng, X.; Zhang, K.; Guo, X.; Wang, C.; Sun, L. Preparation of micro-textures on cemented carbide substrate surface by
plasma-assisted laser machining to enhance the PVD tool coatings adhesion. J. Mater. Process. Technol. 2021, 288, 116870.
[CrossRef]

27. Sojková, M.; Sifalovic, P.; Babchenko, O.; GabrielVanko; Dobročka, E.; Hagara, J.; Mrkyvkova, N.; Majková, E.; Ižák, T.; Kromka,
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