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Abstract: Tungsten fiber-reinforced tungsten composite (Wf/W) material is considered a plasma-
facing material (PFM) with good application prospects. Commercial tungsten wire (fiber) prepared
through forging and drawing processes has excellent mechanical properties, as well as a very high
recrystallization temperature due to the unique texture of it grain structure. Commercial tungsten
fiber is the most proper reinforcement for Wf/W. The change in the properties of tungsten fiber
because of neutron irradiation makes it inevitable for Wf/W to be used as PFMs. However, there is
very little research on the change in the properties of tungsten fiber caused by neutron irradiation. In
this work, we used heavy ion irradiation to simulate the displacement damage generated by neutron
irradiation to explore the alteration of the properties of a commercial tungsten fiber caused by neutron
irradiation. The investigated subject was tungsten fiber with a diameter of 300 µm. The irradiation
source was 7.5 MeV Au2+, which generated a maximum displacement damage of 60 dpa at a depth
of 400 nm, and the irradiation influenced depth was 1000 nm. Because of the irradiation, significant
lattice distortion occurred within the tungsten fiber, resulting in the transition from (110) texture to
(100) texture at the fiber’s cross-section. The results of the Schmidt factor and Taylor factor analysis
indicate a decrease in the plasticity of the tungsten fiber after irradiation, but it did not completely
lose its plasticity. The results of the nanoindentation test confirmed the radiation hardening. After
irradiation, the hardness of the tungsten fiber increased by approximately 0.33 GPa, but this increase
was relatively small compared to other tungsten-based materials. This indicates that commercial
tungsten fiber is a low-cost and highly reliable reinforcement material for Wf/W composite materials.

Keywords: plasma-facing materials; tungsten fiber; heavy ion irradiation; irradiation hardening

1. Introduction

With the gradual depletion of fossil energy, human beings are in urgent need of clean,
efficient and safe new sources of energy, and the development of nuclear fusion energy
has attracted wide attention [1]. The magnetic confinement fusion project, International
Thermonuclear Experimental Reactor (ITER), is leading the way for fusion as a future
commercial energy source [2,3].

Tungsten has the advantages of a high melting point, high thermal conductivity and
low sputtering rate [4], and it has been identified as a divertor material for ITER, as well as
being considered one of the most promising candidate plasma-facing materials (PFMs) for
future fusion reactors [5,6]. However, as a metal with a body-centered cubic (BCC) structure
and because of its electronic structure, characteristics of inter atomic bonds and lattice
resistance of dislocation stress field, pure tungsten materials have inherent brittleness at
lower temperatures (high ductile-to-brittle transition temperature, DBTT) [7,8], brittleness
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caused by recrystallization [9] and neutron irradiation when used as PFMs [10]. In the past,
researchers prepared various new tungsten-based materials with significantly improved
mechanical properties through doping [11], alloying [12,13] or microstructural modification
methods [14]. However, in harsh service environments where high-energy neutrons, plasma
and high thermal loads coexist in fusion reactors, the performance of these new materials
has not been fully sufficient [15].

Long fiber-reinforced ceramic matrix composites (FCMCs) have been actively devel-
oped for high-temperature structural applications [16,17]. When a propagating primary
matrix crack meets an array of fibers standing perpendicular to the crack’s face, the pri-
mary crack can be deflected along the vertical interface, provided that a specific fracture’s
mechanical condition is satisfied. Then, the strong fibers collectively bridge the primary
crack, suppressing its dynamic extension. As the applied load is increased, the interfacial
debonding may continue, followed by fiber pull-out, and the matrix crack opens further in
a controlled manner. The total amount of consumed energy is the measure of the apparent
toughness. The toughening mechanism of an FCMC is by now well understood in terms
of the fracture mechanics, where the fracture’s mechanical properties at the interface are
the determining parameters [18,19]. Commercial tungsten wire (from herein referred to as
fiber) prepared through forging and drawing processes has extremely high deformation
and significant texture [20]. The staggered connected grains and high dislocation density
can increase the recrystallization temperature to over 2000 ◦C and maintain a strength
of over 2 GPa [21]. Tungsten fiber-reinforced tungsten composite (Wf/W) material has
incorporated the toughening mechanism of FMCMs by utilizing the commercial tungsten
fiber as a reinforcement, which has attracted a lot of interest and achieved great success
over the past years [22,23]. Mao’s research [24] showed that Wf/W materials containing
fine tungsten fibers can effectively improve the room temperature brittleness of tungsten
and have high fracture energy.

When serving as PFMs, tungsten is expected to face severe environments, including
high thermal fluxes [25], neutron irradiation [26], deuterium (D) and helium (He) plasma
exposure [27,28]. The change in the properties of tungsten fiber due to neutron irradiation is
inevitable for Wf/W when used as PFMs. Therefore, it is very important to understand how
the reinforcement (tungsten fiber) will perform under neutron irradiation. Riesch J. [29]
studied the mechanical properties of tungsten fiber after W6+ irradiation using tensile
test investigations. The results indicate that there was a moderate decrease in strength
with an increasing level of damage, while neither irradiation hardening nor reduction in
ductility was detectable due to the limitation of the sample size. Apart from this, other
research is scarce that reports on the degeneration of commercial tungsten fiber under
displacement damage; this limits the further application of commercial tungsten fibers for
use as a reinforcing phase.

In this work, we used heavy ion irradiation to simulate the displacement damage
generated by neutron irradiation to explore the change in the properties of commercial
tungsten fiber caused by neutron irradiation. The morphology and grain orientation of
the irradiated and unirradiated samples were systematical studied via scanning transmis-
sion electron microscope (STEM) and electron back scatter diffraction (EBSD). The grain
orientation parameters, such as geometrically necessary dislocations (GNDs), Schmidt
factor, and Taylor factor distribution, were studied to explore the irradiation impact on the
structural change in the grain. The nanoindentation test was used to analyze the irradiation
hardening of the tungsten fiber. The results may provide insight into the function of the
toughening mechanism for the application of Wf/Wm materials.

2. Materials and Methods

Tungsten fiber with a diameter of 300 µm (Zigong Cemented Carbide Co., Ltd., Zigong,
China) was used as the subject of investigation. Heavy ion irradiation is normally used to
simulate neutron irradiation for generating displacement damage on materials considering
the cost and safety issues. The irradiation experiment was conducted with an HVE-3MV
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Tandetron Accelerator located at Sichuan University, Key Laboratory of Radiation Physics
and Technology, Ministry of Education, China. The tungsten fiber was fixed in the sample
holder together with other samples to be irradiated, and the position of the tungsten fiber
and the major parameters for the irradiation experiment are shown in Figure 1a. A 7.5 MeV
Au2+ ion was utilized as the irradiation source. The samples were heated until their
surfaces reached a temperature of 473 K. The heating was stopped at the beginning of the
irradiation process, and the samples’ surface temperatures were maintained at 376 K. The
irradiation parameters are shown in the table of Figure 1, and the total accumulated fluences
was 1.4 × 1016 ions cm−2. The depth distribution profile of the irradiation damage was
calculated using the binary collision code, Transport of Ions in Matter (TRIM, add company
name, add city, add country), in the SRIM-2008 software in which the “ion distribution
and quick calculation of damage” mode was chosen. The lattice binding energy (Eb) and
displacement threshold energy (Ed) were set to 0 and 90 eV, respectively. The peak damage
level was 60 dpa, which was calculated via Equation (1):

dpa =
NdΦ

Nw
(1)

where Nd is the number of displacements acquired by TRIM; Nw stands for the atomic
density of tungsten (6.338 × 1022 atoms cm−3); and Φ stands for the ion flux, and the value
is 2 × 1015 cm−2 h−1. Figure 1b shows the depth distribution profile of the displacement
damage level and the Au2+ concentration distribution in W. The damaged zone extends to
approximately 1000 nm, and the peak damage (60 dpa) is located at approximately 400 nm.
The temperature changes during the entire irradiation process were monitored using an
infrared camera. Figure 1c shows the temperature distribution on the target plate at the
completion of irradiation.
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Figure 1. Au2+ irradiation: (a) fixation of tungsten fibers; (b) distribution profile of irradiation
damage and the Au2+ concentration distribution; (c) temperature distribution of the target at the end
of irradiation.

After the irradiation experiment, the fiber was carefully removed from the sample
holder, and the irradiated side was marked. A layer of nickel metal was deposited on the
outer surface to protect the structure of the fiber’s outer edges during the polishing process



Crystals 2023, 13, 920 4 of 12

and to better observe the morphology of the edges during the process of microstructural
analysis. The tungsten fiber with a protective nickel coating is shown in Figure 2a. Then, a
short slice of the fiber was cut and embedded into the specimen holder for the polishing
process. Argon ion polishing was utilized to ensure the flatness of the edges of the specimen.
An image of the tungsten fiber after the polishing process is shown in Figure 2b.
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Figure 2. (a) Tungsten fiber with a protective nickel coating before the polishing process; (b) tungsten
fiber after the polishing process, (1) Core of the fiber, (2) and (3) are irradiated area, (4) and (5) are
un-irradiated area.

A scanning transmission electron microscope (Spectra S/TEM, NED) was used to
observe the morphology of the specimens, and the electron back scatter diffraction (EBSD)
technique was used to analyze the grain information of the investigated specimens. The
nanohardness of the specimens was tested using a nanoindentation instrument (Keysight
G200, Roseville, CA, USA).

3. Results and Discussion

As shown in Figure 2b, it can be seen that the tungsten fiber was perfectly vertically
embedded into the specimen holder, and the entire cross-section was very flat. Five regions,
as indicated in Figure 2b, were selected as the areas of investigation. Region 1 is located in
the middle area of the tungsten fiber; regions 2 and 3 are the areas on the irradiated side
and; and regions 4 and 5 are the areas that are the farthest from the irradiated side. Since
the depth of the irradiation’s influence was only ~1000 nm from the outer surface of the
irradiating side, regions 1, 4 and 5 represent the unirradiated regions.

Figure 3a shows the grain morphology of region 1. This area was taken from a core of
the tungsten fiber and had a good processing status. We chose this location as the reference
to represent the initial state of the grain structure of the cross-section of the tungsten fiber.
It can be seen that most of the grains exhibited irregular elongated shapes, and a small
number of grains were an ellipsoidal shape that interlaced with each other. The distribution
of the grain diameters is shown in Figure 3b, and according to the equivalent circle diameter
and area weighted fraction, the average diameter of the grains is calculated to be 0.4 µm. It
is known that tungsten fiber is produced via multiple drawing steps, and this causes the
grains to have a high deformation rate. The high grain deformation rate contributes to the
fine grain size at the cross-section and interlacing [30]. Figure 3c shows the corresponding
average geometrically necessary dislocation density (GND) of region 1. Because of the high
deformation rate during the fiber production process, the average GND of the tungsten
fiber core was as high as 28.03 × 1014/m2, which indicates that the fiber has great plastic
deformation capability in the Z-direction. Figure 3d shows the Schmidt factor values of
each grain along the {111} packing direction <110>. The plastic deformation of materials is
mainly achieved through slip, and the higher the Schmidt factor, the greater the probability
of slip system initiation. It can be seen that the Schmidt factor values of all of the grains
were between 0.28 and 0.5, which indicates that the grains were in the soft orientation state
and prone to slip. Figure 3e,f display the polar and inverse pole figures of the investigated
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area, respectively. It can be observed that the tungsten fiber had a very strong texture {110}
due to the axial grain slip during the production (drawing) process.
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The morphology of regions 2 and 3 are shown in Figure 4. The areas from the top
edge down to 1000 nm in depth are irradiation influenced areas, while the areas at the
bottom are the unirradiated areas. It can be seen that it is difficult to detect any difference
in the grain structure between the irradiated and unirradiated regions. However, this does
not necessarily mean that no irradiation defect was produced by the irradiation process.
Therefore, a further investigation was performed to explore the impact of irradiation
on the grain orientation, such as the texture of the structure of the tungsten fiber. It is
known that this tungsten fiber has a texture in the grain structure, since it was produced
via large deformation. High-energy ion irradiation often leads to lattice changes, and
different crystal planes have different resistances to ion irradiation. For instance, a previous
study showed that the (110) crystal plane of single-crystal tungsten had the best radiation
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hardening resistance [31]. The irradiation influence could be detected via the change in the
grain orientation.
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Figure 4. Microscopic morphology of tungsten fiber after irradiation: (a) STEM image of region 2;
(b) STEM image of region 3.

In Figure 5, the polar and inverse pole figures of the unirradiated (regions 4 and 5)
and irradiated (regions 2 and 3) regions are presented. Figure 5a,b display the information
for region 4; Figure 5c,d provide the information for region 5; Figure 5e,f present the
information for region 2; and Figure 5g,h show the information for region 3.

The results for the unirradiated regions (regions 4 and 5) showed a similar texture
structure as region 1, which had dominant orientation in the {101} planes when looking at
the z-axis direction (see Figures 3f and 5f,h). The intensity of the dominant orientations
shown in Figure 5f,h are smaller than that in Figure 3f. The reason could be that some
residual stress was introduced during the drawing process at the fiber edges. The stress
may have caused the distortion of the lattice and eventually a difference in the intensity of
the dominant orientations [31,32].

When looking at the irradiated case (regions 2 and 3), it can be seen that their
grains have multiple dominant orientations, and they mostly appeared in the {101} and
{001} planes when looking at the z-axis direction [33]. It is interesting that the texture
structures are found when looking at the x- and y-axis directions, while this phenomenon
is not detected for the unirradiated case. The high-energy Au2+ ions were injected into
the tungsten fiber through the outer surface (x- and y-axis directions) and embedded into
tungsten when their energy was consumed by collision. The implanted Au atoms stayed in
the tungsten material by replacing the tungsten atoms, being interstitials or by forming the
second phase at the boundaries of the tungsten grains. The existing Au in the tungsten may
have caused the lattice distortion for the tungsten. A distorted lattice has different lattice
parameters than the original and leads to the phenomenon that the texture of the grain
structure changes. This is why different dominant grain orientations were found between
the irradiated and unirradiated areas.

Further comparisons of the grain structure and GND between the irradiated and
un-irradiated regions are shown in Figure 6. Figure 6a shows the grain orientation in the
un-irradiated area, with most of the grains appearing green at the edges, which means
most grains exhibited {110} planes. As a comparison, the grain orientation in the irradiated
area is shown in Figure 6d, and more red grains can be found at the edge. This indicates
that the tungsten fiber underwent significant lattice distortion during irradiation, e.g., the
texture with {100} planes was replaced with {110} planes. Meanwhile, it can be seen that
the average diameter of the grains calculated according to the equivalent circle diameter
and area weighted fraction were both 0.4 µm for the irradiated and unirradiated cases
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(Figure 6b,e). The average values of GND were 23.7 × 1014/m2 and 23.2 × 1014/m2 for the
irradiated and unirradiated areas, respectively. The tungsten fiber still had a certain plastic
deformation ability along the z-axis direction after irradiation.
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Figure 7 shows a comparison of the Schmidt and Taylor factors between the irradiated
and unirradiated regions. For tungsten metal with a BCC lattice structure, the slip is
carried out through a <111>(110) slip system. The higher the Schmidt factor, the greater
the probability of slip system initiation. It can be seen that after irradiation, 88.7% of the
grains had a Schmidt factor between 0.29 and 0.5, which is slightly lower than for the
unirradiated (92.8%). The difference between the two values was only 4.1%. Considering
that the irradiation influenced area was only one-sixth of the upper part of the image, the
actually decrease in the Schmidt factor due to the irradiation should be higher than 4.1%.
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The larger the Taylor factor means the larger the plastic deformation the grain can
endure under certain stress. When looking at the Taylor factor distribution result, compared
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to the unirradiated areas shown in Figure 7c, the Taylor factor of the grains of the irradiated
ones decreased because of the irradiation process (Figure 7d). This means the plasticity
of the tungsten fiber decreased because of the irradiation defects. Nevertheless, more
than half of the grains still had Taylor factor values greater than three, indicating that the
tungsten fiber still had a certain degree of plasticity, which is consistent with other research
results [29]. In a word, commercial tungsten fibers have the better radiation resistance
compared to pure tungsten materials prepared using other processing methods.

Finally, we characterized the hardness of the irradiated and unirradiated areas using
the nanoindentation test. Because of the curvature structure of the tungsten fiber’s surface,
the nanoindentation test was performed in the following way: an indenter head with a
diameter of 2 µm was selected for the indentation; the indentation depth was set at 400 nm,
corresponding to the depth of the maximum displacement damage location. Figure 8 shows
the hardness results. The average hardness of the irradiated case was 8.37 GPa, which was
0.33 GPa higher than that of the unirradiated. The degree of irradiation hardening is related
to the value of displacement per atom (dpa) and the irradiation temperature. A larger dpa
and higher irradiation temperature lead to greater irradiation hardening. Table 1 shows the
irradiation hardening of tungsten materials prepared using different processing techniques
over recent years.
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Table 1. Radiation hardening of tungsten-based materials prepared using different processing methods.

Number Materials Processed Irradiation
Ions

Irradiation
Temperature

(°C)

Max Irradiation
Damage

(dpa)

The Depth of
Maximum dpa

(nm)

The Difference
of Hardness

(GPa)

1 KW [34] SPS W2+ 650 11.5 400 1
2 W [35] Rolling W6+ 500 7 110 1.1
3 KW [36] Rolling Fe11+ 127 0.45 700 0.7
4 W-ZrO2 [37] Swaging Au2+ RT 100 200 4.52

This work W Drawing Au2+ 200 60 400 0.33

It can be seen that tungsten fiber (this work) had the smallest difference in the hardness
(irradiation hardening) among the reported results. When compared to the reference
case 3 (rolling KW), the irradiation in this work was performed at a higher irradiation
temperature and large dpa, and the tungsten fiber still had a smaller irradiation hardening.
It is believed that commercial tungsten fiber has good resistance to irradiation hardening
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than tungsten produced via other metallurgy manufacturing processes. The good resistance
to irradiation hardening may be due to the severe lattice distortion caused by the unique
texture structure of the tungsten fibers as we discussed above. The severe lattice distortion
in the microstructure improves the material’s macroscopic resistance to radiation hardening,
which is also reflected in other types of alloys [38]. This further shows that commercial
tungsten fiber is a good candidate for use as a reinforcement in Wf/W composites.

4. Conclusions

(1) Commercially, tungsten fibers with a diameter a 300 µm were irradiated with 7.5 MeV
Au2+. A maximum displacement damage of 60 dpa was achieved at a 400 nm depth.
No clear defect was detected via STEM observation of the microstructure of the fiber
cross-section.

(2) The grains of the irradiated regions had multiple dominant orientations, and they
mostly appeared in the {101} and {001} planes when looking at the z-axis direction,
while the grains of the unirradiated regions had the dominant orientation in the {101}
planes. The grain orientation deviation is believed to be due to the lattice distortion
caused by the Au2+ irradiation.

(3) The Schmidt factor of the grains slightly decreased because of the Au2+ irradiation,
but 88.7% of the grains had a Schmidt factor between 0.29 and 0.5, which means the
fiber still maintained a certain level of plastic deformation after irradiation.

(4) The Taylor factor of the grains decreased because of the irradiation, which indicates
that the plasticity of the tungsten fiber decreased because of the irradiation. More
than half of the grains still had Taylor factor values greater than three, indicating that
the tungsten fiber still had a certain degree of plasticity after irradiation.

(5) The results of the nanoindentation test confirmed the radiation hardening. After
irradiation, the hardness of the tungsten fibers increased by approximately 0.33 GPa,
but this increase was relative compared to other tungsten-based materials. This
indicates that commercial tungsten fiber is a low-cost and highly reliable reinforcing
material for Wf/W composite materials.

Novelty and application: Research on commercial tungsten fiber as a reinforcing
phase for Wf/W has been ongoing for several years, but due to the presence of objective
factors, such as a small diameter and curved irradiation surface, it is difficult to study
the microstructure and properties of irradiated fibers. In this work, we used a scanning
transmission electron microscope (STEM) and the electron back scatter diffraction (EBSD)
method, to investigate the influence of irradiation on the microstructure of tungsten fiber.
The grain orientation parameters, such as geometrically necessary dislocations (GNDs),
Schmidt factor and Taylor factor distributions, of the grains were studied to explore the
irradiation impact on the grain’s structural changes and then to determine the macroscopic
plastic changes of the tungsten fibers, which were verified through nanoindentation tests.
The results of this paper provide a theoretical basis for the application of tungsten fiber as a
reinforcement for Wf/W composites, as well as for the design of Wf/W composites.
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