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Abstract: Liquid lead–bismuth eutectic alloy is one of the candidate coolants for fourth-generation
nuclear power systems because of its good physical and chemical properties, neutron economic
performance, and safety. However, the compatibility between the coolant and structural steel is still
the main factor restricting its large-scale industrial application in the nuclear energy field. Structural
steel in a liquid lead–bismuth eutectic alloy for a long time would cause severe corrosion. The erosion
of structural steel by high-flow-rate liquid lead–bismuth alloy will lead to a more complex corrosion
process. This paper mainly reviews the corrosion characteristics of liquid lead–bismuth and the
corrosion behavior of structural steel in liquid lead-bismuth eutectic. The main methods of inhibiting
liquid lead–bismuth corrosion are summarized, and future research directions are suggested.
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1. Introduction

Energy is an important material basis for human existence. With the rapid devel-
opment of society and mankind’s increasing demand for energy, the issue of energy has
attracted the attention of countries around the world. At present, traditional fossil fu-
els are being depleted and are accompanied by pollution problems. Nuclear power is
a comparatively mature clean energy industry and has been highly valued by countries
around the world. The further development of nuclear energy should improve safety and
efficiency in addition to solving problems such as nuclear fuel supply and nuclear waste
disposal. Currently, lead-based reactors are considered to be one of the most effective
solutions [1–3]. With the development of fourth-generation nuclear power technology,
the research of liquid metal as fast reactor coolant is becoming more and more advanced.
Liquid lead–bismuth eutectic (LBE) is a cooling agent for lead-cooled fast reactors (LFR)
and is one of the candidates for accelerator-driven subcritical (ADS) reactors and mainly
has the following advantages [4–7]:

(1) LBE has very high heat conductivity and can rapidly export the heat generated by
nuclear reactions. Additionally, LBE has a low melting temperature and a high
boiling point.

(2) LBE has excellent neutronics properties with a narrow neutron absorption cross
section and low neutron-slowing behavior.

(3) Lead alloy materials have excellent heat transfer and resistance to radiation. The
components of lead-based reactor systems can be designed to be simple and more
compact, making them easy to manufacture in small modular sizes.

(4) Lead-based reactors have high nuclear fuel utilization, low waste, long life cycles,
high coolant outlet temperature, high energy utilization, and good economic viability.
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(5) The chemical activity of LBE is very low, and it hardly reacts when in contact with
air and water. Due to its chemical inertness, it eliminates some safety hazards and
increases the safety of the reactor.

However, there are compatibility problems, such as liquid metal corrosion with LBE
coolant for the currently promoted international candidate structural materials for reactors,
which impede the progress of LFR engineering applications. Liquid metal corrosion is an
important material property degradation phenomenon. The factors affecting the corrosion
of liquid metals are complex, such as the composition of the material; its structure; and the
oxygen concentration, temperature, and flow rate of the LBE. Numerous studies have been
conducted on austenitic stainless steels (e.g., 316L, etc.) [8–14], ferritic/martensitic steels
(e.g., T91, etc.) [11,13,15–23], ODS steel, etc. [24–29], in LBE corrosion. The experiments
were mainly focused on the temperature range of 300 ◦C–800 ◦C, the time from 100 h to
15,000 h, the oxygen concentration from 10−12 wt% to oxygen saturation, and the flow state—
including static and dynamic (0–5 m/s). The large amount of experimental data provides a
good basis for the subsequent study. Scientific workers have conducted large amounts of
research on the corrosion of structural materials with LBE [5,12,30–43], which provides an
important basis for subsequent material optimization and material selection. This paper
mainly reviews the basic structure of liquid lead–bismuth corrosion characteristics, and the
main methods of inhibiting liquid lead–bismuth corrosion are summarized.

2. Corrosion Characteristics of LBE

For the corrosion characteristics of structural materials in LBE, three main methods
are studied: static corrosion experiments, dynamic corrosion experiments, and large loop
experiments. Its main manifestations include the following four aspects:

2.1. Dissolution Corrosion

Dissolution in LBE is one of the basic forms of liquid LBE corrosion. When the steel
material is in liquid LBE, the metal elements in the steel material will dissolve into the liquid
LBE at a low oxygen (CO < 5 × 10−7 wt%) concentration [9,12,32,38,44,45] (Figure 1) [46].
This is usually characterized by the transfer of material components for example, Ni, Fe, or
Cr to the liquid phase, continuing until saturation [14].
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Figure 1. (a) Schematic diagram for corrosion of austenitic steel in LBE with low oxygen concentration.
(1) Alloying elements begin to dissolve in the LBE. (2) LBE begins to penetrate and continues to
dissolve. (3) Infiltration of Pb–Bi particles deeper into the substrate. (b) Diagram of corrosion in
high-oxygen-concentration LBE. (1) A poorly protective oxide layer (Cr, Fe)Ox is formed. (2) The
oxide layer is destroyed due to stress. (3) Oxidation continues on the new surface. Reprinted with
permission from Ref. [46]. 2022, Serag, E.
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In the isothermal liquid metal loops for 316L corrosion experiments, the content of
each alloying element in LBE was measured as shown in Table 1 [47]. Due to the different
solubility and dissolution rates of different elements in LBE, selective dissolution of steel
materials tends to occur in LBE. Dissolution experiments of 316L were conducted in LBE,
and preferential dissolution of Ni was observed after temperature control at 500 ◦C for
3000 h. The analysis concluded that the dissolution kinetics of 316L were controlled by
the dissolution reaction rate of Ni [10]. Since the solubility and dissolution rate of metal
elements in liquid LBE vary greatly, the degree of corrosion of materials in liquid LBE
varies [9,32–34]. As the dissolution speed of Ni in LBE is large, the higher the Ni element
content of the material, the more severe the dissolution corrosion will be.

Table 1. The concentration of elemental impurities in LBE and the actual measured composition of
316L stainless steel. Data transferred from Ref. [47].

Loop
Temperature

Sampling Time
after Startup

Impurity Concentration [mass ppm]

Fe Cr Ni Mn

400 ◦C 1800 h 4 2 14 0.3
450 ◦C 1300 h 15 2 74 0.4

316L stainless steel composition [%] 64.3 17.4 13.1 1.7

Dissolution is a more serious type of corrosion, and the root cause of its occurrence is
the composition of steel elements in the liquid lead–bismuth which have a certain degree
of solubility, including Ni, Mn, Fe, Cr, and other significantly dissolved elements [48–51].
Dissolution corrosion does not end on its own, but rather, under certain conditions, it will
continue to act until the structural steel fails [4].

2.2. Corrosion by Oxidation

If the oxygen concentration in LBE is more than 10−6 wt%, the elemental O in liquid
LBE will react chemically with the metal elements (Fe, Cr, etc.) in the steel material, thus
causing oxidation corrosion on the surface of the structural steel [8,11,13–16,52–56]. If a
continuous and dense oxide film is produced on the surface of the structural steel, then
oxidative corrosion will be effectively blocked. On the contrary, the different coefficients
of thermal expansion generate strain/stress between the oxide film and the substrate,
resulting in the oxide film peeling off [57]. Declining integrity and increasing thickness can
also cause the oxide film to peel off [58]. The oxide film tends to break and peel off, which
will accelerate further corrosion of the steel material by the liquid LBE.

At high concentrations (CO > 10−6 wt%) [56], the structural steel undergoes an oxida-
tion reaction (Figure 1b). If multiple layers of poorly adherent oxide films are formed, these
films can delaminate and oxidize the underlying surface. Even if the thin layer is denser, it
still changes the composition and morphology of the material surface, thus changing its
mechanical properties [46].

Three materials316L, SIMP steel, and T91were selected for the experiments in oxygen-
saturated liquid LBE [59]. According to the results, T91 steel has the most serious corrosion,
316L steel has the best corrosion resistance, and SIMP steel is in between the two materials.
Austenitic stainless steel 316L can effectively slow down oxidation because it contains more
Cr, which forms denser Fe–Cr spinel in oxygen-saturated liquid LBE. SIMP steel has a
higher Si content, so it is more resistant to oxidation, and its internal oxide layer is denser
than that of T91, protecting against the spread of O and Fe ions [59].

In oxygen-saturated LBE, the film generated by oxidation on T91 steel generally
consists of three layers: the inner oxide zone (IOZ), the inner oxide layer (IOL), and the
outer oxide layer (OOL) [5,60]. Figure 2 displays the effect of time on the SEM morphology
of T91 oxide film [5]. The film thickness increases with time; however, the depth of IOZ
does not grow with the experiment’s duration. At 2000 h, a fresh oxide film can be clearly
observed on the OOL [5]. As the oxygen concentration in LBE decreases, the depth of the
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oxide film becomes progressively smaller, and there is an increase in Cr/Fe in Fe–Cr spinel.
The three-layer magnetite/spinel/IOZ also becomes two-layer spinel/IOZ [60].
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There is a double effect of the oxide film formed by the structural material in the liquid
LBE on the corrosion damage [5]. In other words, as the oxide film thickness increases, the
corrosion resistance of structural steel in liquid LBE does not improve because of it. If the
oxide film is thicker and easily detached from the substrate, it will accelerate the corrosion
of the material in the liquid LBE, thus weakening its corrosion resistance. If the oxide film
is thin and dense, it will protect the substrate from further corrosion, which will reduce the
oxidation corrosion rate and improve the corrosion resistance of structural material.

2.3. Surface Erosion

When the liquid LBE is in a high-speed flow state, the liquid LBE will produce high-
speed motion relative to the surface of the structural steel material, which will cause
continuous damage to the surface of the steel material—that is, erosion on the surface of the
steel material [28,61–66]. This is caused by wall shear stresses and fluid turbulence. Shear
stress at the interface can damage the oxide film or make it thinner. Turbulence can interfere
with mass transfer rates and oxide film formation or even destroy the oxide film [41]. The
high temperature of the liquid metal and the high flow rate can cause erosion damage due
to the scouring friction of the material.

The surface erosion of structural steel is not only related to the flow rate of LBE, but
the temperature also has a great influence. T91 was eroded in LBE medium with an oxygen
content of 10−7 mass% and a flow rate of 2 m/s. The metal decline was about 10 µm after
9000 h at 450 ◦C. After 2000 h at 550 ◦C, the metal decline was about 15 µm [15]. A local
depth of 100 µm was reached after 20,000 h, when the oxygen content was 2 × 10−7 mass %
at 400 ◦C [67]. The LBE dynamic corrosion test resulted in heavy damage to T91, and
the changes in corrosion morphology were remarkable with flow type. The variation in
corrosion activity may be interpreted with diffusion or transfer processes and the mechanics
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of erosion (Figure 3) [28]. Dissolution experiments of T91 under static and dynamic LBE
under low dissolved oxygen concentrations were performed to establish the rate of T91
corrosion in pure dissolution. However, the results can only be used for the pure dissolution
case and not for other conditions [68].
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It is worth noting that the flow direction, which was previously overlooked, plays a
significant role in the corrosion behavior of LBE. When the fluid passes through elbows,
valves, welded joints, and changes in pipe cross section, the corrosion damage will be
more severe because of the change in flow direction [41,61]. The change in impact angle
from 0◦ to 90◦ at low fluid velocities also caused significant damage to T91 and resulted
in failure. The difference in corrosion behavior can be understood in terms of diffusion or
mass transfer processes as well as erosion mechanics [28]. Additionally, 304N austenitic
stainless steel is subject to vertical impact from flowing LBE at 400 ◦C and 1 m / s flow rate.
Its corrosion behavior includes oxidation, dissolution, and scouring corrosion [3].

Although in-depth and extensive studies have been conducted on the oxidation and
dissolution corrosion of structural steel in lead secrecy, relatively few studies have been
conducted on the behavior of washout corrosion, mainly because dynamic corrosion
experiments in lead secrecy require higher equipment performance and stability than static
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corrosion. For experimental devices, the acceleration of fluid velocity is bound to pose more
challenges than the increase in temperature, resulting in few reports in the open literature
on strong dynamic corrosion and the complexity of the interaction between environmental
corrosion and mechanical loading [28].

2.4. Liquid Metal Embrittlement

The presence of impurities or internal stresses at the grain boundaries of the steel
material, as well as the selective dissolution of metallic elements within the steel material
in liquid LBE, can cause liquid LBE to penetrate into the matrix tissue. The surface and
near-surface will cause further dissolution corrosion and oxidation corrosion of the matrix
and embody brittleness under the interaction of stress and corrosion, called liquid metal
embrittlement (LME) [69–71]. LME is a very complex phenomenon that is widely present in
liquid metals. The LME phenomenon depends on many parameters, including composition,
temperature, hardness, stress or strain, and surface condition [72,73].

LME can lead to premature and catastrophic failure of metal components, thus posing
a serious threat to the safe operation of nuclear reactors [4]. This material degradation
phenomenon involves the sprouting of cracks on the wetted surface of the solid metal and
the rapid extension of cracks into the mass [74–76]. It is worth noting that the oxidation
structure reduces the wettability of the material surface to the LBE and hinders the direct
contact between the LBE and the material matrix, thus retarding the crack sprouting and
LME effect [69,77–79]. However, this delay effect seems to be discounted if the LBE lacks
oxygen during stretching because not enough oxygen is available to seal the mechanically
damaged oxide layer [80]. If the failure of the oxide layer reaches the wetting condition,
then regardless of the LBE chemistry, the LME may be in the process of occurring under
stress at 300 ◦C [74].

After tensile testing of T91 in LBE medium, a possible LME degradation mechanism
was found by observing the crack morphology (Figure 4) [81]. Complete embrittlement of
α-Fe in liquid LBE in the form of grain boundary grooving by Bi and Pb polarization at
grain boundaries [52]. Low cycle fatigue behavior of T91 steel with LME was observed on
the fracture surface of lead–bismuth eutectic [53]. The LME susceptibilities of Fe14Cr4.5Al-
0.5Y2O3 (wt %) and Fe10Cr4Al (wt%) [80] alloys in LBE at 350 ◦C were obtained in
slow-strain tensile tests. The results show that LME has a large impact on both alloys.
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Structural steel in a liquid LBE environment: the wettability of LBE has a great
influence on the performance of structural materials. Structural steel materials with better
LBE wettability have a higher probability of LME [69]. Conversely, if the wettability is
poor, the reaction between the elements of the structural steel material matrix and the
corrosive medium will be weakened. Thus, the corrosion resistance of the material will be
enhanced [82–84]. In addition, the surface wettability of the structural material will also
have an impact on LME [85].

3. Influencing Factors

By analyzing the corrosion characteristics of structural materials in LBE, it can be seen
that the main factors affecting corrosion are as follows: material composition, temperature,
flow rate, and oxygen concentration in liquid LBE.

3.1. Material Composition

In dissolution-based liquid LBE corrosion, the degree of corrosion in liquid LBE
varies due to the large difference in the solubilities of various metal elements in liquid
LBE [9,38,47,48,86]. Elements such as Si, Al, Cr, and Ni have a strong influence on the
corrosion of structural materials in liquid LBE. In general, materials with higher Si, Al,
and Cr contents have better resistance to LBE corrosion; an increase in their content in
steel is beneficial to enhancing its corrosion resistance in LBE. As rapid dissolution occurs
in LBE, the higher the Ni element content, the more severe the dissolution corrosion will
be. Austenitic stainless steels have a relatively high Ni content, so dissolution corrosion
is more severe in LBE with low oxygen concentration. In some nickel-containing alloys,
nickel is replaced by manganese elements, and Mn-rich oxides have good stability and high
densification [87]. This oxide film reduces the corrosion of LBE and prevents the outward
diffusion of Fe elements [88].

Material elements have some influence on LME, and it was found that the order
of LME enhancement of pure Fe in low oxygen LBE is Si > Al > Cr [73]. Additionally,
316L material with high Cr content will generate dense Fe–Cr spinel in oxygenated LBE;
this layer can play a role in protecting the substrate and preventing the continuation of
oxidation, so the resistance to LBE corrosion is stronger. The ferritic/martensitic SIMP steel
has a higher Si content, which leads to a denser oxide layer inside the material and can
hinder the diffusion of O and Fe. In addition, SIMP contains less Ni, so it is more resistant
to LBE corrosion than T91 [89].

The oxide of pure iron consists of an inner layer and an outer layer. The inner layer
consists of Fe3O4 and FeO at 600 ◦C, while the outer layer is a finely crystalline oxide. At
800 ◦C, the inner layer is a FeO grain, while the outer layer is a mixture of Fe2O3 and Fe3O4.
It was also found that the increase in temperature reduced the number of pores and made
the grain size larger [6]. For Al2O3 to form on the surface of the material, an elemental Al
above 4 wt % is required; Al makes the oxide film denser, but Al promotes the formation of
ferrite, so the amount of Al is limited [87]. Cr2O3 and SiO2 will delay the diffusion of Fe
atoms while preventing Fe from being oxidized [90].

Adding Zr or Ti to a liquid to form a protective film via reaction with carbon and
nitrogen in steel can significantly reduce the corrosion rate of liquid LBE [91,92]. Elements
such as Si can enhance the corrosion resistance of materials in liquid LBE. However, Si-
rich steel has poor corrosion resistance in LBE flowing at 550 ◦C, between 10−6 mass%
oxygen and saturation oxygen [93]. In addition, Si can reduce the material’s toughness,
increase weld crack sensitivity, and cause liquid metal embrittlement [4]. Therefore, the
enhancement of corrosion resistance while ensuring the mechanical properties of the
material itself is one of the directions to be studied in the future.
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3.2. Temperature

In the isothermal static system, temperature affects the degree of corrosion of steel
materials in LBE. When the temperature is lower, the dissolution rate of metal elements
decreases, and the degree of dissolution corrosion is weakened. When the system tempera-
ture is higher, the solubility of the material components is greater and the dissolution rate
is greater, so the corrosion is more severe [11,94]. Table 2 [50] shows the solubility (in at.
fraction, T in K, and Ac and Bc are thermodynamic constants) of each element in liquid
LBE as a function of temperature. If there is no gradient in the system temperature, then
the concentration of each element will eventually reach a uniform distribution [95]. In this
case, corrosion will not continue.

Table 2. Fe, Cr, Ni solubilities in LBE. Data transferred from Ref. [50].

Log10 Ss (at%) = Ac − Bc/T

Metal Ac Bc Temperature (K)

Fe 0.5719 4398.6 399–1173
Cr −0.2757 3056.1 399–1173
Ni 2.8717 2932.9 528–742

0.2871 1006.3 742–1173

However, for non-isothermal liquid metal systems, due to the temperature difference
in each section of the circuit, the elements will dissolve in the high-temperature section,
then flow to the low-temperature section and deposit [95]. The greater the temperature
difference in the system, the greater the diffusion migration drive of the metal elements
dissolved in the LBE and the more severe the corrosion. With the gradient created by
the temperature change, the elements in the material will dissolve, be transported to a
lower temperature, and precipitate out. The component element concentration will always
fluctuate, and dissolution will continue.

The solubility of metals in the liquid metal phase decreases with temperature, so
that mass transfer, whether convective or diffusive, can lead to solute reprecipitation and
deposition in the colder parts of the system under non-isothermal conditions [14]. The
corrosion resistance of austenitic steels was studied by varying the temperature under
controlled conditions of oxygen concentration in LBE. At 550 ◦C, an oxide layer was
produced on the surface of the material, and no dissolution was observed; at 600 ◦C, there
was significant penetration [96]. Even if the liquid metal is saturated with oxygen, if the
temperature is above 550 ◦C, dissolution will occur [4].

The corrosion of structural materials in high-temperature liquid metals has been
studied in many ways [78–81]. Alloys with higher Si, Cr, or Al contents at high temperatures
can generate more stable oxide films and will be more resistant to corrosion. The generation
of oxide films during the corrosion process has a dual role. If the oxide film is thick and easy
to detach from the substrate, breaking it will accelerate the corrosion of the liquid metal on
the structural material; if the oxide film has a thin, uniform texture and good density, the
substrate will play a protective role, thus preventing further oxidation corrosion [6].

Combined with the previous analysis, we can conclude that the temperature directly
affects the diffusion coefficient, dissolution rate, and solubility of steel components in liquid
LBE. In general, these material performance parameters are positively correlated with
temperature, and high temperatures accelerate the corrosion rate of structural materials.
On the contrary, for some alloying elements, a dense oxide film is formed at a certain
temperatures, which in turn improves corrosion resistance.
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3.3. Flow Rate

When the liquid LBE flows over the surface of the structural steel, it will produce
frictional wear, and since the LBE itself is corrosive, it will cause erosion damage to the
surface of the structural steel [28,61–66]. In a flowing system, the oxide film will be
destroyed by LBE. Generally, the higher the flow rate of liquid LBE, the more severe the
corrosion of steel material will be; that is, the flow rate will accelerate the corrosion of
steel material.

To study the effect of flow rate on the behavior of austenitic stainless steels, the steels
were subjected to corrosion in flowing liquid LBE for 1000 h [97]. The results show that
when the relative flow rate is less than 0.92 m/s, the destruction of the oxide film leads to
diffusion oxidation of the steel; as the relative flow rate continues to accelerate, the alloying
elements are promptly removed at higher relative flow rates.

The corrosion of T91 varies at different flow rates of LBE. When the flow rate is 1 m/s,
the outer layer of magnetite on the steel material surface is still intact, while it is largely
invisible when the velocity rises to 2 m/s until it disappears completely at 3 m/s. However,
at a flow rate of 3 m/s, the Fe–Cr spinel oxide layer is still intact [4]. The stainless steel 316L
specimen was mounted on a rotating disc submerged in molten LBE, and the sensitivity
of the thickness of the affected zone to the flow rate decreased as the reaction rate was
controlled when the linear velocity of the disc was greater than 2 m/s. At speeds faster
than 3 m/s, scouring corrosion begins to occur [98].

It can be seen that at low flow rates, the corrosion rate is generally controlled by mass
transfer. At this time, the flow will make the thickness of the mass transfer layer thinner,
and corrosion damage will be aggravated [95]. If the flow rate continues to rise and reaches
a certain value, then the rate of mass transfer will also be accelerated, thus transporting the
corrosion products. The dissolution rate in this case will have a decisive influence on the
corrosion rate. When the flow rate is very high, the fluid will generate a large shear stress,
which will destroy the protective film. The new surface will continue to be corroded and
washed; the interaction between the two makes the damage more serious [4,99].

3.4. Oxygen Concentration

At low levels of oxygen in the LBE (CO < 5 × 10−7 wt%), dissolution corrosion
occurs mainly in structural steel. On the contrary, if the oxygen content in LBE is high
(CO > 10−6 wt%), oxidative corrosion will increase and Pb-O compounds will be formed,
contaminating the liquid LBE and clogging the pipeline [56]. When the LBE’s oxygen
content is in this range, which can produce a stable Fe3O4 that is not formed between Pb–O
compounds, then a double-structured oxide layer will be formed. This oxide layer will
prevent the corrosion of steel materials in LBE [4,67,100].

Exposure of 316L steel to liquid LBE with low oxygen concentration results in selective
dissolution of some elements. At moderate LBE oxygen concentrations, Cr-based oxide
films or Fe–Cr spinel are still formed despite the fact that the oxide films formed lose their
protective properties over time, leading to the onset of steel dissolution [101]. In saturated
LBE, the corrosion mechanism is oxidation. The critical oxygen concentration associated
with dissolution corrosion of 316L in stagnant LBE at 450 ◦C for 1000 h is between 10−6

and 10−7 mass % oxygen [102].
Corrosion tests in LBE at 10−7 mass % oxygen, 550 ◦C and 200 MPa creep resulted

in solution corrosion of T91. As the concentration of oxygen is increased to 10−3 mass %,
a double protective film is formed on the steel surface. In the case of stagnant LBE with
oxygen concentrations higher than 10−7 mass % at 550 ◦C, T91 is protected from liquid
metal erosion in LBE [103].

AISI 316L and T91 were placed in flowing LBE to study the corrosion behavior at two
oxygen concentrations. The results show that at low oxygen concentrations, dissolution
corrosion occurs, while at high oxygen concentrations, an oxide layer forms on the material
surface, protecting the steel from further corrosion by LBE [104].
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From the above analysis, we can conclude that the amount of oxygen concentration
at different temperatures, materials, and flow rates will change the type of corrosion and
even affect the corrosion rate. Therefore, for specific reaction conditions, we must find the
correct oxygen concentration to reduce corrosion damage.

4. Corrosion Prevention Measures

In order to achieve the safe use of steel, countries mainly start from two aspects:
improving the performance of the material itself and reducing the corrosion of liquid LBE
media. Therefore, the future should focus on the design of new materials, reasonable
oxygen control technology development, etc. At present, more research is needed on active
oxygen control and surface coating.

4.1. Active Oxygen Control

The oxygen content in LBE has a significant impact on the overall system’s safety.
Studies have shown that oxygen is a reliable corrosion inhibitor in the LBE environment,
and oxygen control techniques are used to slow corrosion by forming a protective film on
the material surface [95]. When the oxygen content in the liquid LBE is low, it cannot form
an effective protective film and actively corrodes the structural material; when the oxygen
content increases, the slag accumulation will precipitate and block the loop tube [56,89].
Therefore, it is necessary to adjust the oxygen content in liquid LBE in order to mitigate the
dissolution corrosion of structural materials. There are three main techniques for controlling
the oxygen content in LBE: solid-state oxygen control, gaseous oxygen control, and oxygen
pumping [92,105].

CORRIDA was designed and built by the Karlsruhe Institute of Technology (KIT), as
shown in Figure 5. It is a device that controls the oxygen concentration in the flowing LBE
by changing the temperature and flow rate [106]. Flow tests were conducted on F/M steel
T91 in the CRAFT cycle run by the Belgian Nuclear Research Center SCK·CEN. The results
were compared with experiments in CORRIDA under similar test conditions, and their
corrosion data were found to corroborate each other [67].

1 
 

 
Figure 5. Schematic diagram of the CORRIDA device for testing steel in flowing oxygenated LBE.
Reprinted with permission from Ref. [106]. 2011, L. Brissonneau.
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In the liquid LBE with low oxygen concentration (CO < 10−7 wt%), the depth of
ferritization increased with the degree of cold working. At moderate oxygen concentrations
(10−7 wt% < CO < 10−6 wt%), Ni dissolution and Pb–Bi penetration caused slight iron
seepage. In high oxygen concentrations (CO > 10−6 wt%), only oxidation occurs [56,100].

Currently, active oxygen control technology is developing rapidly, and gas-phase
oxygen control has been popularized in industry, but its stability is poor. Solid-phase
oxygen control technology has the advantages of fast response and simple design. Oxygen
control technology can effectively reduce material corrosion problems [91], but it is still in
the laboratory stage in an LBE environment and has not achieved large-scale engineering
application. Electrochemical oxygen pumping (EOP) is another simple and clean method
of controlling the dissolved oxygen concentration in LBE. EOP is based on the migration of
oxygen ions, which can add or reduce oxygen to the medium. If this method operates safely
and stably in LBE, it will be a very competitive oxygen control method in the future [107].

Although the control of oxygen concentration in LBE can slow down corrosion to a
certain extent, its mechanical properties are not ensured accordingly. Under stress, the
formed oxide layer cracks and delaminates, exhibiting poor mechanical properties [46].
In addition, the technique is only applicable for operating conditions below 500 ◦C. This
method is not reliable in high-temperature situations.

4.2. Surface Coatings

Coatings are typically used to protect materials from various types of damage and
are often used to protect surfaces from wear and tear, corrosion, heat and oxidation, and
chemical attack [46]. The main corrosion-resistant coatings studied at home and abroad are
poly coatings, functional gradient composite coatings, ceramic coatings, refractory metal
coatings, ODS and high-entropy alloy coatings, and combinations of the above coating
forms [31,46,83,108–111]. Coating technology is a method of improving the compatibility
of structural steel with liquid LBE, such as powder embedding, physical vapor deposition,
pulsed laser deposition/fusion coating, plasma electrolytic oxidation, and cathodic arc
ion plating [112]. Although extensive corrosion experiments have been performed on
protective coatings, some issues regarding the coating materials are still unclear.

The design idea of corrosion-resistant coatings is mainly achieved by adding some
elements. These elements will form a dense oxide film to protect the substrate in liquid LBE
with the proper oxygen content. The oxide film prevents the outward dissolution loss of
the matrix elements and also blocks the inward diffusion penetration of lead and bismuth.

TiC layers in low-oxygen LBE can effectively prevent LBE corrosion at 600 ◦C for as
long as 2000 h [113]. Carbon-based coatings exhibit outstanding performance in terms of
high resistance to corrosion, surface smoothness, and low friction index. The low coefficient
of friction and lubrication performance of these coats would have an important function in
decreasing friction and reducing wear [46]. The 316SS surface was coated with different
contents of Al and placed in LBE at 823 K. It was found that oxidation and corrosion
were observed in the unaluminized 316SS, while the aluminized layer prevented further
development of corrosion [31]. While in flowing liquid LBE, the aluminized coating on
316L steel was more sensitive because it was eroded during the cyclic test [102].

At present, there are more studies on the corrosion resistance of coatings than on their
mechanical properties. Therefore, we can continue to conduct in-depth research on them in
terms of coating preparation, such as on coatings in high-speed LBE flow and corrosion-
resistant LBE coatings with high interfacial and mechanical properties, simultaneously
improving the preparation process.

5. Summary

Although some progress has been made in the research work on LBE, some issues still
need to be studied in depth and systematically. In reality, the corrosion process of LBE is
very complicated, such as the corrosion process and mechanism when accompanied by the
occurrence of wear, scouring, and other mechanical damage.
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To ensure reliable nuclear applications of steel, future related research should focus on
manufacturing steel adapted to the LBE service environment by adjusting material design
and treatment and on reducing the corrosion of steel in the LBE by using active oxygen
control technology and adding corrosion inhibitors. Research on solid-phase oxygen
control is especially necessary. In addition to the preparation of high-quality coatings, the
development of new steel alloys is also an important direction for LBE corrosion resistance.
The advantage is that the new alloy as a whole has no interface problem with the coating
matrix, and it will not come off due to high temperature stress, etc. Unless a new alloy is
found before the development of the alloy coating system, it is still the better choice.

Experimental research has high environmental requirements and a long experimental
period, and the experimental results are often limited to a specific set of experimental
conditions. More and more comprehensive research must continue to be conducted, such as
on the high-speed flow of LBE erosion and corrosion. The rapid development of numerical
simulation technology [114–117] and its combination with experimental data will be of
great help for the study of lead–bismuth alloys, which are also of great significance for
reactor safety design.
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