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Abstract: Chemical modification is usually utilized for preparing superhydrophobic SiC surfaces,
which has the problems of long processing time, high environmental contamination risk, and high
cost. To enhance the condensation heat transfer efficiency of SiC, the superhydrophobic SiC surface
was fabricated through laser texturing and heat treatment. In this study, the SiC surface was processed
by laser texturing with a nanosecond laser, followed by heat treatment. Surface microstructures
and compositions were investigated with SEM and XPS, and the heat transfer coefficient of the
superhydrophobic SiC surface was tested. The results indicated that the laser-textured SiC surface had
a super hydrophilic contact angle of 0◦; after heat treatment, SiC ceramic became superhydrophobic
(surface contact angle reaches 164◦) because organic contamination on the original SiC surface could
be cleaned by using laser texturing, which caused a chemical reaction and the formation of SiO2

on the surface. Moreover, the distribution of relatively low-energy SiOX was formed after heat
treatment; then, SiC ceramic became superhydrophobic. Due to the formation of nanoscale sheet-like
protrusion structures by heat treatment, the SiC superhydrophobic surface exhibited typical dropwise
condensation, and the condensation heat transfer coefficient reached 331.8 W/(m2·K), which was
2.3 times higher than that of the original surface.

Keywords: SiC; laser texturing; superhydrophobic; dropwise condensation

1. Introduction

SiC has the advantages of excellent hardness [1], chemical stability, good wear resis-
tance, good thermal conductivity, a wide forbidden band, and a low coefficient of thermal
expansion. Nowadays, as power devices produce more and more heat, a system has a
higher and higher requirement for heat dissipation from the substrate. Since the substrate
for high-power devices is often ceramic, in order to solve the heat dissipation problem of
power devices, an integrated micro heat pipe is proposed to embed in SiC substrate [2–4].
More brightness, lower cost, less energy consumption, a longer life span, and a smaller unit
chip area are all advantages of LEDs using SiC ceramic substrates.

Condensation heat transfer has significant application potential and industrial value
because it is widely employed in many industries, including power generation, the chemical
industry, saltwater desalination, microelectronics, aviation, and others [5–7]. Two common
forms of condensation are filmwise condensation and dropwise condensation. Filmwise
condensation is a process in which water vapor spreads into a film on the cooling wall
surface, wets the wall surface, and condenses into a liquid film. Drop condensation form:
condensation cannot be spread on the surface, forming a small liquid droplet, showing
a drop shape. Dropwise condensation, as a type of effective condensation heat transfer,
is several times or even ten times higher than the heat transfer coefficient of filmwise
condensation [7].
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In practice, superhydrophobic (SHPo)/hydrophobic surfaces are necessary for drop-
wise condensation [8]. Methods for the preparation of SHPo surfaces include chemical
etching [9,10], self-assembly technology [11,12], coating technologies [13–15], and mechani-
cal processing [16]. Preston et al. [15] produced graphene coatings on copper tubes using
an ultrathin scalable chemical vapor deposition technique. The outcomes demonstrate that
the graphene coating effectively promotes dropwise condensation while providing strong
chemical stability and maintaining low thermal resistance. The heat transfer performance
was improved by a factor of 4 compared to pristine copper tubes. The relatively low for-
ward and backward contact angles of graphene compared to fluoropolymer coatings make
it less likely to induce superhydrophobic behavior on micro/nanostructured materials.
Lv et al. [13] used a two-step technique to manufacture superhydrophobic PTFE/CuO
coatings on aluminum plates with contact angles larger than 150◦ and water-sloshing
angles less than 10◦. The outcomes demonstrate that 6061Al substrates can be shielded
from corrosion and contamination by PTFE/CuO coatings. In addition, the PTFE/CuO
samples remained superhydrophobic after UV, thermal, and mechanical stability tests,
indicating that the 6061Al substrates with PTFE/Cu coatings can be applied under harsh
conditions. These methods have long processing times and can bring pollution to the envi-
ronment. Laser processing, as a new and green processing method [17], has the following
advantages: (1) controllable process and easy-to-realize industrial applications; (2) high
processing efficiency and speed, without the need to add a coating layer on the material
surface, thus greatly improving the processing efficiency; (3) low cost and pollution-free,
without additional chemicals. Therefore, laser processing is widely used in preparing
superhydrophobic surfaces [18–20].

Chemical vapor infiltration technology is used to overcome the manufacturing of
exceptional-tough CNT/SiC composites [21]. Additionally, the chemical etching method
can be used to fabricate large-scale porous SiC, but the surface has to be functionalized with
perfluorooctyl trichlorosilane to reduce the surface energy. Oxidation of SiC appears to
affect the wettability transition [22]. The SHPo SiC surface can be formed through the metal
coating and adsorption of organic pollutants on the surface [14]. Superhydrophobicity
can also be obtained by surface deposition of perfluoro silane [23]. Liu et al. [9] used
a composite chemical etching method to prepare superhydrophobic SiC surfaces. The
results showed that the surface roughness is significantly increased by composite etching
compared to metal-assisted etching or reactive ion etching only. The porous SiC surface
was functionalized with perfluorooctyl trichlorosilane, resulting in a superhydrophobic
SiC surface with a contact angle of 169.2◦. The superhydrophobicity of the SiC surface
exhibited good stability at 85 ◦C and 85% humidity. Typically, it is very difficult to process
the SHPo SiC surface. Furthermore, the aforementioned methods are not suited for green
production due to their long processing time, high environmental contamination risk, and
high cost.

In view of the shortcomings of the existing technology, this study analyzes the use
of laser texturing (LT) technology in coordination with heat treatment (HT) technology to
prepare SiC SHPo surface and realize surface dropwise condensation. This method has the
advantages of a simple process, and zero chemical pollution, thus greatly improving the
condensation heat transfer. It is a promising method for the condensation heat transfer of
SiC ceramics or semiconductors.

2. Materials and Methods
2.1. Laser Texturing and Heat Treatment of SiC Surface

The experimental sample was SiC ceramic (SiC content 99.9 wt.%), size 50 mm ×
50 mm × 4 mm. Before laser processing, SiC specimens were placed in the bottom of a
clean beaker, 95% alcohol was added to submerge the specimens, then the beaker was
placed in an ultrasonic cleaner (ultrasonic power 80 W) for 10 min. Then, the alcohol
was poured into the waste water pool, and distilled water was added to the beaker to
submerge the specimen. Then the beaker was placed in the ultrasonic cleaner again for
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10 min, and the specimen was taken out to dry in the room to obtain the experimental SiC
surface specimen.

The nanosecond fiber laser (SPI Lasers Ltd., UK), with a 100 W power, 0–240 ns pulse
width, 1064 nm wavelength, 141 mm focal length, and 11 µm spot diameter, was selected.
The parameters of scanning are shown in Table 1. The textured sample was put into an
oven and maintained at 200 ◦C for 24 h. As there was no chemical reagent involved in the
whole process, it was green processing. The experimental SiC samples in this work include
three different samples: original, LT, and laser-textured and heat-treated (LT&HT) samples.

Table 1. The parameters of laser processing.

Wavelength
[nm]

Pulse Width
[ns]

Repeat Frequency
[kHz]

Single Pulse Energy
[mJ]

Scanning Speed
[mm/s]

1064 145 160 0.4 1982

2.2. Characterization

The water contact angle of the sample surface was examined with a contact angle mea-
suring instrument (MAIST Vision A-300, Ningbo Haishu Maishi Testing Technology Ltd.,
Ningbo, China). Each test was performed using deionized water and with a droplet volume
of 6 µL. Each group of samples was measured three times, and the contact angles were
averaged to avoid experimental chance. The surface morphology of the samples was
subsequently observed with a field emission scanning electron microscope (FESEM, ZEISS
GEMINI 300, Carl Zeiss AG, Jena, Germany). The test specimens were three SiC sample
specimens, which were non-magnetic and met the equipment’s environmental require-
ments. The scanning electron microscope was operated at a voltage of 3 kV. The 3D surface
profile and surface roughness of the three different sample surfaces were measured using a
3D surface profiler (Contour GT-K, Beijing Yake Chenxu Technology Ltd., Beijing, China)
made by Bruker. The surface composition was also analyzed using an X-ray photoelectron
spectrometer (XPS, Thermos ESCALAB 250XI, Thermo Fisher Scientific, Waltham, MA,
USA). The detection was performed with an Al target, and the physical phase analysis
was performed with the X-ray photoelectron spectrometer in the 10 nm depth range of the
surface layer of the specimen under the conditions of 100 µm beam diameter, scanning
range 10–90◦, step size 0.05◦, speed 1 (◦)/s, and resolution 0.48 eV, and finally energy
calibration was performed with C1s 284.8 eV.

2.3. Experiment

When the sample is in a steady state, the heat flux is constant in any part, i.e., the
one-dimensional steady-state thermal conductivity is without an internal heat source, and
the condensing surface temperature is calculated using the one-dimensional Fourier’s heat
transfer law. Based on the one-dimensional heat transfer law, the surface temperature of
the sample is derived from the internal temperature of the sample as follows.

TW = Ti +
Q× ∆l
A× λ

(1)

Q =
M× H f g

t
(2)

where Ti is the temperature of the back side of the condensing surface (K), ∆l is the distance
from the temperature measurement point to the condensing surface (m), and λ is the
thermal conductivity of the condensing sample (W·m−1·K−1). Q is the heat conductivity
of the condensing surface of the specimen (W), A is the effective heat transfer area of the
condensing specimen (m2), M is the mass of condensate (kg), and H f g is the latent heat of
vaporization of condensate (J/kg).
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According to the heat transfer theory, the heat transfer coefficient h is obtained.

h =
Q

A× ∆T
=

Q
A× (TS − TW)

(3)

where T is the condensation time (s), TS is the vapor temperature (K), and TW is the surface
temperature of the condensing specimen (K).

Figure 1 illustrates a schematic diagram of the condensation experiment device. The
experiments were carried out at atmospheric pressure, with a temperature of 21 ± 0.5 ◦C,
relative humidity of 75 ± 1%, a cooling water temperature of 16 ± 0.1 ◦C, a steam tempera-
ture of 90 ± 2 ◦C, a steam pressure of 0.1 MPa, and a steam flow rate of 200 cm3/min. The
temperature measuring module measured the experimental temperature on the back of
the condensed sample, and the data acquisition error was less than 1%. Condensation heat
transfer tests were performed using the three different SiC samples mentioned above. Two
sets of control experiments were conducted in order to prevent errors in the experimental
results, and the average of the two sets of data was taken as the experimental results.
The same temperature and humidity were used for all of the condensation heat transfer
tests. After measuring the sample’s backside temperature and the condensate’s weight,
the condensation surface temperature and heat transfer quantity were calculated using
Equations (1) and (2), respectively. Lastly, Equation (3) was used to get the sample’s
condensation heat transfer coefficient.
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Figure 1. Schematic diagram of the condensation experiment device.

3. Results and Discussion
3.1. Effect of Laser Texturing and Heat Treatment on Microstructure and Composition

Figure 2 shows the contact angles of three SiC surfaces measured by the contact
angle measuring instrument. Figure 2a shows that the contact angle of the original sam-
ple is 71 ± 1.8◦. Figure 2b shows that the contact angle of the LT sample is at 0◦ (su-
perhydrophilic). Figure 2c shows that the contact angle of the LT and HT sample is at
164 ± 1.5◦ (superhydrophobic).
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and HT samples.

Figure 3 shows SEM images of the three surfaces. Figure 3a shows the original SiC
surface after grinding, with a relatively rough surface and extensive distribution of grooves.
Additionally, from Figure 3a–c, it is clear that both LT and LT and HT samples reserve
most of the grain boundary and grooves from the original. However, Figure 3b is the LT
surface with obvious traces of laser action, which has removed the capture of free organic
matter from the original surface and presents a superhydrophilic (SHPi) state. It shows
the micron-sized bump structure on the LT surface, with several small nanoscale particles
adhering to the top of the bump. The LT surface has less nano-burr structure, and the
droplet has a large contact area with the surface, so the surface shows SHPi. Figure 3c
shows the nanoscale sheet-like protrusion structure on the LT and HT surfaces. After heat
treatment, the small nanoparticles attached to the tabs grew sufficiently to form protrusions.
As the droplet had a small contact area with the surface, the LT and HT surface shows
SHPo. When the droplet came in contact with the surface, it gradually filled the entire
nano groove. If the driving force of the droplet exceeded the hysteresis resistance, the
bottom radius of the droplet began to contract. Among them, the nanostructure of the LT
and HT surface formed multiple air pockets in contact with air. When the bottom radius
shrank to a certain extent, the percentage of contact area between the droplets and the
surface decreased, and most of the droplets were lifted by this air film. This indicated
that the nanostructure of the LT and HT surface could effectively capture air, reduce the
contact area between droplets and the surface, and play a decisive role in the generation of
superhydrophobicity.

Figure 4 shows the three-dimensional surface profile of the samples. Figure 4a shows
the LT sample surface, where after laser processing of the sample surface, fewer nano-
burr structures are formed on the sample surface, and the droplets have a large contact
area with the surface, showing the SHPi state. Figure 4b shows the LT and HT surface,
where the surface forms a nanoscale sheet-like protrusion structure, and it shows SHPo.
The surface roughness of the sample was increased from 0.21 µm to 5.58 µm after laser
processing and heat treatment; thus, the SiC surface changed from superhydrophilic
to superhydrophobic.
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Figure 5 shows the atomic content of the samples. The percentage of oxygen elements
on the original surface, the LT surface, and the LT and HT surface are 17.07%, 46.79%, and
48.04%, respectively. Meanwhile, the percentage of elemental carbon on the original surface,
the LT surface, and the LT and HT surface are 42.72%, 19.53%, and 10.71%, respectively.
During the laser texturing process, the SiC surface reacted with oxygen to form SiO2,
and the free organic matter adsorbed on the original surface was removed. After the SiC
samples were baked at high temperatures, some SiO on the SiC surface continued to oxidize
to SiO2, and therefore the oxygen content increased.
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Figure 5. The atomic content of the samples.

Figure 6 shows the XPS characteristic spectral lines of the three surfaces. Figure 6a–c
shows the XPS analysis of three different SiC surfaces. According to the Si2p spectrum of
SiC samples, it can be known that the peaks of 100.5 eV, 102.2 eV, and 104.1 eV belong to
SiC, SiOX, and SiO2, respectively. The SiC content and SiOX content of the original surface
are 97.3 wt.% and 2.7 wt.%, respectively. The SiC interface reacted with the surroundings
during LT, and the SiC content is not obvious. The contents of SiOX and SiO2 on the
surface are 34.51 wt.% and 65.49 wt.%, respectively. The possible reaction [24–27] was:
2SiC + 2O2→SiOX (s) + SiO2 + CO. At the same time, the surface-captured free organic
matter was removed, and SiO2 surface energy was relatively high, so the surface was in
a SHPi state. After LT and HT, SiC content was not obvious, SiOX content increased to
69.76 wt.%, and SiO2 content was 30.24 wt.%. During heat treatment, the nano-groove
structure was formed, and the low surface energy SiOX produced on the surface, the surface
became SHPo.
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3.2. Condensation Heat Transfer

Figure 7 shows the steam condensation images and heat transfer performance of three
different SiC surfaces. Figure 7a shows the steam condensation image on the original
surface, the transitional condensation from filmwise to dropwise is obvious. Figure 7b
shows the steam condensation image on the LT surface, and it can be seen that the vapor
continuously attached to the SHPi surface and became liquid, formed a liquid film, and
then started to flow, which is the filmwise condensation. Figure 7c shows the steam
condensation image on the LT and HT surface; it can be seen that the vapor slowly attached
to the superhydrophobic surface and formed small droplets. As the condensation process
continued, the small droplet slowly grew, and the neighboring droplets adsorbed each
other under the action of surface tension so that the neighboring droplets slowly came
together, merging and pooling between the neighboring droplets. When the gravity of the
droplet is less than the surface adhesion force, the droplet will form. When the gravity of
the droplet is greater than the surface adhesion force, the droplet will shed and, at the same
time, take the tiny droplet being formed with it, providing more space for the small droplet
to form on the surface. This is dropwise condensation.
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During dropwise condensation, the vapor slowly adheres and forms small droplets
on the SiC surface. Because the diameter of the newly formed droplets is smaller than
the spacing of the micro-nano multilevel structure on the SiC surface, the droplets form
tiny droplets in the multilevel structure grooves at the beginning of the condensation
experiment, and the position of the tiny droplets formed on the superhydrophobic surface
is not fixed because the droplet nucleation on the surface is random. When the vapor
continues to connect to the SiC SHPo surface, the droplets continue to grow, and because
the two droplets are still far apart, the SiC superhydrophobic surface is covered with
fewer small droplets, and the adjacent droplets have not yet merged. With the continuous
growth of condensed droplets, the distance between the two droplets becomes smaller
and smaller to the droplet merger under the action of surface tension small. When the
size of the merged droplets is larger than the distance between the surface micro-nano
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structures, there will be a merging of droplets at the upper end of the two raised structures.
Between the merged micro-nano grooves, the liquid forms a closed-air film between the
upper end of the projection and the grooves due to the presence of air inside the grooves.
While vapor condensation continues, the droplets will continue to increase in size, but
the droplets above the air film are held up due to the presence of the air film between the
grooves, at which time the contact area between the droplets and the surface decreases,
and the droplets continue to grow and merge. When the distance between the micro-nano
structures on the surface is larger than the size of the droplets after merging, the tiny
droplets nucleated inside the grooves will keep growing, and when the droplets grow large
enough, the droplets at the upper end of the grooves are attracted to the lower part by the
droplet tension inside the droplets, and the merging between the droplets will occur inside
the grooves. As the water vapor condensation continues, the droplets will gradually fill the
grooves between the micro-nano structures, thus making the droplets present on the SiC
surface. As the water vapor condensation continues, the droplets gradually fill the grooves
between the micro-nano structures, thus making the droplets assume a super hydrophilic
state on the SiC surface, forming a liquid film that prevents the vapor from continuing
to nucleate.

As seen in Figure 7d, during the 120 s condensation test, the SHPo and SHPi surface
temperatures steadily increased with the same rising trend. During the 120 s–600 s con-
densation process, the SHPo surface temperature reaches a maximum value (about 36 ◦C)
and then tends to stabilize, while the SHPi surface temperature reaches a maximum value
and then suddenly drops to a certain temperature value (about 28 ◦C). The original surface
temperature reaches a stable value (about 26 ◦C) around 80 s and remains stable. After
10 min of testing, the SHPo SiC surface temperature was the highest, the original was the
lowest, and the SHPi one was in the middle. At the beginning of the test, the temperature
of the three surfaces gradually increased, and the rising trend was consistent. After that,
the temperature of the SHPo surface reached the maximum value and then stabilized;
the original soon remained stable. The SHPi surface, on the other hand, decreased and
remained stable after reaching its maximum value. The droplets did not completely fill
the grooves at the beginning of the experiment. As the condensation proceeded, the
surface was gradually wetted by droplets, and the condensation form gradually changed
to filmwise condensation; thus, its surface temperature dropped abruptly. The droplets
condensed rapidly on the SHPo surface, and when the droplets grew and merged to
reach the droplet shedding diameter, the droplets would fall off from the SiC surface
under the action of gravity. At the same time, the small droplets that were still nucleated
would be detached together. These new condensation areas provided more areas for vapor
condensation on the surface, thus making the mass of condensing droplets increase per
unit of time, and the condensation heat transfer efficiency was high. As the condensation
of steam continues, the droplets inside the grooves between the micro-nano structures
will slowly increase, and their surface tension will adsorb the condensate droplets on
the raised structures, and the condensate droplets will gradually fill the grooves, thus
forming a liquid film on the condensing surface. As the condensate increases, the liquid
film will gradually thicken, organizing the droplets from the gaseous state to the liquid
state, making the condensation form into filmwise condensation, and the heat transfer
efficiency decreases significantly.

Figure 7e shows the condensation heat transfer coefficients of three different SiC
samples. The maximum condensation heat transfer coefficient of the SHPo surface is
331.8± 2.1 W/(m2·K), which is 2.3 times the original and 2.8 times the SHPi. The condensa-
tion heat transfer coefficient of the SHPi surface is smaller because, during the condensation
process, the SHPi surface undergoes filmwise condensation. In this state, the heat released
from steam condensation could only be transferred to the surface through the liquid film.
Therefore, the surface thermal resistance was high, and the condensation heat transfer
coefficient of the SHPi surface was small. The condensation heat transfer coefficient of
the SHPo surface was larger because dropwise condensation occurs on the SHPo surface
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during the condensation process. The nucleation density of the SHPo surface was small,
the droplet shedding frequency was high, and it was difficult for the droplets to form into
a film. Therefore, the heat released from steam condensation could be directly transferred
to the wall, and the condensation heat transfer coefficient of the SHPo surface was larger. It
can be seen that dropwise condensation on the SHPo surface can greatly improve the heat
transfer efficiency of condensation.

4. Conclusions

In this study, the SHPo SiC surface was prepared through laser texturing and heat
treatment, and the condensation heat transfer experiment was conducted. Through mi-
crostructure investigation and theoretical analysis, the conclusions are drawn as follows:

(1) After laser texturing, the micron-sized bump structure is formed on the LT surface,
and the LT surface shows SHPi. After heat treatment, the small nanoparticles attached to
the tabs grew sufficiently to form nanoscale sheet-like protrusion structures. Meanwhile,
the surface roughness of the LT and HT sample was 27 times higher than that of the LT
sample. Thus, the LT and HT surface shows SHPo, and the contact angle is at 164◦;

(2) During laser texturing, the SiC surface reacts with oxygen to form SiO2 and cleans
up the free organic matter adsorbed on the original surface to be SHPi. After heat treatment,
lower surface energy SiOX (s) are produced. Combined with the nano-groove structures,
the LT and HT surface becomes SHPo;

(3) The SHPo SiC surface shows a typical dropwise condensation. The heat transfer
coefficient reaches 331.8 W/(m2·K), which is 2.3 times the original surface and 2.8 times the
SHPi surface.
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