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Abstract: The tensor representation method (TRM) offers tensorial tools suitable for streamlining the
development of constitutive models. The TRM reduces the empiricism of phenomenological descrip-
tions and provides physics-based justifications for the tensorial construction of material models. The
method is presented in a stepwise manner, thus giving the reader an opportunity to appreciate the
details of the concept. The selected material is magnesium alloy AZ31B (wt% composition: Mg 95.8,
Al 3.0, Zn 1.0, and Mn 0.2), and the choice is not coincidental. The hexagonal close-packed (hcp) struc-
ture of rolled sheets exhibits highly directional plastic flow, while the crystallographic reorientations
add to the complexity of the material’s behavior. A generic structure of the deformation mechanisms
is determined first. In the next step, the TRM tools enable the coupling of the mechanisms with proper
stimuli. Lastly, the thermo-mechanical flow rules for plasticity and twinning complete the constitutive
description. The model predictions for Mg AZ31B have been compared with experimental data,
demonstrating a desirable level of predictability.

Keywords: tensor representation method; magnesium alloys; plasticity; crystallographic reorientations

1. Introduction

The tensor representation method was introduced in 1993 [1] and, since then, it has
become a particularly useful methodology for the development of constitutive equations
for metals and geological materials [2,3]. Regrettably, the method has not been popularized
as it might have been and, therefore, the first objective here is to introduce the TRM to
the modeling community. The TRM couples generic deformation mechanisms, such as
the plastic flow of the twinning deformation, with physics-based stimuli. The method is
explained in the next section of the paper. The application of the TRM is the first objective
of this work. The test material is magnesium alloy AZ31B. The material exhibits complex
behavior, is endowed with strong plastic directionality, undergoes crystallographic reorien-
tations, and is strain rate and temperature sensitive. Another reason for choosing Mg alloys
is that the material has technologically attractive properties, and yet our understanding
of the alloy’s behavior is less than complete. In other words, the alloy is a good material
candidate for a TRM demonstration. This paper combines previously developed concepts
with a current description of the twinning mechanism. For clarity, the constitutive model is
introduced in a stepwise manner, where the relevant relations are explained, the parameters
are calibrated, and the constitutive model is validated.

Magnesium alloys are excellent materials for the construction of lightweight structures;
they serve well in space applications and are used in the automotive and microelectronics
industries. However, these materials must be used with some caution. The Mg hexagonal
close-packed (hcp) structure offers a limited number of slip systems, making the plastic
deformation kinematically restrictive and directional. At low and medium temperature
ranges, crystallographic reorientations accommodate the shortcomings of the plastic flow.
The most common form of twinning takes place when the crystal is elongated along its

c-axis. The resultant structures
{

10
−
12
}

are called extension twins. The deformation twins

are activated at relatively low critical resolved shear stress (CRSS). In addition, compression
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twins
{

10
−
11
}

may accommodate slip deficiencies; however, in contrast with the extension

twins, this mechanism is activated at a much higher CRSS. There are other deformation
mechanisms, including double twins and twin-dislocation interactions [4–6].

Twinning is a polar mechanism. This means that a simple shear is a one-directional
event [7]. Mechanistically, the rapid formation of twinned regions does not resemble
dislocation plasticity. Extension twins nucleate and spread within grains. Upon reversed
loading, the crystal may recover its original orientation. The twinning deformation is
more pronounced at low temperatures and high strain rates. The double twins tend to
relax strain concentrations near grain boundaries, and residual twins are active at load
reversals [8]. Most secondary twins are located at the intersections of primary twins [9].
Twin boundaries are crystallographically disorganized regions. They trap residual stresses
and, together with the twin-grain boundary interactions, they are responsible for the
Bauschinger effect. Twins generate a limited deformation, and the most common twinning

mechanism
{

10
−
12
}

is estimated to account for about 10–13 percent of strain [10]. The

connection between twinning and slip has been established [11], but the specifics of the
interactions are unclear. In hcp crystals, the basal slip is the dominant mechanism of plastic
deformation. Higher temperatures (above 0.4 Tm) amplify the non-basal slip and increase
the strain rate sensitivity.

This paper is organized as follows. Section 2 provides relevant facts about the tensor
representation method, while lengthy derivations are presented in Appendix A or are
referred to in other sources. The method sets the procedural foundation for the construction
of constitutive equations. It enables a physics-based description of the plastic flow and prop-
erly captures the polar process of twinning. The objective here is to provide justifications
for the choices made and to offer comparisons with available experimental measurements.

2. Tensor Representation Method: A Useful Tool in the Hands of a Modeler

In physics, many flux problems are treated in a somewhat heuristic manner. The
plastic flow mechanism, the deformation associated with twinning, or the flow of complex
fluids are each mechanisms that are good candidates for the application of the TRM. Often,
generic forms of the mechanisms are known. However, the coupling of the deformation
mechanisms with the proper stimuli can be a challenge. Therefore, it is a widespread
practice to pursue solutions of a semi-empirical nature. It is shown here that there is no
need for empiricism to be the prevailing methodology. In fact, uncertainties can be reduced
to a minimum.

Let us begin by invoking a familiar problem in metal plasticity: the problem of plastic
flow. Many generic mechanisms of the flow can be described in terms of three eigentensors:
N1, N2, and N3. The tensors establish an orthogonal triad: N1 + N2 + N3 = 1. For example,
the simplest form of the plastic slip can be described by two eigentensors: M =

(
N1 −N3).

The flow tensor is related to but is not the same as the dyad
−
M = (n⊗ s + s⊗ n), where

the two unit-vectors n and s are orthogonal. Note that the two tensors,
−
M and M, have the

same invariants, i.e., tr
−
M = trM = 0, tr

−
M

2
= trM2 = 2, and tr

−
M

3
= trM3 = 0. As stated

in [3], representations of the generic tensors N, M or
−
M can be constructed with the use of

other second-order symmetric tensors. In plasticity, the stress deviator S is the obvious
choice, where S = σ − 1trσ/3. For example, the tensor N is a dyadic product constructed
on a unit vector, and therefore the three relevant invariants are trN = 1, trN2 = 1, and
trN3 = 1.

Based on the Cayley–Hamilton theorem, any second order symmetric tensor can be
reduced to a three-term relation:

N = α1 + β S + η S2. (1)
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The variables {α, β, η} are expressed in terms of invariants, specifically the second
and third invariant of the stress deviator. The higher power terms can be reduced to
the three fundamental ones. In this case, the rules are S3 = J2S + J31, S4 = J2S2 + J3S,
S5 = J2 J31 + J2

2S + J3S2, and so on. Additionally, it must be noted that detS = J3. This is
so because trS = 0. The second and third invariants of the stress deviator are J2 = trS2/2
and J2 = trS3/3. Further details of the derivations are available in [3,12]. The variables
{α, β, η} are determined from the three invariants trN = 1, trN2 = 1, and trN3 = 1. In fact,
we have three sets of solutions. Thus, there are three eigentensors, and the eigentensors are
aligned with the principal directions of stress σ.

Thus, we have the three eigentensors Nm = αm1 + βmS + ηm S2, where m = 1, 2, 3.
The eigentensors determine the principal stresses, such that σ1 = N1 : σ, σ2 = N2 : σ, and
σ3 = N3 : σ. Let us assume that the flow tensor M =

(
N1 −N3) is defined in terms of its

first and third stress representation. In addition, the flow mechanism
−
M = (n⊗ s + s⊗ n)

is constructed in terms of the stress deviator [3]. Note that the representations of M and
−
M are identical. This information is relevant and indicates that the representations are not
biased by the choice of the reference system, but instead depend only on the principal
stress directions.

In what follows, the TRM couples the generic plastic flow with the stress deviator.
Alternatively, the flow can be expressed in terms of the deviatoric part of the elastic
strain. This can be carried out in an elastically isotropic material, where the principal
directions of elastic strain are co-rotational with the principal directions of stress. Quite a
different representation is constructed for the twinning mechanism, where the deformation
is triggered by the lattice stretch along the c-axis.

3. Thermally Activated Plastic Flow

The behavior of Mg AZ31B alloy exhibits strong sensitivity to temperature. In the
proposed model, the effects are controlled by the coefficient AT(T), derived in [13]. In this
description, the coefficient scales the yield strength, influences the strain rate, and affects
the residual stress. Since the dislocation activities are discrete events, it is reasonable to
assume that the events follow the weakest link (Weibull) hypothesis. The coefficient takes
the following form:

AT = 1− e−ga ( Tc
T −

Tc
Tm )

ka
, (2)

In previously tested metals, the non-dimensional parameter ga is found in the range of
one, the transition temperature Tc specifies the conversion of the power-law creep into the
dislocation glide mechanism, and Tm is the melting point. The exponent ka determines the
rate of the thermally activated processes, and in face-centered cubic metals the exponent
is much smaller than one. In bcc and hcp metals, the thermal activation is much stronger,
and the exponent is somewhat greater than one. In Mg AZ31B alloy, the thermal activation
coefficient is evaluated by plotting the yield stress as a function of temperature. In each set
of data [7,14–17], the yield stress is normalized against the stress at room temperature. In
the final step, the plot is rescaled such that AT(0) = 1 (Figure 1). The coefficient AT reaches
a maximum value at very low temperatures and has an extended tail near the melting point.
The constants used in the relation (2) are listed in Table 1. The melting point is shown to be
within the range of 878 K to 903 K. Here, we assume that Tm = 890 K.

Table 1. Thermal activation.

Thermal Activation ga ka Tm Tc

AT 0.823 1.66 890 K 0.588 Tm
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Figure 1. Thermal activation coefficient AT is plotted as a function of temperature from cryogenic
temperature up to the melting point.

4. Mechanism of Plastic Flow

We are ready to resume the TRM-based analysis, in which the Huber–von Mises flow
tensor will be shown to have a clear geometric interpretation [12,18]. The mechanism is
further generalized and adapted for Mg AZ31B. It is assumed that the eigentensors are
expressed in terms of the stress deviator. We emphasize that the tensors satisfy the conditions:
trN1 = trN2 = trN3 = 1, N1 : N2 = N1 : N3 = N2 : N3 = 0, and N1 + N2 + N3 = 1. Thus,
all the properties of the orthogonal triad are preserved. With that said, the flow tensor is
presented in the following form:

M = α

[(
N1 −N3

)
+ µϕ

(
1
3

1−N2
)]

. (3)

The flow tensor was derived in [19]. In the expression,
(
N1 −N3) captures the slip

along the dominant shear plane, while µϕ

(
1
3 1−N2

)
estimates the contribution of the

non-planar slip. In Mg AZ31B, the non-planarity is a consequence of the slip-twinning
interactions and the subsequent activation of screw dislocations [20,21]. The second term
in (3) quantifies the atomistically resolved friction coefficient. The functions α and µϕ are
derived by matching the flow tensor (3) with the mechanism M = S/

√
3J2. In Equation (3),

the condition trM = 0 is satisfied automatically, and the other two invariants are trM2 = 6
and trM2 = 6 sin ϕ. The functions are α =

√
3cos(ϕ/3) and µϕ =

√
3β0tan(ϕ/3), where

the angles ϕ = sin−1(Aϕ

)
and Aϕ = 3

√
3 J3/

(
2 J3

2
)

complete the relation. Again, the
second and third invariants of the stress deviator are J2 = trS2/2 and J3 = trS3/3. The
Huber–von Mises flow mechanism is recovered when the parameter β0 is equal to one. The
convexity of the stress envelope is preserved when the selected parameter is between 1 and
1/2. Here, β0 = 1.

One may wonder, why complicate a seemingly simple problem? Would the expression
M = S/

√
3J2 be a simpler alternative? It turns out that the shape of the yield surfaces

is sensitive to β0. Thus, the yield criterion is generalized a great deal beyond the von
Mises description. Additionally, the flow tensor (3) efficiently handles the directionality
(anisotropy) of the plastic flow. Therefore, the expression (3) offers obvious advantages.

5. Plastic Anisotropy

Magnesium alloy AZ31B exhibits strong plastic anisotropy. A method developed
in [18] is used here for the reconstruction of the directional flow. The concept can be
explained as follows. Imagine that the material’s responses are monitored by two observers.
One of them was immersed in the material prior to the rolling process and, therefore, the
observer perceives the material to be elastically and plastically isotropic. Another observer
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is located outside the material. This second observer also monitors the deformation and
realizes that the rolling process introduces texture which makes the plastic responses
directional. The key idea here is to determine the transformation rules which correlate
with the strains monitored by the two observers. In what follows, the rules are derived by
projecting the texture-free basis onto the basis of the external observations. The externally
detected strain εT is called the texture strain. It is the elastic strain εe projected onto the
external reference system, hence:

εT = εe
ij

[
ξ1

T

(
Ti

1ei ⊗ ejT
j
1

)
+ ξ2

T

(
Ti

2ei ⊗ ejT
j
2

)
+ ξ3

T

(
Ti

3ei ⊗ ejT
j
3

)]
(4)

where eT
i = T j

i ej and ei establish the orthogonal triad of the texture-free material. The dyads

Ti
1T j

1, Ti
2T j

2, and Ti
3T j

3 are symmetric and describe the transformation of the T-basis. It has

been shown in [18] that the texture strain εT = εe
ij

(
ξ

ij
A ei ⊗ ej

)
carries complete information

on the elastic and plastic directionalities, and that the information is stored in the coefficients
ξ

ij
A = ξ1

T Ti
1T j

1 + ξ2
T Ti

2T j
2 + ξ3

T Ti
3T j

3. In the relations, the summation rule between εe
ij and ξ

ij
A

does not apply. Rolled sheets of AZ31B exhibit an in-plane directional property. Discounting
elastic anisotropy, only three parameters characterize the plastic directionality. The in-plane
parameters in the transverse, rolling, and shear directions ξ11

A , ξ22
A , and ξ12

A are calibrated,
while the others must satisfy additional conditions, specifically ξ11

A + ξ22
A + ξ33

A = 3 and
ξ12

A + ξ13
A + ξ23

A = 3. Thus, ξ33
A = 3− ξ11

A − ξ22
A and ξ13

A = ξ23
A =

(
3− ξ12

A
)
/2.

In Equation (3), the flow tensor M was expressed in terms of stress. In isotropic elastic
material, the same result can be achieved by replacing stress with elastic strain εe, that is,
M(σ) = M(εe). However, texture violates the co-directionality, which is M

(
εT) 6= M(σ).

The anisotropy is calibrated against the experimental data presented in [22]. Since the
rate of plastic strain is

.
ε

p
= M

(
εT) .

ep/2, where
.
ep is the rate magnitude, one can assess

the flow directionality by writing rθ = tr(Nθ ·M)/tr(Nw·M), where Nθ points in the θ-
direction between the rolling and transverse orientations. The tensor Nw is constructed
on a unit vector pointing in the direction perpendicular to the sheet’s surface. Note that
(Nw + Nθ + Nθ+π/2) : M = 0, and it is so because Nw + Nθ + Nθ+π/2 = 1. The three
anisotropy coefficients are listed in Table 2.

Table 2. Plastic anisotropy (parameters in rolling direction, transverse direction, and shear direction).

Plastic Anisotropy ξ11
A ξ22

A ξ12
A

ξ
ij
A

1.820 0.965 1.584

The stress envelope for Mg AZ31B is shown in Figure 2. The values of the tensile yield
stresses in the TD and RD directions are obtained from [22]. The two points are placed on
the stress envelope and are marked in red. Note that the shape of the surface is distorted.
In addition, the instantaneous Lankford coefficient rθ is plotted against three data points
extracted from the same reference [22]. The instantaneous coefficients are taken at 2% of the
plastic strain. The points are also marked in red. It is important to mention that the stress
envelop can be evaluated in tension only. An in-plane compression activates the twinning
mechanism, the crystallographic reorientations take over, and, as a result, the plastic flow
is delayed.
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between the rolling and transverse directions.

6. Viscoplasticity

The plastic flow follows the direction established by the flow tensor M
(
εT) and, as stated

earlier, the flow magnitude is determined by the rate of plastic strain
.
ep such that

.
ε

p
= M

.
ep/2.

From the requirement of measure invariance (independence from the frame of description),

we have
.

W
p
= σ :

.
ε

p
= σeq

.
ep, and the equivalent stress becomes σeq = M : σ/2. The rate

.
ep

is coupled with the equivalent stress through the power-law relation

.
ep

= mS
.

Λp

(
σeq − σr

σp

)np

. (5)

The relation contains several variables. As always, the yield stress σp is a temperature
sensitive property, σp = σ0

p AT , and the athermal strength σ0
p is evaluated at 0 K. The

role of the residual stresses σr is discussed first. The stress is a result of the interactions
between the plastic slip and the twin boundaries. The stress sources can be located between
grains, grain families, or twin–parent pairs [23]. Lastly, the stress can be affected by
the penetration of dislocations into the extension twins [24]. The long-range back stress
is responsible for the Bauschinger effect [25].The stress sources are integrated into the
equation σr = αr

(
emax

T /elim
T

)
AT µ, where αr is a constant, the ratio emax

T /elim
T quantifies the

contribution of dislocation–twinning interactions, and µ is the shear modulus. The term
emax

T /elim
T is further explained in the section on twinning. The magnitude of the residual

stress is sensitive to temperature AT .
The power-law relation controls the strain rate sensitivity through two exponents.

Specifically, the stress exponent np and the strain rate exponent ωp in
.

Λp =
.
e0

N

( .
et

N+
.
edi f

.
e0

N

)ωp

,

where
.
et

N =
( .

ε
t :

.
ε

t/2
)1/2

. The characteristic strain rate
.
edi f projects the relation (5) into

the regime of diffusional flow. At strain rates 10−4/s and greater, the constant can be
neglected. The strain rate exponent ωp is equal to ωp = AT

0.05. Thus, the strain rate
sensitivity varies with temperature. Note that the total, elastic, and plastic strains are εt, εe,
and εp, respectively.

The Schmid factor mS derived in [13,26] deserves an additional explanation. Let us
assume that the angle θ = 0 is designated for the dominant slip plane. The spread of
the angles is taken to be between ±π/4, and the plane misorientations thus have clearly
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defined boundaries. The participation of misoriented planes in the plastic flow is evaluated
according to the frequency of the slip occurrences fθ(θ). In hcp polycrystals, the broadening
of the distribution results from the accommodation of the prismatic and pyramidal slip. The
functional form fθ(θ) =

2Γ(1+1/2r)√
π Γ(1/2+1/2r)cos1/r 2θ properly represents the problem, where∫ π/4

−π/4 fθ(θ)dθ = 1 and Γ is the gamma function. The exponent r controls the shape of the
distribution. The relationship between the slip-plane distribution and the Schmid factor
was derived in [13] and is mS = mg −mr, where mg ∼= 1+r

1+π r/2 evaluates the arrangement

of active slip systems, while mr =
3 AT(T)
π(1+2 r) quantifies the rate at which the reorganizations

occur. The exponent r reflects the advances of plastic strain and is assumed to be in a linear
form, r = r0 + ep/ep

r .
Several points should be clarified. At low stresses, when

.
ε

e ∼=
.
ε

t, the relation (5)

can be simplified to
.
ep ∝

(
σ

p
eq/σ

p
0

)np
. Under such conditions, the plastic flow becomes

the diffusional flow. At the advanced stage of plastic deformation (stage III of plastic
hardening), or during a constant-stress creep, when

.
ε

p → .
ε

t , the strain rate dependence

is greatly reduced,
.
eeq ∝

(
σ

p
eq/σ

p
0

)np/(1−ωp)
. For example, at a medium temperature

range, the exponent is about ωp = 0.98 and, therefore, the stress exponent is in the range of
np/

(
1−ωp

)
≈ 20 and thus produces the familiar strain rate sensitivity. In this construction,

the material experiences a smooth transition from diffusional flow
.
ep ∝

(
σ

p
eq/σ

p
0

)np
through

power-law creep into dislocation glide
.
ep ∝

(
σ

p
eq/σ

p
0

)np/(1−ωp)
. Note that at ωp → 1 , the

material becomes rate insensitive (cryogenic temperatures). The constants for AZ31B are
presented in Table 3. The back stress will be further evaluated in the section on twinning.

Table 3. Parameters used in the generalized viscoplasticity model.

Plastic Flow σ
p
0 np r0 ep

r αr
.
edif

AT 288 MPa 2.12 0.1 0.07 0.045 5× 10−5/s

The viscoplastic relation (5) can describe metal responses within a broad range of
conditions. For this reason, we were tempted to test the model against the Frost–Ashby
deformation map for magnesium [27]. In the absence of a map for Mg AZ31B, the idea
was to observe only the trends, where the yield stress for the alloy was scaled down. In
Figure 3, the isolines of constant strain rate are marked by gray lines. Despite the obvious
differences between the two materials, the two maps were found to be quite similar.
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7. Crystallographic Reorientations

In rolled sheets of AZ31B alloy, the orientation of the c-axis is closely aligned with the
sheet’s out-of-plane direction. Therefore, when such sheets are subjected to an in-plane
compression, the loading produces tensile strain along the c-axis and, as a result, the elastic
stretch activates crystallographic reorientations. Here, the c-axis direction is denoted by
the unit vector nc. The dyadic product Nc = nc ⊗ nc establishes the first reference plane.
When the extension twins are activated, there must be a lateral plane N3

T , which jointly with
Nc defines the resolved shear plane

(
Nc −N3

T
)
. The two tensors, along with a third one,

N2
T , form an orthogonal triad, that is Nc + N2

T + N3
T = 1. This means that tr

(
Nc·N3

T
)
= 0,

tr
(
Nc·N2

T
)
= 0, and tr

(
N2

T ·N3
T
)
= 0. It should be emphasized that the orthogonality

assumption does not apply for the contraction twins, where tr
(
Nc·N3

contraction
)
≈ 0.75. In

our analysis, the contraction twins are blended into the residual twins, as is discussed later.
The orientation of the eigentensors N2

T and N3
T is controlled by the current elastic

strain. The TRM enables the determination of the explicit relationship between N3
T and

elastic strain εe, such that N2
T = N2

T(ε
e), N3

T = N3
T(ε

e), and N2
T : εe > N3

T : εe. The following
conditions must be satisfied:

tr
(
Nc·N3

T
)
= 0

trN3
T = 1

tr
(
N3

T
)2

= 1
. (6)

The eigentensor N2
T can be calculated from N2

T = 1−
(
Nc + N3

T
)
. The mathematical

expression for N3
T is presented in Appendix A.

The deformation caused by the extension twins follows the direction of maximum shear
on the plane

(
Nc −N3

T
)
.Therefore, the rate of the instantaneously generated deformation is

.
ε

RT
=
(

Nc −N3
T

) .
eT/2. (7)

The strain rate
.
eT quantifies the rate at which the crystallographic reorientations occur.

Locally, the process is rapid; the changes spread within grains but have a limited capacity
for generating shear deformation. The resolved shear stress is calculated from the conjugate
pair of stress and strain rate, σ :

.
ε

RT
= σT

.
eT , and is σT =

(
Nc −N3

T
)

: σ/2.

σT =
(

Nc −N3
T

)
: σ/2. (8)

When the c-axis is in tension (εe
c = Nc : εe > 0), the resolved shear stress takes a

positive value, σT > 0. A negative sign indicates that the detwinning process might have
begun. It is important to understand that the sign changes and that this feature makes the
resolved shear stress different from the equivalent stress in plasticity. In addition, note that
Nc : σ and N3

T : σ are not principal stresses.
The rate of twinning is proportional to the resolved shear stress σT . The process can

be activated when εe
c = Nc : εe > 0 and σT > 0, granted that the resolved shear stress is

in the range of σ0
T . Moreover, the reorientations continue to occur until the deformation

limit elim
T is reached. Lastly, the twinning process can be activated when the crystal has the

required capacity described here by the rate
.
et

T =

√
tr
( .

ε
t − .

ε
p
)2

/2. Consequently, at the

advanced stage of the plastic flow
( .

ε
p → .

ε
t
)

, the twinning mechanism is shut down. All
the requirements are integrated into the relation

.
eT =

.
et

T
elim

T − eR

elim
T

ξT

(
σT/σ0

T

)nT
. (9)

The twinning–detwinning condition is controlled by the parameter
ξT = (|εe

c|+ εe
c)/(2|εe

c|+ δε), where δε is a small numerical number (in this study δε = 10−11).
In short, the twins are generated when ξT = 1, and the c-axis is in compression when ξT = 0.
The detwinning mechanism is defined by the sister relation
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.
eD =

.
et

T
eT

elim
T

(ξT − 1) (|σ T |/σ0
T

)nT
. (10)

The original (parent) crystallographic organization can be recovered, and this happens
when the resolved shear stress takes a negative value (σT < 0). The recovery process is
limited by the availability of the shear strain eT . In other words, only pre-existing twins
can be erased, and when eT = 0, the process ends. Lastly, residual twins are produced at
load reversals and during subsequent unloading [28]. Here, the mechanism is proposed in
a simple linear form:

.
eTD = ΛTD

emax
T

elim
T

.
σT/σ0

T , (11)

where emax
T = max{eT} is the maximum magnitude of the twinning deformation generated

during the entire loading process. In the relation, the production and/or annihilation of
residual twins is solely dependent on the sign

.
σT . The load reversals create a condition

for stretching the limit elim
T . In other words, the secondary twins enhance the material’s

readiness for twinning. The effects are characterized by the maximum and minimum values
of eTD, i.e., emax

TD = max{eTD} and emin
TD = min{eTD}, such that

elim
T = e0

T + emax
TD − emin

TD . (12)

The initial limit e0
T can be assessed under proportional loading and is in the range of

10% to 13%. The parameter ΛTD estimates the maximum strain generated by the residual
twins. In summary, the current rate of twinning and detwinning includes three mechanisms,
.
eR =

.
eT +

.
eD +

.
eTD, and the current state of the twinned polycrystal is defined as

eR =
∫ t

0

( .
eD +

.
eD +

.
eTD

)
dt. (13)

The mechanisms of twinning and detwinning are described in terms of four parame-
ters. The parameters for AZ31B are listed in the Table 4.

Table 4. List of parameters for the twinning/detwinning model. Parameters calibrated for
Mg AZ31B alloy.

Twinning σ0
T nT e0

T ΛTD

30 MPa 3 0.108 0.0033

As stated earlier (Equation (7)), the strain rate
.
ε

RT
=
(
Nc −N3

T
) .

eT
2 reflects the ac-

tive twinning mechanism. In a polycrystalline alloy, various reorientations, N3
T , can be

achieved, though the detwinning deformation must still follow the previously established
trajectories. We realize that the deformation εRT represents the crystallographic state of
the material. Additionally, the advances of εRT progressively settle the recovery path-
ways. For this reason, the instantaneously chosen planes

(
Nc −N3

T
)

progressively mature
the resolved shear plane

(
N1

D −N3
D
)
, where N1

D = N1
D
(
εRT) and N2

D = N2
D
(
εRT) , while

N1
D : εRT > N2

D : εRT > N3
D : εRT . As a result, we have

.
ε

r
=
(

N1
D −N3

D

) .
er/2. (14)

This point is of paramount importance. The accumulated reorientations establish
the path for a potential detwinning. Therefore, the strain εr determines the current twin-
ning status in the material, while the strain εRT shows how the state was accomplished.
Proportional loading makes the tensors

(
Nc −N3

T
)

and
(
N1

D −N3
D
)

nearly identical. The
differences become relevant in complex loading scenarios.
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8. Discussion

The mechanisms of plastic flow and crystallographic reconfigurations are developed in
the framework of the tensor representation method. It has been shown that plastic flow and
deformation twinning are vastly different mechanisms. In dislocation plasticity, the active
stimulus can be the current stress, the elastic strain, or the texture strain. Crystallographic
reorientations are determined by the c-axis orientation and the elastic strain. The plasticity
part of the model was used previously and was proven to capture the relevant behavior of
AZ31B alloy. The twinning mechanism is a new addition.

In the literature, the viscoplastic self-consistent (VPSC) model is considered the most
prominent simulation tool [29]. This tool has been proven to accurately predict the behavior
of single crystals. Polycrystalline samples require additional fitting parameters, but the level
of predictability is still undeniable. However, large-scale computational engineering must
rely on numerically efficient constitutive models. Unfortunately, our phenomenological
models for plasticity are ill-equipped to handle the complex behaviors of magnesium alloys.
One reason is that plastic flow and deformation twinning are very different deformation
mechanisms. Here, it has been shown that the TRM delivers the necessary tools for
constructing these dissimilar deformation mechanisms. In the current study, the TRM
connected the generic deformation mechanisms with the proper stimuli, captured relevant
kinematical constraints, eliminated ad-hoc assumptions, and established well-defined rules
for the tensorial structure of the model.

When studying the behaviors of magnesium alloys, we should be aware that the
preprocessing treatment cannot be ignored. To avoid an unnecessary disparity in data,
we made a conscious decision to rely on experimental data from a single source [22]. In
the model, the isotropic elastic properties at room temperature are defined in terms of
the shear modulus µ = 17, 000 MPa and the bulk modulus B = 48, 000 MPa. The elastic
response

.
σ = C· .εe and the strain rate additivity

.
ε

t
=

.
ε

e
+

.
ε

p
+

.
ε

r complete the constitutive
description. The isotropic elastic tensor C needs no further explanation.

The plot in Figure 4 depicts uniaxial stress–strain responses in tension and compression.
The experimental results [22] were obtained at the strain rate ∼ 10−4/s and at room
temperature. The sample was tested in the TD (transverse direction). In all cases, the sheets
were 3.2 mm thick. The red dots denote the tension data and the blue dots represent the
stress–strain response under compression. The solid lines designate the model predictions.
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Figure 4. The stress–strain measurements are reproduced from [22]. The red dots represent the test
results under tension and the blue dots refer to the test under compression. The tests were conducted
in the TD at room temperature. The solid lines represent the model predictions.
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Next, the model is tested under cyclic conditions. In Figure 5, strain-controlled loading
is applied under compression, and the load direction is then reversed twice. The twins
initially accumulated under compression are fully recovered under tension. At the next
reversal, the twinning process resumes. The red dots are the experimental data points
collected from [22]. The right-hand side plots illustrate the twinning process. The twinning
deformation is generated under compression, i.e., when the c-axis is in tension and σT has
a positive value. The resolved shear stress takes a negative value under tension. The plot
displayed below shows the twinning and detwinning cycle presented as a function of time.

Crystals 2023, 13, x FOR PEER REVIEW 11 of 14 
 

 

Next, the model is tested under cyclic conditions. In Figure 5, strain-controlled load-
ing is applied under compression, and the load direction is then reversed twice. The twins 
initially accumulated under compression are fully recovered under tension. At the next 
reversal, the twinning process resumes. The red dots are the experimental data points col-
lected from [22]. The right-hand side plots illustrate the twinning process. The twinning 
deformation is generated under compression, i.e., when the c-axis is in tension and 𝜎  
has a positive value. The resolved shear stress takes a negative value under tension. The 
plot displayed below shows the twinning and detwinning cycle presented as a function 
of time. 

 
Figure 5. The stress–strain cycle reported in [22] is reproduced by the model. The red dots represent 
the test results. The test was conducted at room temperature and the strain-controlled loading was 
a slow process. The other two plots depict the resolved shear stress and the twinning deformation, 
both of which are constructed as a function of time. 

Lastly, two cases of strain-controlled cycles are calculated and compared with the 
experimental data [22]. On the left-hand side of Figure 6, the loading process begins under 
tension, and twins are thus not generated. After the load is reversed, the stress produces 
twins, which then are recovered under tension. In the second plot in Figure 6, a saturated 
cycle was obtained after the material was subjected to ten stress–strain reversals. As be-
fore, the red dots represent the experimental data from [22]. 

 
Figure 6. A single tension–compression cycle reported in [22] for Mg AZ31B alloy is reproduced 
(solid line). The red dots represent the test results. A cyclically saturated stress–strain response (10 

Figure 5. The stress–strain cycle reported in [22] is reproduced by the model. The red dots represent
the test results. The test was conducted at room temperature and the strain-controlled loading was
a slow process. The other two plots depict the resolved shear stress and the twinning deformation,
both of which are constructed as a function of time.

Lastly, two cases of strain-controlled cycles are calculated and compared with the
experimental data [22]. On the left-hand side of Figure 6, the loading process begins under
tension, and twins are thus not generated. After the load is reversed, the stress produces
twins, which then are recovered under tension. In the second plot in Figure 6, a saturated
cycle was obtained after the material was subjected to ten stress–strain reversals. As before,
the red dots represent the experimental data from [22].
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Figure 6. A single tension–compression cycle reported in [22] for Mg AZ31B alloy is reproduced
(solid line). The red dots represent the test results. A cyclically saturated stress–strain response
(10 cycles) for the same material is plotted on the right-hand side of the figure. All tests were
conducted at room temperature.
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9. Conclusions

Two objectives inspired this study. On the one hand, the idea was to share the tensor
representation method as applied to constitutive modeling. In the past, several models
were developed, but the method itself was explained briefly, thus leaving some level of
uncertainty for potential users. Here, several unpublished details have been included. The
hope is that the TRM can become a useful tool that streamlines the development of consti-
tutive models for a broad class of materials, such as polycrystalline metals, geomaterials, or
polycrystalline polymers. It has been shown that twinning can be reproduced in a physics-
based manner, and that its complexity can be reduced and its predictability enhanced.
The second goal was to develop a simple and yet predictive constitutive model for Mg
AZ31B alloy. The model was tuned for a textured alloy, where the hcp c-axes are oriented
in one predominant direction. The plasticity part of the model included the viscoplastic
flow rules and the highly directional flow mechanism. Additionally, the plasticity model
captured the temperature sensitivity from the cryogenic environment up to the melting
point, and the strain rates captured the diffusional flow up to the regime of mild dynamics.
It is worth stating that a single equation for the viscoplastic flow can reproduce the entire
Frost–Ashby deformation map [27]. It has also been shown that the twinning mechanism is
described with the use of 4 parameters, and that each of them has a well-defined meaning.
The temperature dependence of the twinning mechanism is yet to be established.

The constitutive description can be further enhanced to cover the regime of dynamic
plasticity, as described in [30]. In addition, the TRM is very suitable for the development
of fracture mechanisms under tension and compression, and this has been undertaken
elsewhere [26].
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Appendix A

The TRM provides tools for the reconstruction of the twinning mechanism. As stated
in Section 7, the eigentensor Nc is aligned with the c-axis in the hcp crystals and, in fact,
the tensor is a part of an orthogonal triad. Our objective is to determine the other two
eigentensors. We already know that their orientations are controlled by the elastic strain εe.
Therefore, the third eigentensor can be presented in the generic form

N3
T = α1 + βe + ηe2, (A1)

where e = εe− 1 trεe/3. The parameters {α, β, η}will be identified from the three requirements

tr
(
Nc·N3

T
)
= 0

trN3
T = 1

tr
(
N3

T
)2

= 1
. (A2)

We must remember that the tensor Nc is a dyadic product constructed on the unit vector
nc. This means that trNc = 1. The Equation (A1) and the relations e3 = J2e + J31 and
e4 = J2e2 + J3e are substituted into (A2). The tensor

(
N3

T
)2 in (A2) takes the following form:(

N3
T

)2
=
(

α2 + 2J3βη
)

1 +
(

J3η2 + 2J2βη + 2αβ
)

e +
(

J2η2 + 2αη + β2
)

e2, (A3)

where J2 = tre2/2, J3 = tre2/3, and J3 = 2
3
√

3
J3/2
2 sin ϕ. The three requirements (A2) are

now rewritten as follows:
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α + βec + ηe2
c = 0

3α + 2J2η = 1
3
(
α2 + 2J3βη

)
+ 2J2

(
J2η2 + 2αη + β2) = 1

(A4)

The elastic stretch along the c-axis (the deviatoric part only) is denoted by ec = Nc : e. The

solution is presented in terms of the non-dimensional variables
−
α = α + 1/3,

−
β = β

√
J2, and

−
η = η J2. Additionally, it is convenient to introduce a new variable, ξ = 2ec/

√
3J2, and then

−
η =

4 A0

A2
0 + 36ξ2 cos2 ϕ

+
6|ξ|

√
4(9ξ2 − 4)cos2 ϕ + A2

0

A2
0 + 36ξ2 cos2 ϕ

, (A5)

where A0 = 8− 9ξ2 + 6ξsin ϕ. The other two variables are expressed in terms of
−
η and are

as follows:
−
α = 1

3 −
2
3
−
η

−
β = − 4−8

−
η+9ξ2−η

6
√

3ξ

. (A6)

At first glance, the solution seems complicated. Still, one should note that it is an
analytic expression and, therefore, readily implementable into numerical codes. The
correctness of the implementation can be checked by verifying that trNc = 1, trN3

T = 1,
and Nc : N3

T = 0. The second eigentensor N2
T = 1−Nc −N3

T must satisfy the conditions
trN2

T = 1 and Nc : N2
T = N2

T : N3
T = 0.
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