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Abstract: Green diopside is currently popular in the jewelry market due to its attractive color and
excellent transparency. Gem-quality diopsides are mainly sourced from Pakistan, Italy, Russia, and
other places. The color, geographic origin, and formation mechanism are the main factors affecting
the value of gemstones, which can be determined by examining their gemology and composition
characteristics. This study systematically characterizes the standard gemology of green diopsides
from Pakistan and Russia and compares them with the blue diopsides produced within the skarn
process and the diopsides from the nearby region in Russia from previous studies by gemological
microscopy, spectral testing (infrared, Raman and ultraviolet-visible spectroscopy), and chemical
analyses (electron probe and laser ablation inductively coupled plasma mass spectrometry). The
results show that the spectral characteristics and phase composition of the green diopside samples
from Pakistan and Russia have excellent uniformity and similarity. The high Cr, Fe, V, and Ni contents
are the reasons why they appear as green. Meanwhile, the elemental characteristics of the diopside are
effective tools for distinguishing different origins of different diopsides. The Russian green diopsides
have higher contents of Sr, Sc, Zr, and rare earth elements (REE), indicating that they are related to
alkaline ultrabasic rocks, and the source of the diopside sample from Pakistan is metamorphic rock.

Keywords: diopside; gemological characteristics; LA-ICP-MS; chromogenic mechanism

1. Introduction

Diopside is commonly found in metamorphic and igneous rocks, and gem-quality
varieties are mainly exploited in Myanmar, Canada, China, Pakistan, Italy, South Africa,
Russia, the United States, Austria, India, and other places (Figure 1). Diopside is a mineral
with a structure of silicate tetrahedra, linked by sharing oxygen as a single chain, belonging
to the pyroxene group, with an ideal formula of CaMg[Si2O6]. The general formula
of pyroxenes is M2M1T2O6, where M2 structural position is occupied by the cations
coordinated by 6–8 oxygen atoms in the generally distorted octahedral coordination. An
M1 structural position is occupied by cations with six-fold coordination in the regular
octahedral coordination, with Si4+ occupying the tetrahedral position T. Si4+ occupying
the T-site can be replaced by Al3+ and Fe3+ in the case of the silica undersaturated end
members of the group. The M1 site is occupied by Mg2+, Fe2+, Co2+, Fe3+, Cr3+, etc., while
the Ca2+ mainly occupying the M2 site can be replaced by Na+, Mg2+, and Fe2+. Single
chains of SiO4 tetrahedra extending parallel to the c axis determine the monoclinic crystal
structure of pyroxene in the space group C2/c. The chain structure offers much flexibility in
the incorporation of various cations, which is limited by the size of the sites in the structure
and the charge of the substituting ions [1–11].
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evolution. The KMR exposed in the Shigar Valley comprises predominantly granitoids, 
amphibolite, locally granulite-grade polyphase deformed sedimentary rocks, and 
orthogneiss [17–20]. A large number of pegmatites are also produced in the Shigar valley. 
Diopside has been reported mainly in the pegmatites and also in the metamorphic rocks 
of the Shigar valley [18,21–27]. The diopside sample from Pakistan in this study was 
obtained from skarn formed by metamorphism of limestone. 

The Inagli deposit is located within the Inagli massif of alkaline ultramafic rocks of 
the potassic series, 30 km west of the city of Aldan, Yakutia, Russia [12,28]. The massif is 
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Figure 1. Statistical diagram of the global gem-diopside origins. The gray shaded areas are the
countries of gem-diopside origins. The red dots are the locations of the diopside samples from
Pakistan and Russia.

Due to the increasing demand in the jewelry market and the discovery of many jewelry
deposits producing diopside worldwide, the appeal of diopside has increased considerably.
In the literature, there are far more studies on gem-quality diopside from Russia and Italy
than those from other regions. Meanwhile, the present studies of gem-quality diopside
are almost limited to gemological basic tests, lacking systematic studies of spectral and
compositional characteristics, as well as systematic comparisons of diopsides output from
different regions [11–14].

In this paper, gem-quality diopsides from Pakistan and Russia were selected (Figure 1),
and gemological, spectroscopic, and major and trace element analyses were conducted to
determine the gemological and compositional characteristics of these crystals. Meanwhile,
we also collected the data of gem-quality blue diopsides from Italy and more Russian
diopsides from previous studies, aiming to explore the mechanism of coloration and
genetic differences of different diopsides [15,16]. This study can enrich the theoretical,
gemological, and mineralogical knowledge of diopside and provide a better understanding
of the geological background producing these different diopsides.

2. Geological Setting

The Shigar valley, located about 32 km north of Skardu, is one of the most famous
valleys of the Gilgit-Baltistan region of Pakistan, as it is the gateway for most of the ex-
peditions to the K-2, the second highest peak of the world. This valley comprises the
Himalayan collision zone, illustrated by the Karakoram mountain ranges (KMR) and the
Kohistan-Ladakh Island Arc (KLIA), which possessed a complex history of crustal evolution.
The KMR exposed in the Shigar Valley comprises predominantly granitoids, amphibolite,
locally granulite-grade polyphase deformed sedimentary rocks, and orthogneiss [17–20].
A large number of pegmatites are also produced in the Shigar valley. Diopside has
been reported mainly in the pegmatites and also in the metamorphic rocks of the Shigar
valley [18,21–27]. The diopside sample from Pakistan in this study was obtained from
skarn formed by metamorphism of limestone.

The Inagli deposit is located within the Inagli massif of alkaline ultramafic rocks of
the potassic series, 30 km west of the city of Aldan, Yakutia, Russia [12,28]. The massif is
topographically manifested as a cupola structure with a central caldera. The central part of
the massif is made up of forsterite dunites, surrounded by alkali gabbroids and pulaskites.
The gabbroids are mainly shonkinites grading into mica-bearing pyroxenites, and the
pulaskites are accompanied by alkaline pegmatites. Sheet intrusions of syenite porphyry
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occur at the periphery of the massif within the Cambrian carbonate sequence. The major
units of the geologic structure of the deposit are the country dunites, hosting numerous
pegmatite veins composed of early diopside-bearing and late amphibole–feldspar varieties.
The deposit contains ten chrome diopside-bearing vein zones, among which only one is
of economic importance [12,29–32]. Alkaline pegmatite veins of dunite and the feldspar–
diopside metasomatic rocks are the primary sources of diopside in this region [12–14,29,33].

3. Materials and Methods
3.1. Samples Description

Standard gemological tests were performed on two diopside samples (PKD and RUS)
from Pakistan and Russia, respectively. These samples were taken from the market, being
all rough stones with a green color. They were transparent, with a bright glass luster
(Figures 2 and 3). The crystal morphology of the diopside sample from Pakistani (PKD)
was short prismatic, with an idiomorphic grain, and the colors of the individual crystal
columns were uneven due to varying levels of local transparency (Figure 2A,B). The crystal
surface displayed stepped crystal patterns and raised growth mounds, with the cross
sections of the growth mounds being square (Figure 3A,B). The cleavage and fracture in the
sample are relatively well developed. When observed under reflected light, distinct internal
cleavage flash could be seen from the crystal surface. The healing cracks contained groups
of gas–liquid inclusions (Figure 3C). In contrast, the Russian sample (RUS) had a uniform
color (Figure 2C,D), with a bright color and high saturation. The crystal morphology was
irregular, with conchoidal fractures (Figure 3D,E). The interior of the sample was relatively
clean, with fewer visible crystalline inclusions. However, there were more gas–liquid
inclusions and cracks in the shape of the beads or fingerprints (Figure 3F).
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Figure 3. The micrographs of diopside sample PKD (A–C) and RUS (D–F); (A) stepped cleavage
formed by two well-defined cleavage planes of PKD diopside sample; (B) fracture perpendicular to
c-axis of PKD diopside sample; (C) inclusion group within PKD diopside sample; (D,E) conchoidal
fractures of RUS diopside sample; (F) inclusion group within RUS diopside sample.

3.2. Microscopic Analysis and Spectroscopy

The gemstone microscopic observation, infrared spectrum, UV-visible spectrum, and
laser Raman spectrum were conducted in the Gemological Experimental Teaching Center
of School of Gemology, China University of Geosciences (Beijing). Internal and external
features were observed with a GI-MP22 gemological photographic microscope using a dark
field, bright field, and top illumination.

The infrared spectra were conducted with a Tensor 27 Fourier-transform infrared
spectrometer (Bruker, Billerica, MA, USA) using a reflection method. The reflection method
conditions were as follows: humidity of less than 70%, scanning voltage of 85–265 V,
resolution of 4 cm−1, grating of 6 mm, test range of 400–2000 cm−1, and scanning signal
accumulation of 32 times. The UV-visible (UV-VIS) spectroscopy tests were collected from
300 to 800 nm with a UV-3600 UV-VIS spectrophotometer (Shimadzu Corporation, Kyoto,
Japan) using a reflection method. A data interval of 2 nm and a scan speed of 405 nm/min
were used. An HR-Evolution-type micro-Raman spectrometer (HORIBA, Shimadzu, Kyoto,
Japan) was used to perform Raman spectroscopy tests with a 532 nm laser. Raman spectra
were collected from 400 to 4000 cm−1, with 50 mW of laser power and a resolution of
4 cm−1. The slit width was set to 100 µm, with a grating of 600 gr/mm. The scanning time
was 4 s, and the integration time was 3 s.

3.3. SEM Analyses

The two diopside samples were first mechanically crushed, after which the pure parts
of the samples were selected under a binocular microscope and placed in an epoxy block to
polish it to the largest surface. The polished portions were surface carbon blasted before
testing. The backscattered electron (BSE) imaging was performed to observe the structure
of diopside samples at the Beijing Gaonianlinghang Company Limited (Beijing, China).
The XL30-SFEG electron beam from the company FEI (Eindhoven, The Netherlands) was
used for micrographic analysis of diopside samples.

3.4. Chemical Analysis

The electron microprobe analysis was completed in the Experimental Center of the Re-
search Institute of China University of Geosciences (Beijing). The laser ablation–inductively
coupled plasma–mass spectrometry (LA-ICP-MS) analysis was carried out at the Institute
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of Geomechanics, Chinese Academy of Geological Sciences. All the data results are shown
in Tables 1 and 2.

Table 1. Major element composition (wt.%) of diopside samples from Pakistan and Russia by EPMA.

Sample Spots SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cr2O3 NiO Total

RUS-01 54.29 0.06 0.42 1.25 0.14 17.37 24.20 0.39 0.03 0.67 0.06 98.88
RUS-02 54.12 0.17 0.29 1.15 0.02 17.81 24.18 0.41 0.01 0.64 0.04 98.84
RUS-03 54.70 0.16 0.24 1.05 0.05 18.25 24.65 0.39 0.01 0.59 0.09 100.19
RUS-04 54.63 0.09 0.25 1.05 0.07 18.19 24.52 0.42 0.02 0.72 0.02 99.98
RUS-05 54.90 0.04 0.22 1.11 0.00 18.20 24.66 0.52 0.04 0.64 0.06 100.37
RUS-06 54.79 0.08 0.23 1.10 0.01 18.30 24.44 0.44 0.02 0.69 0.00 100.09
RUS-07 54.51 0.16 0.24 1.09 0.06 18.10 24.44 0.42 0.01 0.70 0.10 99.82
RUS-08 54.54 0.07 0.23 1.06 0.06 17.85 23.99 0.35 0.01 0.67 0.11 98.92
RUS-09 53.52 0.07 0.25 1.10 0.05 18.33 24.44 0.33 0.02 0.67 0.09 98.85
RUS-10 53.83 0.09 0.23 1.09 0.00 18.47 24.11 0.39 0.01 0.61 0.07 98.88
RUS-11 54.05 0.16 0.33 1.13 0.11 17.97 24.10 0.39 0.02 0.69 0.02 98.97
RUS-12 53.46 0.07 0.32 1.18 0.10 18.19 24.32 0.42 0.03 0.83 0.00 98.93
PKD-01 54.22 0.00 0.49 2.17 0.16 16.95 24.87 0.29 0.00 0.39 0.24 99.78
PKD-02 53.36 0.00 0.52 2.34 0.14 17.05 24.41 0.35 0.01 0.46 0.29 98.91
PKD-03 53.37 0.00 0.41 2.21 0.16 17.33 24.49 0.22 0.01 0.19 0.24 98.63
PKD-04 53.50 0.00 0.44 2.33 0.23 16.96 24.44 0.29 0.00 0.26 0.24 98.70
PKD-05 53.50 0.02 0.44 2.58 0.17 17.32 24.42 0.27 0.01 0.21 0.27 99.20
PKD-06 53.47 0.03 0.47 2.53 0.09 17.38 24.87 0.31 0.00 0.24 0.09 99.47
PKD-07 53.02 0.00 0.49 2.71 0.16 17.26 24.64 0.34 0.00 0.19 0.21 99.02
PKD-08 53.47 0.00 0.46 2.64 0.15 17.33 24.89 0.39 0.03 0.26 0.18 99.81
PKD-09 53.20 0.00 0.68 2.37 0.12 17.08 24.55 0.34 0.01 0.36 0.34 99.04
PKD-10 52.93 0.00 0.16 3.07 0.22 17.41 25.10 0.15 0.01 0.06 0.12 99.23
PKD-11 53.33 0.00 0.16 2.67 0.12 17.37 24.72 0.12 0.01 0.00 0.14 98.65
PKD-12 53.51 0.00 0.14 2.43 0.20 17.61 25.06 0.13 0.02 0.08 0.15 99.31

Cations on the Basis of 6 Oxygens
Sample Spots Si Ti AlIV AlVI Altotal Fe Mn Mg Ca Na K Cr Sum Wo En Fs Mg# T (◦C) [34]

RUS-01 1.991 0.002 0.009 0.009 0.018 0.038 0.004 0.950 0.951 0.028 0.001 0.020 4.003 48.93 48.87 2.20 0.91 1161
RUS-02 1.985 0.005 0.015 0.000 0.013 0.035 0.001 0.974 0.950 0.029 0.000 0.019 4.010 48.48 49.69 1.83 0.92 1159
RUS-03 1.981 0.004 0.019 0.000 0.010 0.032 0.002 0.985 0.956 0.028 0.001 0.017 4.015 48.44 49.88 1.69 0.93 1148
RUS-04 1.981 0.002 0.019 0.000 0.011 0.032 0.002 0.983 0.953 0.030 0.001 0.021 4.016 48.36 49.92 1.73 0.93 1153
RUS-05 1.984 0.001 0.016 0.000 0.009 0.033 0.000 0.981 0.955 0.037 0.002 0.018 4.020 48.50 49.80 1.70 0.93 1107
RUS-06 1.983 0.002 0.017 0.000 0.010 0.033 0.000 0.988 0.948 0.031 0.001 0.020 4.016 48.13 50.16 1.70 0.93 1163
RUS-07 1.982 0.004 0.018 0.000 0.010 0.033 0.002 0.981 0.952 0.030 0.000 0.020 4.014 48.37 49.85 1.77 0.93 1155
RUS-08 1.996 0.002 0.004 0.006 0.010 0.032 0.002 0.974 0.940 0.025 0.000 0.019 4.000 48.27 49.98 1.75 0.93 1188
RUS-09 1.968 0.002 0.032 0.000 0.011 0.034 0.002 1.005 0.963 0.023 0.001 0.019 4.027 48.07 50.16 1.77 0.93 1141
RUS-10 1.975 0.002 0.025 0.000 0.010 0.033 0.000 1.010 0.948 0.028 0.000 0.018 4.023 47.60 50.72 1.68 0.93 1171
RUS-11 1.980 0.004 0.020 0.000 0.014 0.035 0.003 0.981 0.946 0.028 0.001 0.020 4.013 48.14 49.93 1.93 0.92 1171
RUS-12 1.965 0.002 0.035 0.000 0.014 0.036 0.003 0.997 0.958 0.030 0.002 0.024 4.030 48.03 49.99 1.97 0.92 1130
PKD-01 1.985 0.000 0.015 0.006 0.021 0.066 0.005 0.925 0.975 0.020 0.000 0.011 4.009 49.47 46.92 3.62 0.86
PKD-02 1.974 0.000 0.026 0.000 0.023 0.072 0.004 0.940 0.968 0.025 0.001 0.013 4.020 48.76 47.38 3.86 0.85
PKD-03 1.977 0.000 0.023 0.000 0.018 0.069 0.005 0.957 0.972 0.016 0.000 0.006 4.019 48.53 47.80 3.67 0.86
PKD-04 1.982 0.000 0.018 0.001 0.019 0.072 0.007 0.937 0.970 0.021 0.000 0.008 4.015 48.85 47.17 3.98 0.85
PKD-05 1.974 0.000 0.026 0.000 0.019 0.079 0.005 0.953 0.965 0.020 0.001 0.006 4.023 48.19 47.57 4.24 0.84
PKD-06 1.967 0.001 0.033 0.000 0.020 0.078 0.003 0.953 0.980 0.022 0.000 0.007 4.030 48.67 47.32 4.00 0.84
PKD-07 1.964 0.000 0.036 0.000 0.021 0.084 0.005 0.953 0.978 0.025 0.000 0.005 4.035 48.40 47.19 4.41 0.83
PKD-08 1.965 0.000 0.035 0.000 0.020 0.081 0.005 0.949 0.980 0.028 0.001 0.008 4.036 48.63 47.11 4.26 0.84
PKD-09 1.968 0.000 0.032 0.000 0.030 0.073 0.004 0.942 0.973 0.024 0.001 0.010 4.025 48.85 47.29 3.86 0.85
PKD-10 1.961 0.000 0.039 0.000 0.007 0.095 0.007 0.961 0.996 0.011 0.001 0.002 4.040 48.37 46.68 4.95 0.81
PKD-11 1.978 0.000 0.022 0.000 0.007 0.083 0.004 0.960 0.982 0.009 0.000 0.000 4.023 48.42 47.33 4.26 0.83
PKD-12 1.972 0.000 0.028 0.000 0.006 0.075 0.006 0.968 0.990 0.009 0.001 0.002 4.029 48.55 47.48 3.97 0.85

Wo, Ca2Si2O6; En: Mg2Si2O6; Fs: Fe2Si2O6; Mg# = molar Mg/(Mg + FeT) × 100.

Major-element compositions were analyzed by an electron probe micro-analyzer
(EPMA), JEOL model JXA-8100 (Tokyo, Japan). The analyses were carried out with an
accelerating voltage of 15 kV and an electron beam current of 20 nA. Measurement times
were set at 10 s for the peak of all analyzed elements and 5 s for the background. The
standards used for calibration were NaAlSi2O3 (Na), KAlSi3O8 (K), Cr2O3 (Cr), diopside
(Si, Mg, Ca), Fe2O3 (Fe), pyrope (Al), Mn2O3 (Mn), NiO (Ni), ZnO (Zn), TiO2 (Ti), and
Ca5P3F (P) [35,36].
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Table 2. Trace element concentrations (ppm) of diopside samples from Pakistan and Russia by
LA-ICP-MS.

Sample Spots Li Be B Sc V Cr Ni Zn Ga Ge As Rb Sr Y Zr Cd Sn

PKD-01 19.6 1.71 6.31 1.67 17.8 2658 2395 107 0.537 1.46 10.5 0.406 0.250
PKD-02 21.1 2.05 6.36 1.79 18.2 2552 2406 117 0.471 1.43 0.221 0.282 10.8 0.564 0.0273 0.368
PKD-03 21.2 1.90 7.36 2.24 18.9 2330 2237 115 0.539 0.605 0.0581 11.2 0.203 0.0956 0.532
PKD-04 21.4 1.98 8.16 1.79 18.3 2824 2558 121 0.676 0.855 0.301 11.4 0.0233 0.226 0.246 0.250
PKD-05 16.8 1.44 7.56 2.13 19.3 1962 2214 129 1.25 0.605 9.63 0.407 0.137
PKD-06 12.2 1.32 7.44 2.21 20.5 1569 2074 135 0.576 11.0 0.0235 0.317 0.219 0.222
PKD-07 12.1 1.35 7.63 2.39 20.3 1547 2036 148 1.21 0.197 0.177 11.0 0.360 0.263
PKD-08 12.1 1.21 7.38 2.28 19.7 1507 2001 139 0.633 0.774 9.25 0.314 0.271 0.191
PKD-09 15.2 1.92 7.59 1.40 20.0 1803 2306 121 0.463 1.47 0.359 0.336 12.0 0.0116 0.357 0.259 0.163
PKD-10 7.83 0.321 3.26 6.51 8.82 235 805 112 0.580 0.197 0.388 11.5 0.128 0.400 0.325
PKD-11 10.6 0.870 3.47 3.42 11.5 150 1231 99.1 0.0325 1.13 0.0462 14.42 0.0347 0.111 0.255
PKD-12 9.18 0.981 3.21 2.83 10.3 157 1188 108 0.323 1.53 0.0115 0.229 13.4 0.0346 0.110 0.209 0.0416
RUS-01 0.570 0.072 2.70 68.5 7.19 5079 257 10.8 0.978 4.45 0.358 2149 5.37 8.59 0.386
RUS-02 0.372 0.029 2.99 68.0 7.33 4993 250 8.76 0.921 4.28 0.637 2150 5.45 8.81 0.102 0.439
RUS-03 1.31 0.130 2.55 57.0 5.91 4060 249 10.9 0.630 3.39 0.603 0.0531 2065 3.73 3.91 0.0868 0.479
RUS-04 1.41 0.130 3.15 67.6 6.90 4585 257 9.46 1.10 3.65 0.476 2042 4.99 5.65 0.158 0.564
RUS-05 1.65 0.130 2.54 68.6 6.81 4644 260 10.6 0.843 4.51 0.721 2183 5.62 7.02 0.156 0.445
RUS-06 1.42 0.188 1.58 69.9 7.31 4877 260 10.6 0.544 2.62 0.781 2229 6.10 7.77 0.0841 0.279
RUS-07 2.21 0.175 2.32 61.9 6.43 5095 251 10.4 1.06 2.66 0.210 0.446 2307 4.25 5.65 0.283
RUS-08 1.97 0.161 2.69 63.5 6.72 5190 260 9.12 1.22 4.30 0.432 2312 4.54 6.55 0.622
RUS-09 2.42 0.146 2.87 58.5 5.81 4051 226 9.12 0.608 3.80 0.304 2240 4.33 5.90 0.0828 0.151
RUS-10 1.38 0.103 2.35 63.4 6.51 4479 257 11.9 1.28 2.83 1897 4.19 5.83 0.110 0.227
RUS-11 1.13 0.147 3.25 66.7 7.42 4685 238 10.8 1.58 2.16 0.105 2120 5.95 9.57 0.278
RUS-12 1.26 2.86 70.2 7.72 4786 248 9.54 1.24 3.41 0.234 0.160 1916 5.75 9.76 0.0965 0.504

Sample Spots Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Pb (Total)

PKD-01 0.101 0.0108 0.0315 0.1553 0 0.545
PKD-02 0.0128 0.0123 0.0616 0.0732 0.0108 0.0428 0.0112 0.021 0.0522 0.0119 0 0.389
PKD-03 0.0129 0.0248 0.0737 0.0109 0.0432 0.0106 0.1206 0.416
PKD-04 0.205 0 0.0203 0.0741 0.0719 0.0403 0.475
PKD-05 0.0392 0.0126 0.0746 0.0322 0.0107 0 0.373
PKD-06 0.0207 0.011 0.0115 0.0324 0 0.465
PKD-07 0.0126 0.0888 0.0322 0.0215 0.0536 0.0408 0.35
PKD-08 0.013 0.0626 0.0413 0.0532 0 0.373
PKD-09 0.05 0.0206 0.0342 0.0318 0.0107 0.0121 0.0407 0.444
PKD-10 0.103 0.0124 0.0306 0.0731 0.0435 0.0341 0.0107 0.1048 0.012 0.0813 0.459
PKD-11 0.309 0.0124 0.0715 0.024 0.0406 0.393
PKD-12 0.0429 0.0107 0.0406 0.343
RUS-01 1.93 7.19 19.1 3.02 15.2 2.88 1.02 2.94 0.319 0.812 0.247 0.375 0.107 0.463 0.0837 0.77 0.897
RUS-02 1.21 6.47 19.6 2.71 15.6 4.05 1.22 2.72 0.22 1.33 0.281 0.532 0.0745 0.465 0.0957 0.486 0.824
RUS-03 1.81 6.37 16.7 2.6 15.2 2.83 0.877 2.57 0.329 0.813 0.191 0.376 0.0426 0.414 0.0958 0.283 0.823
RUS-04 0.8 6.8 19.2 3.17 14.8 3.56 1.08 3.11 0.219 1.03 0.281 0.314 0.0958 0.572 0.0958 0.606 0.838
RUS-05 2.09 6.65 20.3 2.65 14.7 2.41 1.21 2.34 0.153 0.943 0.315 0.0426 0.469 0.0719 0.404 0.727
RUS-06 1.09 7.4 21.3 2.93 15.9 3.66 0.961 3.5 0.338 1.33 0.169 0.631 0.128 0.575 0.06 0.726 0.797
RUS-07 1.68 7.06 18.8 2.93 13.1 3.44 0.899 1.91 0.119 1.15 0.246 0.378 0.0211 0.573 0.0476 0.32 0.775
RUS-08 1.89 6.68 18 2.53 13.3 3.14 0.898 2.73 0.258 1.58 0.167 0.314 0.0738 0.623 0.0829 0.438 0.835
RUS-09 1.99 5.95 16.4 2.34 10.7 2.99 0.673 1.84 0.246 0.51 0.177 0.251 0.042 0.414 0.059 0.278 0.763
RUS-10 1.6 6.7 18.9 2.54 14.2 3.35 1.24 2.53 0.245 1.14 0.199 0.406 0.0419 0.309 0.047 0.277 0.714
RUS-11 1.3 6.85 19.8 3 14.5 4.58 1.02 2.12 0.254 1.65 0.198 0.468 0.073 0.205 0.129 0.669 0.75
RUS-12 2.11 7.28 20.2 2.78 16.2 4 1.12 3.28 0.264 1.31 0.286 0.435 0.0624 0.46 0.116 0.588 0.771

LA-ICP-MS was applied to analyze the trace element concentrations, using a 193 nm
excimer laser ablation system (GeoLas HD; Coherent, Santa Clara, CA, USA), and a four-
stage rod mass spectrometer (Agilent 7900, Agilent Technologies, Tokyo, Japan) was used
for inline testing, with Ar and He as the carrier gases. The laser employed a 10 Hz pulse
rate and a 35 µm diameter spot size. The energy density was about 9 J/cm2. NIST-SRM
610 and 612 glasses reference materials were used as external calibration standards. Data
reduction was carried out using the software Iolite to analyze the following elements: Li,
Be, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn [37].
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4. Results
4.1. Visual Appearance and Gemological Properties of Diopside

The two diopside samples from Pakistan and Russia were a green uniform color, with
a transparent and glassy luster (Figure 3). The PKD diopside sample showed a stepped
cleavage with two well-defined cleavage planes (Figure 3A). The RUS diopside sample had
greasy and shiny conchoidal fractures (Figure 3D,E). Gemstone microscopic observation
showed that there were inclusion groups and fractures in both of the diopside samples.
They all had lamellar gas–liquid groups and partially healed fissures (Figure 3C,F).

4.2. Spectral Characteristics
4.2.1. FTIR Spectrum

The representative FTIR spectrums of the diopside samples from Pakistan and Russia are
shown in Figure 4. The infrared spectra of the two diopside samples in the range of 4–1200 cm−1

are relatively similar. In general, no reflectance bands are observed above 1500 cm−1, which
suggests the absence of OH groups or water molecules in these crystalline phases.
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According to the literature on diopside, the infrared spectrum vibration of diopside
is mainly manifested in the characteristic Si–O stretching modes, non-bridging stretch-
ing modes of Si–O, and the non-bridging bending vibrations of the O–Si–O of a SiO4
tetrahedron [38–42]. All the detected bands were in good agreement with the vibrations
of the functional groups of diopside. Seven weak absorption peaks at around 472 cm−1,
505 cm−1, 534 cm−1, 550 cm−1 625 cm−1, 656 cm−1, and 671 cm−1 were assigned to the
bending vibrations of the non-bridging bending vibrations of the O–Si–O of a SiO4 tetra-
hedron. The broad absorption band around 862 cm−1 and the broad absorption band in
the range of 900–1100 cm−1 (including 916 cm−1, 935 cm−1, 957 cm−1 and 1100 cm−1)
were assigned to the non-bridging stretching modes of Si–O and the characteristic Si–O
stretching modes of the SiO4 tetrahedron, respectively. The infrared spectra of the diopside
samples from Pakistan and Russia tended to be consistent, and only some absorption
peaks were slightly offset, which could be due to different orientations of the diopside
crystals within the gem or to variations in the elemental compositions of non-stoichiometric
diopside phases.
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4.2.2. Raman Spectra

The Raman spectra of pyroxene silicates are characterized by four types of vibration
bands: (1) Si–O nonbridging stretching (Si–Onbr); (2) Si–O bridging stretching (Si–Obr);
(3) O–Si–O bending; and (4) cation M1- and M2-oxygen vibration modes (M–O). The
stretching modes of Si–Onbr are observed in the spectra at frequencies higher than the modes
of Si–Obr due to a stronger force constant, i.e., the coefficient that links the displacement of
atoms from their equilibrium position with the force that such displacement induces on
adjacent atoms [43–47].

The Raman spectra of the diopside samples from Pakistan and Russia showed sharp
spectrum peaks and high signal-to-noise ratios (Figure 5). The Raman spectra of the
diopside samples from Pakistan and Russia exhibited remarkable similarities to each
other, as well as to those previously reported on in the literature [45,47], and only the
intensity and wavenumber of each Raman scattering peak feature were slightly different.
There were four evident peaks within the range of 100–1200 cm−1, respectively, 322 cm−1,
389 cm−1, 666 cm−1, and 1012 cm−1. The 322 cm−1 and 389 cm−1 figures were caused by
the cation–oxygen vibrations. The 666 cm−1 figure was the stretching of Si–Obr bonds, and
1012 cm−1 corresponded to the Si–Onbr stretching mode [45,48]. The Pakistan diopside
sample showed a high Raman scattering peak intensity of 141 cm−1, while the diopside
sample from Russia was relatively weak. The Raman scattering peaks of the diopside
samples from Pakistan and Russia showed the same positions but different intensities,
which may be caused by the variation in the cation occupancy in the M sites. In other words,
the lattice vibration involving Mg should also affect Raman spectrum characteristics of the
diopside samples in the range of 326–393 cm−1, leading to the difference in the intensities
of the Raman scattering peaks [45].
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Figure 5. The representative Raman spectrum of the diopside samples.

4.2.3. UV-Visible Spectra

The UV-VIS spectra of the diopside samples from Pakistan and Russia showed similar
patterns, as illustrated in Figure 6. The UV-VIS spectrum revealed that the diopside samples
had significant reflections at 460–470 nm and 655–665 nm. The 460–470 nm and 655–665 nm
reflections were attributed to Cr3+ in octahedral coordination [41,49]. The diopside samples
from Pakistan and Russia had weak reflections between 230 nm and 285 nm, which were
caused by the intervalence Fe2+–Fe3+ charge transfer [40,41,49].
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4.3. Major and Trace Elements Characteristics of Diopside

The compositions of major elements and trace elements of the diopside samples from
Pakistan and Russia are presented in Tables 1 and 2, respectively. The diopside samples
contained <5 mol.% ferrosilite (Fs). In the En–Wo–Fs classification diagram [50], they are all
localized in the diopside corner (Figure 7A,B). We analyzed the major and trace elements
of the diopside samples at the same positions, including the core and rim of the diopside
crystals. There was no evident difference in the elements’ characteristics between the core
and rim of the same diopside sample. Meanwhile, the backscattered electron images of the
diopside samples from Pakistan and Russia also showed no zoned features (Figure 7C,D).
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The diopside sample from Russia had higher Mg# (91–93; Mg# = molar Mg/
(Mg + FeT) × 100), SiO2 (53.5–54.9 wt.%), Na2O (0.33–0.52 wt.%), and lower CaO
(24.0–24.7 wt.%), while the diopside sample from Pakistan had relatively lower Mg#
(81–86), SiO2 (52.9–54.2 wt.%), Na2O (0.12–0.39 wt.%), and higher CaO (24.4–25.1 wt.%).
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The major elements of the diopsides with different geographic origins showed great differ-
ences (Figure 8; Table 1).
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Figure 8. Variation diagrams of Mg# vs. (A) SiO2; (B) Al2O3; (C) Na2O; (D) CaO for the diopside samples.

The diopside sample from Russia displayed significantly higher concentrations of
Cr, Zr, Sr, and Sc compared with the Pakistan diopside sample (Table 2). Investigating
the distribution patterns of rare earth elements (REEs) can be used as a very valuable
tool to determine phyrochemical conditions and the origin of minerals and rocks [51].
Notably, the chondrite-normalized REE diagrams revealed discernible differences between
the Pakistan and Russia diopside samples (Figure 9). The diopside sample from Russia
had a greater abundance of REE, was particularly enriched in light rare earth elements
(LREEs), with no Eu anomalies, and had low levels of heavy rare earth element (HREE)
contents. Conversely, the diopside sample from Pakistan displayed extremely low REE
contents (Figure 9; Table 2).
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5. Discussion
5.1. Gemological Characteristics

The diopside sample from Russia (RUS) exhibited remarkable characteristics of high
transparency, a strong luster, and a bright green color with yellow tones. The transparency
of the Pakistan diopside sample (PKD) was relatively modest, with shades of emerald-green
that bore a resemblance to the Russian diopside sample. The Pakistani diopside sample had
been subjected to an irregular configuration of crystal particles, alongside impurities that
impeded its transparency levels, giving it a semi-translucent, micro-transparent appearance.
Notably, the luster of diopside samples from Pakistan and Russia exhibited little variation.

The diopside samples from Pakistan and Russia exhibited color stabilities under the
Charles filter. The Russian sample, however, displayed a visible red absorption band of
Cr3+ under spectroscopic examination. Conversely, the Pakistan sample showed only
a combined absorption band of Fe2+/Fe3+ or Fe2+ + Fe3+. Additionally, both samples
displayed almost no reaction under ultraviolet fluorescence, which was likely due to
the presence of Fe content within the samples. The refractive indexes of the diopside
samples from Pakistan and Russia, after being polished and ground, were measured using
a refractometer. The results revealed that the refractive indexes for the two diopside samples
ranged between 1.68 and 1.69. The average refractive index for the diopside sample from
Pakistan was slightly higher than that of the Russian diopside sample. This variance in
refractive index was attributed to the Fe content in the diopside samples, as the Russian
samples possessed lower Fe content than that of the Pakistan sample (Table 1).

5.2. Chromogenic Mechanism of Different Diopsides

The chemical composition of diopside is CaMg[Si2O6]. Ca2+ and Mg2+ could be often
replaced by Fe3+, Fe3+, V3+, Cr3+, Mn2+, and other transition metal ions, which are known
as “chromophores” and are considered to play a significant role on the color characteristics.
In this study, we give a certain explanation for the chromogenic mechanism of diopsides of
different colors, according to the characteristics of their chemical compositions.

We collected the chemical compositions of the blue diopsides from Saint Marcel (Val
D’Aosta, Italy) to compare with the diopside samples from Pakistan and Russia in this
study [15,16]. The collected diopside data from the Zagadochnaya kimberlite (Yakutia,
Russia) had no color information, and they also were not gem-quality diopside; thus, these
data were excluded from the study of chromogenic mechanism [15].

The transition elements contained in these blue and green diopsides were mainly Cr,
Mn, Fe, Co, Ni, and V. The Ti and REE contents of the diopsides in different colors cannot
be distinguished, suggesting they had no decisive effect on chromogenesis. As shown in
Figure 10, the green hue observed in the diopside samples could be explained by their
enrichment in Cr, Fe, V, and Ni, with respect to the blue diopside samples. Mn and Co
contents could be related to the blue hue of the diopside; the blue diopside samples from
Italy had higher Mn and Co contents compared with the green diopsides (Figure 10).

In summary, our new data showed that the behavior of major and trace elements
played a significant role in the color differences of diopside crystals. The diopside was
colored blue to green by Cr and Fe, respectively, both substituting for Al and Mn in the
structure (Figure 11). Meanwhile, the enrichment of V and Ni instead of Co in the trace
elements made the diopside present green rather than blue (Figure 10).
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5.3. Origin of Different Diopsides: Elemental Constraints

Combining the collected diopside data from Saint Marcel (Val D’Aosta, Italy) and
the same region in Russia, as well as the data in this study, we can see the distinct char-
acteristics of the contrasting trace element patterns and the chondrite-normalized REE
(Figures 9 and 12) [15,16]. The diopside samples from Russia exhibited higher Sc, Zr, Sr,
and REE contents than those of the Pakistan and Italy diopside samples (Figures 9 and 12),
which could be well explained by the distinct formation processes of the two categories of
diopside samples with different origins. The diopside samples from Russia formed from the
magmatic evolution process of ultrabasic rocks and crystallized as a basic mineral at the early
stages. The overall compositions of the diopsides from Russia remained relatively uniform,
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indicating their crystallization in a similar magma system. They had higher Cr, Sc, Zr, Sr, and
REE, which were close to the composition of volcanic clinopyroxene in basalt magma [52,53].
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Clinopyroxene is commonly present in igneous rocks and exhibits large compositional
variations. Numerous thermometers that utilize clinopyroxene composition have been
established and widely applied in magmatic systems, due to their compositional sensitivity
to changes in temperature [54–57]. The clinopyroxene-only thermometer is one of the most
practical tools to reconstruct crystallization temperatures of clinopyroxenes because it does
not require any information of coexisting melts or other co-crystallized mineral phases.
Thus, an updated clinopyroxene-only thermometer was used for the diopside sample
from Russia in this study and the collected diopside data from Russia, which yielded
uncertainties in the estimated temperature (±37 ◦C) [15,34], returning crystallization tem-
perature conditions of 1107–1188 ◦C and 1108–1166 ◦C, respectively (Figure 13). These
similar crystallization temperatures also confirmed that they formed at similar magmatic
crystallization stages, similar to the early stage of alkaline ultrabasic magma.

The collected diopside data from Russia exhibited comparably low Mg# in contrast
to those of the diopside sample from Russia in this study, indicating the relatively latter
crystallization process of the collected Russian diopsides, which was further proved by
their lower crystallization temperatures (Figures 8 and 13). The Sc and Zr, as incompatible
elements within the magma evolution process, showed an upward trend in conjunction
with the decrease in Mg# (Figure 12B,D). Conversely, the Sr content of diopsides from Russia
gradually declined as the Mg# decreased (Figure 12C), suggesting that the crystallization
of plagioclase, which is rich in Sr, had occurred with diopside crystallization, resulting in a
significant depletion of Sr in the residual melt [58–61]. The relatively high concentration of
the REE in alkaline ultrabasic magma rendered the diopside from Russia to have a notable
REE contents, with comparable REE distribution characteristics (Figure 9).

The diopside sample from Pakistan shared similar composition characteristics with
the diopsides from Italy, produced in the skarn metamorphism process. They all had very
low Sc, Zr, Sr, and REE contents (Figure 12) and exhibited similar REE characteristics,
which were significantly different from the Russian diopside produced during magmatic
processes (Figure 9) [60–65]. These suggested that the diopside sample from Pakistan also
crystallized within the skarn metamorphism process.
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In summary, the elemental characteristics of the diopside samples could well distin-
guish the distinct formation processes of different diopsides from Russia and Pakistan
(Figures 9 and 12). The diopsides from Russia crystallized in the early stages of the ultraba-
sic magma evolution process, while the diopsides from Pakistan crystallized during the
process of skarn metamorphism.

6. Conclusions

We have investigated the gemological characteristics of diopside samples from Pak-
istan and Russia and analyzed their infrared spectra, Raman spectra, ultraviolet spectra, and
chemical compositions. The results were used to present a comprehensive report on their
systematic mineralogical characteristics and to discuss the differences in the chromogenic
mechanisms and origins of the diopsides. The diopsides from Russia and Pakistan had
similar gemological characteristics. The green hue of the diopside was due to chromophore
elements such as Cr, Fe, V, and Ni, while the blue color could be attributed to the Al, Mn,
and Co elements. The green diopside sample from Pakistan crystallized during the skarn
metamorphic process, and the Russian green diopside crystallized at an early stage of the
ultrabasic magma evolution process. These findings provided valuable insights into how
the diopsides were formed, along with the geological histories and mineralogies of these
two regions. These diopside samples showed well-developed crystals without any zoning
in BSE images, which enhanced their scientific value and made them suitable as standard
samples for further research.
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