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Abstract: Lithium tantalate crystal is widely used in optical devices, infrared detectors and surface
acoustic wave devices because of its excellent piezoelectric, acousto-optic and nonlinear optical
properties. The Li content of near stoichiometric lithium tantalate (NSLT) crystal is higher than that
of congruent lithium tantalate (CLT) crystal. Therefore, the performance of NSLT crystal is better
than that of CLT crystal in some aspects. This article reviews the physical properties, preparation
methods and current research status in acoustics and optics of NSLT crystals. It also looks forward
to the improvement of NSLT crystal preparation methods and their applications in surface acoustic
wave (SAW) filters and optics. With the increase of Li content, the acoustic performance of NSLT
crystals is expected to be comprehensively improved, achieving the application of SAW filters in
5G communication.

Keywords: near stoichiometric lithium tantalate; physical property; optical application; acoustic
application

1. Introduction

Lithium tantalate (LiTaO3, LT) crystal has been widely used in the fields of acoustics
and optics due to excellent electro-optic, non-linear optical [1,2], piezoelectric and pyro-
electric properties [3]. At present, commercial LT crystals are mainly CLT crystals with
Li:Ta = 48.5:51.5. A large number of defects appear due to the lack of Li in the CLT crystal,
including Li vacancy defects (VLi) [4], Ta inversion defects (TaLi) [5], etc. Li vacancy defects
will increase the coercivity field in the crystal [6], and TaLi antiposition defects (Ta at Li site)
will cause optical damage effects [7]. Therefore, how to reduce the internal defects of LT
crystals has become a hot research topic.

There are two ways to reduce the internal defects of crystals. One is doping with other
ions [8], such as Fe and Mg. The other way is growing NSLT crystals with Li: Ta = 1:1,
which has lower coercive field, lower refractive index and higher Curie temperature [9,10].
Therefore, it is necessary to study the growth of NSLT crystals.

LT crystal has been applied in SAW filters. With the advent of the 5G era, the per-
formance of traditional filters cannot meet the market demand, so we must improve the
performance of SAW filters from the material or technology aspect. In terms of materials,
it is necessary to improve the electromechanical coupling coefficient (K2), and reduce the
temperature drift coefficient (TCF) and insertion loss. Because the NSLT has better optical
properties and higher sensitivity [11], it can be used as an optical information storage
material and laser frequency doubling material [12]. Therefore, NSLT crystal has great
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application prospects in acoustics and optics. Based on this, this paper reviews the physical
properties, growth methods, and applications in optics and acoustics of NSLT crystals and
looks forward to the research and application hot spots of NSLT crystals. It is expected that
NSLT crystals will meet the application of SAW filter devices in the future.

2. Physical Properties of Crystals

At present, the commonly used crystal is CLT crystal with Li:Ta = 48.5:51.5. Due to
the lack of lithium, a large number of defects appear in LT crystals, including Li vacancies
and TaLi antiposition [13] defects. In order to reduce the internal defects, Katz proposed
the NSLT crystal with Li:Ta close to 1:1, and the phase diagram is shown in Figure 1. It can
be seen from the phase diagram that the Curie temperature of the crystal is different when
the content of Li is different [14].
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Figure 1. Phase diagram of LT crystal [14].

Shi et al. [15,16] found through analysis of the Raman and OH- absorption spectra
of CLT and NSLT crystals, which, as the Li content in the crystal increases, the Raman
peak linewidth at 142 cm−1 and 861 cm−1 decreases, while the half peak width of the OH-

absorption spectrum at 3461 cm−1 becomes narrower, both of which have quantitative
relationships and can be used to determine the composition of LT crystals. The Raman peak
at 278 cm−1 is related to VLi, while the Raman peak at 750 cm−1 is related to the vibration of
anti TaLi

4+ ions. As the Li content increases, the peaks at 278 cm−1 and 750 cm−1 continue
to decrease and eventually tend to disappear, representing a decrease in the number of
intrinsic defects in the NSLT crystal. Hydrogen is an inevitable natural impurity in the
growth process of LT crystals. In CLT crystals, H ions are prone to occupying VLi and
forming hydrogen defects. However, NSLT crystals do not have defects related to H ions
due to the few defects in the crystal, and according to research, other impurity ions are
prone to occupying VLi before occupying other positions [17].

The composition of NSLT crystal is more uniform than CLT crystal, so NSLT crystal
has a lower coercive field [18–20], higher photorefractive damage threshold [21] and greater
electro–optic coefficient [22] and thermal conductivity [18].

It can be seen from Table 1 that the coercivity field of CLT crystal is more than 10-times
larger than NSLT crystal. Low coercivity field requires lower electric field strength to
conduct domain inversion [23], so the voltage used for domain inversion of NSLT crystal is
lower. Wirp et al. [24] fitted the relationship between Li concentration and coercive field
strength according to the formula. As shown in Figure 2, the coercive field and internal
electric field of LT crystal decrease with the increase of Li content. The thermal conductivity
of the NSLT crystal is about twice that of the CLT crystal. This is because the NSLT crystal
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has fewer defects, which reduces the phonon scattering caused by lattice defects so as to
reduce thermal conductivity. Because the reduction of lithium vacancies promotes thermal
diffusion, the thermal diffusion coefficient of the NSLT crystal is about twice that of CLT
crystal [25].

Table 1. Performance comparison of CLT crystal and NSLT crystal [14,18,19,24–26].

Coercive Field
(V/m)

Curie Temperature
(◦C) Domain Shape Sound Velocity

(m/s)

Thermal
Conductivity

W/(m·K)

Thermal
Diffusivity
(10−4 m2/s)

CLT 21,100 603 triangle 3294 4.67 0.0156
NSLT 2000 693 hexagon 8.78 0.0288
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Figure 2. Changes of coercivity field and internal electric field of LT crystals with different Li
concentrations fitted according to the formula [24].

In addition, after applying an electric field, the isolated domain shape of CLT crystal
is triangular [27]. The domain wall is along the x-axis direction [2], while the domain wall
of NSLT crystal is hexagonal [27]. The domain wall is along the y-axis direction, and the
domain wall configuration is shown in Figure 3. It can be seen from the figure that with
the increase of Li content, the domain wall shape will change from triangular to hexagonal.
The hysteresis loops of CLT crystal and NSLT crystal are very different [28]. It can be seen
from Figure 4 that the spontaneous polarization intensity of the CLT crystal changes more
with the change of electric field. The change of spontaneous polarization intensity of NSLT
crystal is smaller [2], which also proves that NSLT crystal has a smaller coercivity field than
CLT crystal.
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The Curie temperature of LT crystal is closely related to the Li content [29]. It can be
seen from Figure 5 that with the increase of Li content, the Curie temperature will increase.
When the Li content is close to the stoichiometric ratio, the Curie temperature reaches
690 ◦C, and the increase of Curie temperature represents the decrease of defects in the
crystal. Therefore, with the increase of Li content, the internal defects of LT crystal decrease.
At the same time, the Li content is also related to the acoustic properties of LT crystal. The
elastic constant of LT crystal increases with the increase of Li content, except for the elastic
constant C44, which decreases when it approaches the stoichiometric ratio [30]. Therefore,
with the change of Li content, the surface acoustic wave propagation characteristics also
change. For example, in the case of 33RY-XLT crystal cutting, by adding 1 mol% Li2O [30],
the speed of leaky surface acoustic wave (LSAW) increases by 23.8 m/s.
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In conclusion, the NSLT crystal has fewer defects, smaller coercive field and larger
thermal conductivity and thermal diffusion coefficient than the CLT crystal. Hence, the
comprehensive performance of NSLT crystal is better than the CLT crystal.

3. Crystal Preparation Methods

At present, the main methods for preparing NSLT crystals are double crucible Czochral-
ski method (DCCZ) [31], K2O cosolvent method [32] and vapor transport equilibrium (VTE)
method [33]. The VTE method can grow various components of LT crystals [34].

3.1. Double Crucible Czochralski Method

The DCCZ method is one of the most commonly used techniques for the preparation
of NSLT crystals [31]. Kitamura et al. [28,35,36], of Japan, successfully prepared NSLT
crystals by using the double crucible continuous packing technique and carried out periodic
polarization research. In 1999, Furukawa et al. [37] grew colorless, transparent, and crack
free NSLT crystals with a diameter of 45 mm and length of 80 mm by the DCCZ method, and
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no mechanical twins were found. The advantage of this method is that the convection effect
is reduced, and the service life of the crucible is prolonged due to the surface level of the melt
during crystal growth. The grown NSLT crystal is shown in Figure 6. Kumaragurubaran
et al. [38] used the DCCZ method to grow NSLT crystals with a diameter of four inches.
They believed that the main problem in the growth of NSLT crystals by this method was
that the instability of the temperature field led to the occurrence of cracks and twins.
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The equipment structure of DCCZ method is shown in Figure 7. The technology over-
comes the problem of uneven composition of LT crystal grown by the Czochralski method.
The DCCZ method has a smooth and continuous powder supply system [30], so that the
whole crystal homogeneous doping and stoichiometric control can be realized. However,
the DCCZ method has high equipment requirements and is a complex process, and it has
the disadvantages of high production cost and difficulty in controlling the temperature
field [39]; therefore, it is necessary to find other methods with less disadvantages and a
simple process to prepare NSLT crystals.
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3.2. Cosolvent Method

The principle of the cosolvent method is to use a flux to reduce the melting point of
LT crystals, thereby reducing the difficulty of NSLT crystal growth [39]. The specific steps
are to produce LT polycrystalline powder using high-purity H2TaF7 and Li2CO3 through
multiple processes, and then, convert it into LT crystal. Jia [32] and others prepared NSLT
crystal by adding K2O cosolvent. The crystal is shown in Figure 8. The Curie temperature of
the prepared crystal is 673 ◦C, which indicates that the composition of the prepared crystal
is close to near stoichiometric, and it can be expected to be applied in optics. The growth
of NSLT crystals by the cosolvent method will inevitably introduce some impurities [40],
which will lead to crystal impurity. Therefore, other methods are needed to grow relatively
pure NSLT crystals.
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3.3. Diffusion Method

An example of the experimental setup used in the diffusion method, also known as
VTE method, is shown in Figure 9 [41]. During the treatment, the crystal composition
changes due to the exchange of Li2O.
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In 2018, Yang et al. [42] prepared NSLT crystals with a thickness of 3.1 mm and
diameter of 56 mm by VTE method. The content of Li with different thicknesses were
calculated by the Curie temperature method. The Curie temperature is shown in Figure 10.
It was found that the Curie temperature is close to 694 ◦C, and the measured positive
and negative polarization electric fields are 159 V/mm and 145 V/mm, respectively. The
composition in the crystal is basically uniform.
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Yang et al. [43] found that when the NSLT was grown by VTE method, the temperature
had a great influence on the crystal structure and properties. Stoichiometric lithium
tantalate (SLT) could not be grown at 1100 ◦C and the twin defects appeared when the
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temperature was low. Meanwhile, the plane of the crystal was {0112} plane and the
appearance of twins would make the crystal crack. It was found that when the crystal was
treated at 1350 ◦C for 250 h, the growth rate of SLT was higher. The Curie temperature
of crystal growth is 693.8 ◦C. The NSLT crystals can be prepared by the VTE method, but
there are also certain problems. The first problem is the thickness of the wafer. The NSLT
crystals are very thin, about a few millimeters. It can be seen from Figure 10 that although
the Curie temperatures of different thicknesses are close, there is still a difference of about
10 ◦C, which indicates that the uniformity of Li cannot be achieved.

In conclusion, the main methods for growing NSLT crystals include DCCZ method
and VTE method. Each method has its advantages and disadvantages; as shown in Table 2,
the DCCZ method can theoretically grow high-quality NSLT crystals, but it is expensive
and process parameters are difficult to control. The VTE method has the advantages of
simple operation process and low cost, and it is the best method to reduce the production
cost of high-quality SAW filters. However, using VTE method to prepare NSLT wafers
can easily lead to surface warping, twinning grain boundaries, and inability to control
the Li content inside the wafers. Therefore, it is necessary to improve the VTE method
preparation process in order to achieve mass production of high-quality NSLT wafers.

Table 2. Comparison of advantages and drawbacks of crystal preparation methods.

Preparation Method Advantage Drawback

DCCZ method 1. Uniform doping of crystals
2. Stoichiometry can be controlled

1. Complex process
2. High production costs
3. The temperature field is
difficult to control

Cosolvent method 1. Crystal composition closer to
stoichiometric ratio 1. Easy to introduce impurities

VTE method 1. Simple operation process
2. Low production cost

1. Temperature has a significant
impact on crystal structure
2. The crystal is very thin
3. Uneven distribution of Li ions

4. Application of Crystal in Optics

CLT crystals have many defects, and the TaLi antiposition defect is an important reason
for the optical damage effect [7]. Therefore, the application of NSLT crystals with fewer
defects to the optical field will improve the performance of optical devices and doped NSLT
crystals can further improve the optical performance of crystals.

Kostritskii et al. [44] found through Raman spectroscopy and infrared reflection spec-
troscopy that the structure of NSLT crystal is a mixture of LT main structure and ilmenite-
like structure, and this method can quickly determine the electro–optical and nonlinear
optical coefficients of the crystal. The current problem is the uneven distribution of Li
ions in NSLT crystals, but the composition of NSLT crystals prepared by VTE technology
is almost uniform, which is expected to be used to produce NSLT crystals with uniform
composition for integrated optical devices [45].

Kumaragurubaran et al. [35] studied the NSLT crystals doped with MgO of different
concentrations. When the MgO concentration reaches 0.7%, the photorefractive damage
resistance reaches 670 kw/cm2, which is much higher than the undoped NSLT crystals.
Nan et al. [46] measured the NSLT crystals doped with different concentrations of MgO
and measured the Curie temperature and coercive field. It was concluded that the NSLT
crystals doped with 1% MgO have good uniformity, which also reduces the photorefractive
properties of the crystal itself. Stable Second Harmonic Generation can be achieved by
periodically poling MgO doped in NSLT crystals, which can be used to fabricate optical
parametric oscillators (OPO) [47–49]. At the same time, the NSLT crystal has good unifor-
mity, recordability and erasability, which makes it one of the best materials for holographic
memory.
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4.1. Holographic Memory

The advantage of holographic memory is that it can write and erase information
repeatedly, but the disadvantage is instability, i.e., an erasing operation may occur during
writing and reading [50,51]. Hence, it is necessary to find more stable materials to make
holographic memory. LT crystal has become one of the best choices for holographic storage
materials because of its readability, erasure and good optical parameters [52–55]. LT crystal
has a storage density of 1012 bits/cm3, a high transmission speed of 109 bits/s, a small
proton mobility and has a longer dark storage time [56] than Fe-CLN crystal (1 year). CLT
crystal has serious disadvantages, including long recording time, long erasing time and low
optical efficiency [57]. At the same time, NSLT crystal also shows higher response speed
and sensitivity [11].

Holographic storage technology uses a laser to change the refractive index to record
information, and volatility is the change of refractive index with time. It can be seen from
Figure 11 that the non-volatile property of NSLT is very good. After a long time, the
refractive index change of the crystal is very small, while the non-volatile property of near
stoichiometric lithium niobate (NSLN) and doped NSLN is very poor [58]. Liu et al. [58]
studied the reading, writing and erasing process of NSLT holographic storage. The reading,
writing and erasing process is shown in Figure 12. It is found that NSLT as a holographic
storage material has the characteristics of high sensitivity and good non-volatile property,
so NSLT is a potential holographic storage material.
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Hsu et al. [59] think that doping Fe and Mg in NSLT crystal can improve the photore-
fractive properties and has high sensitivity. The recording time and sensitivity decrease
with the increase of light intensity, and the diffraction efficiency increases with the increase
of light intensity. Therefore, NSLT crystal is one of the best choices as holographic storage
materials.
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4.2. Application of Nonlinear Optics

At present, the main applications of NSLT crystal in nonlinear optics are optical
parametric oscillators and laser generators. Because NSLT crystal has lower coercive field
than CLT crystal, it is more suitable for making periodic polarization devices. Nan et al. [46]
fabricated a 35 mm long optical oscillator with NSLT crystal. The maximum conversion
efficiency is 65%. As shown in Figure 13, when the input power is 1 W, the output power is
600 mW. Rautiainen et al. [60] used the NSLT crystal to double the frequency in the cavity
of a semiconductor laser and found that the second harmonic of 610 nm can be generated.
The output power can reach 730 mW. Li et al. [61] used waveguide by direct femtosecond
laser writing and a tunable titanium sapphire laser source. By adjusting the temperature
of MgO doped periodically polarized NSLT crystals from 60 ◦C to 200 ◦C, they were able
to tune and generate ultraviolet light in the range of 396–401 nm. Antsygin et al. [62]
studied the influence of low temperature on the birefringence and ultraviolet absorption
edge of NSLT. The research showed that with the cooling of the crystal, the ultraviolet
absorption blue shifted by 8 nm at 1 THz, and its birefringence became larger, reducing the
difficulty of Quasi-phase-matching. Rowley et al. [63] achieved broadly tunable in near-
infrared (900–1350 nm) using an OPO based on periodically polarized NSLT crystals, with
an average power of up to 150 mW at a repetition frequency of 532.3 MHz. Lee et al. [64]
obtained a high-purity source of correlated photon pair at 711 nm using periodically
polarized MgO doped NSLT crystals under a 355.7 nm pump laser.
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NSLT crystal has great potential in holographic memory devices and nonlinear optics,
especially in making holographic memory. Therefore, further research on the optical
properties of NSLT crystal and its use in holographic storage technology can realize the
storage technology with larger internal memory and faster reading speed, which is expected
to realize the reform of storage technology.

5. Application of Crystal in Radio Frequency SAW Filter

LT crystal is famous for low acoustic loss, high piezoelectric coupling coefficient and
electro–optic properties. Therefore, this material is widely used in the manufacture of
SAW filters. At present, 70% of radio frequency SAW filters are made of LT and LN single
crystals. Radio frequency filters are generally used at frequencies below 2.5 GHz, while
the frequency range of SAW filters used in mobile phones is 800 MHz to 2.5 GHz. The
function of a SAW filter is to filter out clutter in other frequency bands. A communication
frequency band needs several SAW filters. There are 5 communication frequency bands in
3G network and nearly 40 communication frequency bands in 4G network [64]. In the 5G
era, there will be more than 60 communication frequency bands. Therefore, communication
equipment needs more and more SAW filters. There are more and more requirements for
SAW filters, including smaller size, better performance, wider frequency band and lower
loss. At present, the best way to reduce the volume of a SAW filter is wafer level packaging
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(WLP) technology. Of course, to realize the application, we need to reduce the TCF. If the
TCF is too high, a frequency shift of the equipment will occur [65].

In recent years, 5G technology is gradually maturing and 5G communication equip-
ment has been initially developed. With the improvement of 5G communication equipment,
it will face more and more clutter. Therefore, there are greater requirements for the volume
and performance of SAW filters, including TCF and service life. The result of research has
shown that the small diplexer based on LT structure has a longer lifetime [41].

The elastic wave propagating along the surface of an object is called surface acoustic
wave. The propagation characteristics of SAW are mainly determined by the following
parameters, including wave velocity, K2 of piezoelectric substrate, quality factor (Q) and
TCF [66]. The K2 represents the conversion efficiency between electrical energy and me-
chanical energy, which mainly depends on the piezoelectric properties of materials, cutting
or crystal orientation, and the type of propagating wave. The Q represents the loss of the
circuit which is the average contrast ratio of the energy stored, and the power consumed
in an operational cycle [66]. TCF represents the thermal stability of frequency and TCF
depends on the elasticity, piezoelectric constant and dielectric constant of the piezoelectric
substrate [67]. These parameters related to SAW filters are related to the performance of
the piezoelectric substrate, so improving the performance of the piezoelectric substrate is
very important to improve the performance of SAW filters.

It can be seen from Figure 14 that [67] the K2 of multi domain NSLT crystal is higher
than that of the single domain CLT crystal, and the K2 reaches the maximum when
Li:Ta = 1:1. It can be seen from Figure 15 that the sound velocity increases with the increase
of Li content.
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In conclusion, LT crystal is suitable for making filters and the K2 of NSLT crystal is
larger than CLT crystal. The defects of NSLT crystal are less than CLT crystal, and the
performance of NSLT crystal is better than CLT crystal. If the NSLT crystal is used in the
fabrication of SAW filters, it is expected to improve the performance of the filter itself by
reducing the TCF and realizing the application of SAW filters in 5G communication.
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6. Expectation

LT crystals are widely used in optical and acoustic fields because of excellent piezo-
electric, pyroelectric and nonlinear optical properties. The NSLT crystal has less defects
and better performance than the CLT crystal, so it is expected to replace the CLT crystal in
some fields. In order to realize the application of NSLT crystal in acoustics and optics, we
should continue to strengthen the research in the following aspects.

The growth of large size and high quality NSLT crystals is a problem. Large size
NSLT crystals can be grown by the DCCZ method. The quality of the crystals are excellent,
but there are some problems, such as complex equipment, unstable temperature field
and additionally, they are easy to crack. The properties of NSLT crystals prepared by the
cosolvent method are better than CLT crystals, but impurity ions are introduced. Although
the VTE method has a simple process, low cost and can prepare high-quality NSLT wafers,
it has poor repeatability, and the prepared wafers are prone to problems such as uneven
distribution of Li ions, twinning and cracking. Therefore, a new method is needed to grow
NSLT crystals. After multiple theoretical and experimental studies, our research group
has proposed using guided mode method [69] to grow NSLT crystals, which can solve
problems such as component segregation and small crystal volume growth. Further study
of the growth of NSLT crystals by the guided mode method is required.

To explore and strengthen the application of NSLT crystals in sound and light. The
research of NSLT crystal focuses on the optical application, but neglects the acoustic
research, including some physical parameters, such as TCF, etc. The performance of NSLT
crystal is better than CLT crystal. Whether the performance of SAW filters can be improved
by using NSLT crystal instead of the CLT crystal, and then, be directly applied to 5G
communication equipment, is a research direction. In addition, the CLT crystal can reduce
the pyroelectric effect in the chip through reduction treatment [70], reduce the damage of
devices caused by the accumulated charge due to heating and reduce the transmittance.
The reduced NSLT crystal sheet can be directly applied to the fabrication of SAW filters;
whether the performance of SAW filters can be improved is also a research focus. At present,
it is known that cooling can improve the birefringence of crystals, but no one has studied
the specific mechanism of the influence of defect concentration on birefringence, including
the mechanism of the influence on the ultraviolet absorption edge. This is also one of the
main reasons why NSLT crystals have not been truly applied in optics.
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