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Abstract: We analyzed the behavior of sessile ferroelectric liquid droplets in the vicinity of a pyroelec-
trically charged ferroelectric crystal, an experimental configuration that allows testing the recently
observed coupling between the polarizations of the fluid and solid materials, in conditions of no
direct contact. Results demonstrate that polarizations’ coupling also exists in this configuration and
has two distinct effects. Specifically, it gives rise both to an electromechanical instability of the liquid
droplets consisting in the sudden ejection of interfacial fluid jets, and to a slow droplet motion toward
the ferroelectric solid driven by a dielectrophoretic force. The two effects can possibly be separated,
depending on the droplet size.
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1. Introduction

The recent discovery of the ferroelectric nematic liquid crystal phase (NF) marks a
revolution in material science [1]. Indeed, more than 100 years after the Born predic-
tion [2], the elusive polar nematic phase—the first ferroelectric fluid with a workable
viscosity—has been found in two distinct compounds, the firsts of a whole class of novel
liquid crystalline materials. This is an important discovery, because the combination of
fluidity and polar coupling to electric fields is opening the gate to a whole new world of
phenomena, which are rapidly becoming the focus of the liquid crystal and soft material
scientific communities [3–15]. In this scenario, we recently performed experiments aimed
at characterizing the behavior of sessile NF droplets on ferroelectric solid substrates [16]
and found that the combination of fluidity and polarity gives rise to an electromechanical
instability induced by the coupling of the LC polarization with the polarization of the solid
substrate. This latter can be induced either pyroelectrically by temperature variation [16] or
photovoltaically through light irradiation [17,18]. The coupling between the polarization in
the solid and fluid materials induces the accumulation of surface charges on the droplet–air
interface, which can give rise to repulsive forces that become unsustainable by the surface
tension. The resulting instability takes the form of an abrupt expulsion of polarized fluid
jets, whose electrically charged tips are repelled by the droplet. The tips themselves are
unstable and often bifurcate, leading to a cascade of branched dynamic fluid jets and
eventually disrupting into new small droplets.

Such a polarization coupling is a new phenomenon, and is observable thanks to the
peculiar fluid nature of the ferroelectric nematic phase. Being new, its characterization
and understanding are desirable from both the point of view of the fundamental research
and of the possible future applications. Indeed, this effect might pave the way to the
realization of novel hybrid liquid/solid devices as, for example, ferroelectric memories,
supercapacitors, micro and optofluidic platforms for the control of complex ferroelectric
fluids, and electrically or optically controlled droplet dispensers. Moreover, it might
provide the basis for electrohydromechanical applications, such as soft robotics.
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With the aim of further analyzing this effect, here, we characterize the behavior of
sessile ferroelectric liquid droplets deposited on glass substrates and placed in the vicinity
of a pyroelectrically charged ferroelectric crystal. This experimental configuration allows
for testing the coupling between the polarizations of the fluid and solid materials in
conditions of no direct contact between the two, and thus is different from those of both
ref. [16] and [17], where the droplets lay directly on a ferroelectric substrate. Results
demonstrate that polarization coupling also exists in this configuration and has two distinct
effects. Indeed, it is responsible for both the electromechanical instability leading to the
sudden ejection of interfacial fluid jets, and a slow droplets’ motion toward the ferroelectric
solid driven by a dielectrophoretic force. According to [16], the interaction between the
polarizations of the two ferroelectric materials is mediated by the fringing field Ef generated
by the pyroelectric effect in the vicinity of the ferroelectric crystal surface; our measurements
thus set a value for the range of action of Ef in the used experimental conditions.

Worthy of note, the behavior of liquid crystalline materials in combination with
ferroelectric substrates has also been studied in the case of the conventional nematic phase
in several different configurations [19–22]. The ability of substrate charging to affect the LC
average molecular orientation has been demonstrated; however, no effect comparable to
that observed with ferroelectric nematic LCs was reported.

2. Materials and Methods

The ferroelectric liquid crystal used in this work is 4-[(4-nitrophenoxy)carbonyl]pheny-
l2,4-dimethoxybenzoate (RM734). It was synthesized as described in [1], and its structure
and phase diagram have already been reported [1,6,16]. In this compound, the ferroelec-
tric nematic (NF) phase appears through a second order phase transition upon cooling
from the conventional higher temperature nematic (N) phase and exists in the range of
133 ◦C > T > 80 ◦C [6,16]. The spontaneous polarization P of RM734 is either parallel or
antiparallel to the molecular director n, defining the average orientation of the molecular
axis, and exceeds 6 µC/cm2 at the lowest temperature in the NF phase [1].

The RM734 droplets were obtained following two steps. First, a small amount of
RM734 powder is deposited at room temperature on a clean glass slide and heated to
150 ◦C to create a melt. To create the initial droplets, a cold stainless needle is dipped into
the melt and retracted, so that the droplet on its tip solidifies at contact with the surrounding
air. To increase the size of the RM734 “pearl”, rapid (to avoid re-melting) successive dipping
is performed. Then, the pearl is remolten into a droplet on the glass substrate. The glass
slide is then cooled down to room temperature so that solidified droplets can be peeled
off and reused on the proper substrate. The size of the droplets is controllable (size before
peeling vs. size of the remolten droplet) and is measured by means of a calibration slide.
The average diameter ranges from 400 to 200 µm. For the experiments described here, the
obtained droplets were deposited on unrubbed glass substrates. Bare glass and fluorolink-
coated glass substrates were used. Fluorolink was selected, as it features extremely low
surface coupling of RM734 molecules [6], thus providing a good comparison with the
behavior of RM734 droplets on bare glass. Fluorolink coating was obtained as described
in [6]. Before droplet deposition, glass substrates were slowly heated up to T = 200 ◦C,
corresponding to the RM734 isotropic phase, and a rectangular ferroelectric crystal with a
size of 10 mm × 5 mm was placed on top of it, as sketched in Figure 1. Successively, T was
decreased down to 80 ◦C with a cooling rate of (0.30 ± 0.05) ◦C/s.

As ferroelectric crystals, we used 900 µm thick z-cut lithium niobate (LN) slabs.
Experiments were performed on iron-doped substrates containing 0.1% mol. of iron
with a reduction factor R, defined as the ratio Fe2+/Fe3+, of 0.02. The bulk spontaneous
polarization PLN of LN crystals along the [0001] z-axis is of the order of 70 µC/cm2 and
does not depend significantly on T in the explored range, since its Curie temperature is
much higher (≈1140 ◦C). The huge bulk polarization of LN does not, however, translate to a
huge surface charge density because of very efficient compensation mechanisms at the z-cut
surfaces, lowering the equilibrium surface charge to only about 10−2 µC/cm2 [23]. When
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temperature variations are induced, the surface charge of LN can significantly increase
because of the pyroelectric effect [24], a transient phenomenon observable during and
shortly after the variation and due to the slow free charge relaxation in LN. The pyroelectric
coefficient of undoped LN is of the order of 10−4 C/m2K at room temperature [25,26], and
increases by one order of magnitude around 100 ◦C for both undoped and iron-doped
crystals [27]. Given the temperature used in our experiments, and dictated by the RM734
phase diagram, we can thus expect an induced surface charge density of the order of
1 µC/cm2, for T variations of a few degrees ramped in a short time compared to the LN
charge relaxation. LN crystals were placed on top of the heated glass substrates, and
RM734 droplets were positioned directly on the glass at a controlled distance from the
LN slab (Figure 1). The distance between the droplet edge and the edge of the LN crystal
was measured by a calibration slide with an experimental error of ±5 µm. The distance
was adjusted by sliding the crystal away from/towards the droplet. Polarized optical
microscope (POM) observations during the cooling were carried out, and videos of the
droplet’s behavior were recorded with a rate of 25 frames per second. Note that both
the glass substrates and the z-cut LN crystals appear to be dark under crossed polarizers.
For this reason, a full wave plate was added to the microscope to increase the contrast of
the images.
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3. Results

The electromechanical instability of RM734 ferroelectric droplets deposited on fer-
roelectric substrates [16] has been interpreted as being due to the coupling between the
polarization of the ferroelectric fluid and the polarization of the ferroelectric solid substrate.
This coupling is mediated by the fringing field generated by the pyroelectric charging of
LN [16], which exists outside the crystal with a certain extension, as sketched in Figure 1.
Therefore, it can be expected that RM734 droplets are affected by the LN polarization even
in conditions of no direct contact between the two materials. This has been indeed observed
and is reported in Figure 2, where several frames extracted by Video S1, available in the
S.I., demonstrate the behavior of a RM734 ferroelectric droplet on a bare glass substrate,
upon cooling down to 80 ◦C. A 400 µm droplet is positioned so that its edge is at a distance
dE = 150 µm from the border of the LN crystal, as measured as detailed in the previous
section (Figure 2a). About 4.4 s after the transition to the NF phase, the droplet undergoes
a deformation toward the LN slab (Figure 2b), followed by several other transient defor-
mations and by the ejection of very small fluid jets that are almost immediately retracted
(Figure 2c,d). The deformations become bigger and affect a larger part of the droplet as the
temperature decreases (Figure 2e) and eventually result in the electromechanical instability
described in [16], consisting of the emission of fluid jets that run over the substrate and
branch with several levels of ramifications (Figure 2f–h). Jets are initially ejected mainly
from regions closer to the LN crystal, in the direction of the LN itself (Figure 2f) and later
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extend to the whole droplet rim (Figure 2g). Interestingly, additional fluid jets come from
the liquid crystalline material that enters the region between the LN and glass, forming
a thin LC layer (Figure 2g,h). We interpret these jets in analogy to those produced by the
electromechanical instability of ferroelectric RM734 droplets that is due to the imbalance
between the surface tension and the electrostatic energy accumulated by the ferroelectric
fluid in contact with the charged ferroelectric solid [16]. The changes in color of the LN
crystal close to the border indicate a non-uniform variation of the birefringence that we
understand as being due to a nonuniform pyroelectric charging. This might be due to a not
optimal isolation of the temperature controller (hot-stage) or to a piezoelectric deformation
of the crystal.
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Figure 2. RM734 ferroelectric droplet on a bare glass substrate upon cooling from 130 to 80 ◦C.
The green dashed line marks the edge of a LN crystal positioned on the right-hand side of the
droplet, at 150 µm from the droplet rim (a). Upon lowering the temperature, the droplet undergoes a
deformation toward the LN slab (b). This is followed by several other transient deformations that in
some cases are accompanied by the ejection of very short fluid jets (c) that are almost immediately
retracted (d). Continuing to cool, the deformations become bigger (e) and eventually lead to the
droplet’s electromechanical instability (f,g). (h) Initial droplet diameter D = 400 µm.

Varying the initial distance dE between the droplet edge and LN border has two effects.
On the one hand, it results in a change of the temperature at which the first deformation is
observed, which decrease as dE increases. On the other hand, it affects the electromechanical
instability, which also occurs at a lower temperature and is generally less violent upon
increasing dE.

Interestingly, jets’ ejection does not always occur in the direction of the LN slab.
Figure 3 shows an example of fluid jets emitted from the droplet side opposite to the
LN crystal, in the case of a fluorolink-coated glass substrate. Noteworthy, while droplet
deformation toward the LN crystal is not necessarily associated with jet ejection, the
latter is, on the contrary, always connected to a deformation of the droplet rim. This
suggests that the observed deformation might be the result of two different effects: the
electromechanical instability induced by the rearrangement of the droplet polarization and
the droplet attraction toward the LN crystal.

To test this hypothesis, we measured the possible motion of the droplets in the direction
of the LN crystal by tracking the position of a specific point identified as the droplet center.
The results are reported in Figure 4a, where the distance d between the center of a RM734
ferroelectric droplet and the LN edge is plotted as a function of time. The initial instant t = 0
has been chosen a few frames before the beginning of motion, which starts at T = 105 ◦C,
which is well inside the NF phase. The shape of the curve suggests the presence of both a
pinning force that acts as a static friction and of a friction of dynamic nature dependent on
the droplet velocity, which leads to a uniform motion with constant velocity for a certain
interval before the droplet stops. Such a dynamic friction is most probably a viscous
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force due to the internal fluid motion, in analogy to that observed in the case of smaller
RM734 ferroelectric droplets moving on LN substrates due to localized photovoltaic LN
charging [17]. Noteworthy, the motion ends before the droplet reaches the border of the
LN crystal, as it is also visible in the three images on the right-hand side of the graph.
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Figure 3. RM734 ferroelectric droplet on a fluorolink-coated glass substrate during an instability
event (T = 100 ◦C). The green dashed line marks the edge of a LN crystal positioned on the right-hand
side of the droplet, at 140 µm from the droplet rim. The fluid jets are mainly ejected in the direction
opposite to the LN slab and are emitted from the droplet’s left side. The inset shows the same droplet
right after the N/NF transition. Initial droplet diameter D = 280 µm.
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Figure 4. Distance of the droplet center (see text) from the edge of the LN slab, as a function of
time in case of droplet lying on bare glass (a) and fluorolink-coated glass (b). The inset in Figure 4a
shows the droplet in three different instants and helps in identifying the center (marked in black).
The curve for bare glass suggests the presence of a pinning force that appears weaker in the case
of fluorolink-coated glass substrate. Both curves show a linear trend, at least for a certain interval,
indicating the presence of a dynamic friction dependent on the droplet velocity. Noteworthy, in case
of fluorolink-coated substrate, the droplet center moves faster.

Results in Figure 4a suggest that the observed deformation in the direction of LN is
due to the combination between an attractive force and a pinning force. Indeed, similar
measurements performed on RM734 ferroelectric droplets lying on fluorolink-coated glass
substrates, where the pinning force is expected to be quite low or even almost absent, show
a much weaker droplet deformation toward LN and a displacement curve of a different
initial shape. Specifically, keeping the cooling rate and the droplet size fixed, the motion
starts well before 105 ◦C, namely right after the transition to the NF phase, thus confirming
a lower pinning force (Figure 4b).
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The electromechanical instability is thus only one of the effects of the polarization cou-
pling between the LC droplets and LN. This phenomenon occurs with different morphologies,
as observed in [16], which might be due to various factors, including droplets’ average diame-
ter, different positions with respect to the LN crystal, variations in the instability temperature
and different glass substrates. While we could not identify a clean connection between the
observed morphologies and factors as the droplet diameter and instability temperature, we
found that the glass substrate plays a specific role. Indeed, the instability observed on the
fluorolink-coated glass results in thin jets that form a large number of secondary small droplets
(see Figures 3 and 6 later on), in contrast to what happens on bare glass where the instability
is characterized by the protrusion of large droplet areas combined with jets’ ejection (Figure 2).
We understand this difference as due to the different wettability of the two substrates. Indeed,
fluorolink coating is known to substantially decrease the wettability of glass surfaces, thus
favoring the formation of thin fluid jets and secondary droplets with respect to the ejection of
fluid streams with large interfacial regions.

Despite the substrate used, the fluid jets ejected by RM734 droplets at instability poses
a common feature. Indeed, they all exhibit the typical branched structure (Figures 2 and 3),
which is due to their polarity and to charge accumulation on their tips [16]. By analyzing
the evolution of this structure, we determined the Hausdorff (fractal) dimension df as a
function of time, which is shown in Figure 5 for both droplets on bare and fluorolink-coated
glass. In doing this, we selected a portion of a video where the branching of the ejected
jets is easily visible, and determined df using the box counting method [28]. In both cases,
df is lower than 2 and decreases to d f

∼= 1.95 as the time delay ∆t from the initial frame
increases. This indicates the fractal-like property of the formed structure [28,29].
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Figure 5. Hausdorff (fractal) dimension as a function of the time delay with respect to an initial video
frame where the branched structure is beginning to form. The fractal dimension decreases as time
passes, i.e., as the temperature decreases and the RM734 polarity increases. The dimension is always
lower than 2 and decreases to df

∼= 1.95, which demonstrates the fractal nature of jets’ ramification.

As for the droplet position with respect to the LN crystal, we measured a maximum
distance dMAX between the droplet center and the LN edge beyond which the ferroelectric
droplets are no longer affected by the polarization of the ferroelectric crystal. We found
dMAX = 500 µm for both kinds of glass substrates. We interpret this distance as the range of
action of the fringing field generated by the pyroelectric charging of LN in our experimental
conditions.

4. Discussion

Our results demonstrate that the coupling between the polarization of a ferroelectric
droplet and the one of a ferroelectric solid, recently observed for ferroelectric sessile droplets
on ferroelectric substrates [16,17], is possible even in conditions of no direct contact between
the two materials. Such a coupling is mediated by the fringing field generated by the LN
pyroelectric charging, in analogy to the case of ferroelectric droplets lying directly on LN
substrates. The dependence of the effect on the initial distance between the droplet edge
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and the LN border, observed here, is a clear demonstration of the role played by Ef. Indeed,
Ef decreases with increasing the distance to the LN crystal so that if the initial distance
between droplet edge and LN increases, the ferroelectric droplets experience a lower
fringing field. This reasonably leads to a weaker overall effect, resulting in a less violent
ejection of fluid jets and greater stability of the droplets’ shape, which in fact undergoes
deformation and electromechanical instability for lower values of T, corresponding to
higher values of the polarization P.

The fringing field generated by the pyroelectric charging of the LN crystal affects the
RM734 droplet in different ways. On the one hand, it induces the electromechanical insta-
bility leading to fluid jets’ ejection, as reported in Figures 2, 3 and 6 and described in [16].
This means that the fringing field polarizes the ferroelectric droplet that thus rearranges
its polarization P so as to cancel the internal field. In this process, opposite directions of
P might nucleate and converge in specific locations of the droplets, forming topological
defects that produce charge accumulation and act as triggers for jets’ ejection [16]. On the
other hand, it gives rise to an attractive force that we interpret as a dielectrophoretic force
acting on the liquid crystal droplets, by pulling them toward the location corresponding
to the maximum value of the fringing field amplitude [17]. It is known that the dielec-
trophoretic force FDEP is due to the interaction between a non-uniform electric field and a
polarizable dielectric material. In the simple case of spherical shape particles, FDEP depends
on the gradient of the electric field, squared as [30]:

FDEP = 2πR3εmRe
[

εp − εm

εp + 2εm

]
∇E2

where R is the radius of the spherical particle of complex dielectric permittivity εp, dispersed
in a medium of complex dielectric permittivity εm. As discussed in [17], this expression can
be used for ferroelectric sessile droplets with proper corrections to the Clausius–Mossotti
ratio in square brackets, which can be approximated to unity, thus leading to a force
dependent only on the droplet’s radius and on the gradient of the field squared. Such a
kind of force gives account for the observed droplet attraction toward the LN crystal.
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Figure 6. RM734 ferroelectric droplet on fluorolink-coated glass. The green dashed line marks the
edge of an LN crystal positioned on the right-hand side of the droplet, initially at 200 µm from
the droplet rim. The electromechanical instability results in the ejection of thin jets that disrupt by
forming a huge number of small secondary droplets. A larger jet is instead directed toward the LN
ferroelectric crystal and reaches its edge. Initial droplet diameter D = 308 µm; T = 100 ◦C.

The observed droplet deformation might be due to the combination between dielec-
trophoretic attraction and pinning, which also explains why it is lower in the case of
fluorolink-coated substrates, where the pinning force is much weaker than on bare glass.
However, this same deformation shows a sort of oscillatory behavior (see Video S1), which
resembles the onset of an electromechanical instability. Indeed, as observed in Figure 2,
jet ejection is generally preceded by droplet deformation that disappears as the jets are
retracted by the original droplet. We thus interpret the observed droplet deformation as
due to a combination of droplet motion driven by FDEP but opposed by pinning, and shape
instability driven by droplet polarization induced by the fringing field.
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Noteworthy, due to the large droplet size, the fringing field is not uniform along
the droplet diameter, that is, different regions of the droplet experience a different value
of Ef. This reasonably affects both the field-induced instability and the dielectrophoretic
interaction and contributes to the observed droplet deformation. Moreover, due to the
dielectrophoretic attraction, internal fluid motion carrying material toward the droplet side
closer to the LN edge might occur. This motion is expected to change the map of topological
defects, displacing the regions of charge accumulation, thus making droplet instability and
jet ejection much less controllable than in the experiments described in [16], where droplets
are in direct contact with the whole charged area, and [17], where droplets are much smaller.
In addition, the fluid jets themselves are most probably affected by FDEP [18], which can
result in a larger radius and a higher velocity of jets ejected close to LN, with respect to
jets ejected from the other regions of the droplet rim, as shown in Figure 6 (extracted from
Video S2 and available in the Supplementary Materials).

The described double action of the fringing field produced by the LN crystal indicates
a double effect of the coupling between the polarizations of the fluid and solid materials.
The two polarizations interact without the need of a direct contact, and this interaction
has two results. Since large droplets have higher inertia with respect to small ones and
since, according to [16], the temperature at which the electromechanical instability is
observed decreases by decreasing the droplet diameter, it should be possible to select one
of the two effects acting on the droplets’ size. Specifically, the dielectrophoretic attraction
should prevail in the case of small droplets, thus making droplet motion the dominant
effect—in analogy to that observed in [17] for small ferroelectric droplets affected by the
dielectrophoretic force generated because of the localized light-induced LN charging. On
the contrary, in the case of large droplets, the electromechanical instability leading to jet
ejection is expected to dominate over the droplet motion.

5. Conclusions

We demonstrated the existence of a coupling between the polarization of a ferroelectric
fluid and the polarization of a ferroelectric solid, in conditions of no direct contact between
the two materials. The coupling gives rise to two distinct effects: droplet polarization and
consequent instability with the ejection of fluid jets, and dielectrophoretic-driven droplet
motion toward the LN crystal. This latter is opposed by pinning, which can be decreased
by using proper surface coatings and by decreasing the size of the contact line (i.e., the
droplet perimeter), as well as by droplet inertia, which decreases as the droplet volume
decreases. Therefore, the two effects can possibly be selected acting on the droplet size.

As the interaction between the two polarizations is mediated by the fringing field
Ef that is generated by the pyroelectric effect in proximity of the ferroelectric crystal
surface [16], our measurements set a value for the range of action of Ef in our experimental
conditions.

The recent discovery of the ferroelectric nematic liquid crystals—the first ferroelectric
fluids with a workable viscosity—is opening the gate to a whole new world of phenomena,
all based on the peculiar combination of fluidity and polar coupling to electric fields, which
are rapidly becoming the focus of the liquid crystal and soft material scientific communities.
The results reported here are a step forward in the characterization and understanding
of the coupling between the polarization of a ferroelectric fluid and the polarization of a
ferroelectric solid, an effect completely unknown and unconceivable until just a few years
ago.
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