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Abstract: In this work, the physical and the electrical properties of vertical GaN Schottky diodes were
investigated. Cathodo-luminescence (CL), micro-Raman spectroscopy, SIMS, and current-voltage
(I-V) measurements were performed to better understand the effects of physical parameters, for
example structural defects and doping level inhomogeneity, on the diode electrical performances.
Evidence of dislocations in the diode epilayer was spotted thanks to the CL measurements. Then,
using 2D mappings of the Eh

2 and A1 (LO) Raman modes, dislocations and other peculiar structural
defects were observed. The I-V measurements of the diodes revealed a significant increase in the
leakage current with applied reverse bias up to 200 V. The combination of physical and electrical
characterization methods indicated that the electrical leakage in the reverse biased diodes seems
more correlated with short range non-uniformities of the effective doping than with strain fluctuation
induced by dislocations.

Keywords: cathodo-luminescence; micro-Raman spectroscopy; current-voltage I-V; GaN Schottky
diodes; power electronic devices

1. Introduction

Gallium nitride (GaN) has attracted much attention for their potential applications
in high voltage electronic devices due to their superior physical properties, such as a
wide band gap energy, high electron mobility, large breakdown field, and high thermal
conductivity [1,2]. To date, commercially available lateral GaN power devices such as
high-electron-mobility transistors (HEMTs) fabricated on foreign substrates have shown
good and effective electrical performance [3]. However, for most of industrial GaN-on-
Silicon HEMTs, this performance is still limited to a breakdown voltage of 650 V. This
limitation is attributed to the reported lattice-mismatch-induced dislocations and thermo-
elastic strain resulting in a limited thickness of the buffer layer. Vertical GaN devices are
reported to be more suitable for high power applications versus lateral ones [4,5]. Indeed,
it has been shown that a vertical structure is the most efficient way to increase both the
breakdown voltage (BV) and the current density. Moreover, vertical devices should be
less sensitive to surface states contrary to HEMTs. In order to achieve these performances,
critical aspects such as high structural quality of the drift region, doping control, and its
homogeneity need to be addressed. This is possible through an efficient use of physical and
electrical characterization approaches. Recent studies have been carried out to examine
the crystalline properties and electrical behavior of vertical GaN Schottky concomitantly.
Ren et al. observed that the microstructure of the GaN layers and electrical properties of
Schottky Barrier Diodes (SBDs) were strongly dependent on the epitaxial growth rates. By
optimizing the growth conditions, they obtained a high structural quality GaN drift layer
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with high mobility [4]. Tompkins et al. have also shown that deep acceptor states associated
with carbon lead to a decrease in the breakdown while increasing the specific on-resistance
in the GaN SBDs grown at 100 Torr [6]. Other research groups mentioned the effect of
threading dislocations and the doping concentration on the electrical behavior of GaN
vertical PN diodes [7,8]. Nonetheless, a clear physical understanding of the correlation
between the microstructural properties and the electrical performance of the device is still
not widely established.

In this work, non-destructive physical characterizations such as cathodo-luminescence
(CL) and micro-Raman spectroscopy were performed and coupled with electrical charac-
terization (reverse and forward I–V) to assess the effects of structural and electrical defects
on the electrical performance of the vertical GaN SBDs. Indeed, dislocation clusters can be
highlighted by CL measurements, due to their non-radiative recombination activity, and the
structural defects [9] and the n-doping concentration distribution [10] can be probed by 2D
mapping Raman spectroscopy. In this study, the Eh

2 peak position and width were tracked
to analyze the structural defects and stress distribution and the A1 (LO) peak position and
intensity are used to determine the n carrier concentration and homogeneity. Moreover, the I-V
measurements were performed to check electrical performance of the SBDs. The combination
of physical and electrical characterization methods indicated that the electrical leakage in the
reverse biased diodes seems more correlated with short range non-uniformities of the effective
doping than with the strain fluctuation induced by the dislocations.

2. Materials and Methods

A 5 µm Si n-doped layer was grown by MOCVD (Metal Organic Chemical Vapor De-
position) method on a GaN HVPE freestanding substrate from Saint-Gobain Lumilog [11].
GaN films were grown in a close-coupled showerhead reactor. Ammonia, trimethylgallium
(TMGa), and hydrogen carrier gas were used to grow the films at 1020 ◦C at a growth
rate of 2 µm.h−1. Diluted silane was added to the vapor phase in order to dope the GaN
film. The effective doping concentration value amounts to Nd − Na = 8 × 1015 cm−3 and
was determined by mercury probe capacitance-voltage (C-V) technique [12]. First, 40 nm
thick rectangular Ni frames were defined by photolithography, electron beam deposition,
and lift off. Then, CL measurements were performed before any contact deposition. The
Schottky contact (Ni/Au) and the backside ohmic contact (Ti/Al/Ni/Au) were electron
beam deposited (Figure 1a). The diodes were mesa-isolated by chlorine-based reactive ion
etching. Four SBDs with different diameters (200 µm, 100 µm, and 50 µm) were fabricated
on each nickel frame (Figure 1b). C-V measurements performed on these Schottky diodes
confirm the previously determined concentration in the epilayer [12].
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Micro-Raman spectroscopy measurements were carried out at room temperature using
a confocal spectrometer (Renishaw Invia model) in back scattering geometry with a ×100
objective and a 2400 L/mm diffraction grating and a 532 nm laser excitation. The micro-Raman
measurements were carried out after the complete removal of the Ni/Au Schottky contact
by chemical etching. The spectral and spatial lateral resolutions were found to be around
0.1 cm−1 and 1 µm, respectively, and the depth resolution was between 3 and 5 µm. For the
Raman measurements, 2D Raman maps were made on the epilayer of the diodes after the
metallization removal. During 2D Raman measurements, cartographies of 500 × 350 µm size
with a step size of 5 µm were performed on each frame containing the diodes. From these
measurements, a series of Eh

2 and A1 (LO) Raman spectra were obtained and fitted using a
mixed Gaussian–Lorentzian function with the WireTM Renishaw software (Figure 2). From
these fitting, we extracted the values of Eh

2 and A1 (LO) peak position and intensity to create
the Raman maps that were used to probe the physical properties of the diodes.
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2 (upper right) and
A1 (LO) modes (lower right).

The CL images were recorded at room temperature using an acceleration voltage of
10 kV and a magnification of ×500 or ×1000. By inspection of 15 CL images, the dislocation
density was found to be 5–10 × 106 cm−2 in 187 × 500 µm2 areas [12]. This technique allows
us to inspect the arrangement of dislocations in the GaN epilayers before the fabrication of
metal contacts.

3. Results
3.1. SIMS Characterization

The SIMS measurements were conducted to examine the amount of impurities in the
drift layer of the diodes and previously described in reference [13]. Figure 3 illustrates the
SIMS depth profile for the Si-doped GaN film. The presence of background impurities such
as carbon and oxygen can clearly be seen in the drift layer. The SIMS profile shows a very
high Si concentration from the surface to about 100 nm dept. This has been previously
reported in the following references [13–15] and can be explained by surface dopant atom
contamination (see reference [13] for more details). After a 100 nm depth, the SIMS profile
shows a uniform Si doping density (~2.5 × 1016 cm−3) corresponding to the n-doped GaN
epilayer grown by MOCVD. Beyond the depth of 4.2 µm, a high concentration of Si is
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observed corresponding to a 100 nm thin layer of highly doped Si GaN. This high-doped
layer is regrown during the MOCVD process on top of the freestanding GaN substrate to
avoid interface contaminations such as carbon impurities that limit the series resistance.
For this reason, high concentration of Si dopants is present in this region located beyond
the depth of 4.2 µm. Finally, the 4.5 µm depth corresponds to the freestanding GaN
substrate, as the substrate is doped with oxygen and the HVPE process limits the amount
of carbon. Overall, the SIMS results reveal that the silicon concentration is almost uniform
(~2.5 × 1016 cm−3) in the GaN active layer. The SIMS results highlighted that the presence
of carbon and oxygen impurities is not negligible. From the surface down to a 4 µm depth
in the epilayer, the O and C concentrations are constant. Oxygen is a shallow donor and
is present in the films due to the contamination from ammonia source [16]. On the other
hand, carbon is a deep acceptor and its presence in the film is due to the decomposition of
TMGa methyl groups during MOCVD process [17]. Hence, some compensation effects of
the Si and O donors by the C acceptors may occur.
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Figure 3. SIMS profiles measurement from the studied GaN vertical structure. The black curve
highlights the presence of Si dopants (main dopant). The red and blue curves represent the main
background impurities in the sample (carbon and oxygen respectively).

3.2. Study of the E2
h Peak Behavior

In epitaxial GaN, the stress is biaxial and the Eh
2 mode is reported to be sensitive to

the biaxial stress [18] and useful to probe crystalline quality as well; its non-polar nature
makes all atoms vibrate in the x-y plane. With this mode, any effect on the atomic bonds in
the lattice can be effectively sensed. Therefore, a shift of this mode indicates the level or the
type of stress in the epilayer and can be accounted by Equation (1): [18]

∆ω = Kσxx=yy (1)

where ∆ω is the shift of phonon line (cm−1), σxx=yy (GPa) is the biaxial stress and K
(cm−1/GPa) is the pressure coefficient or the stress coefficient. That expression is useful to
quantify the residual stress in the samples as long as the pressure coefficient is known. We
did not evaluate the stress due to the scattered value of K in the literature [18–20]. Here,
by investigating the Eh

2 2D Raman maps obtained as described earlier in the experimental
method on each Ni frame, the stress and the crystal quality of the diodes drift layer were
assessed. Actually, the wafer containing the homo-epi-structure was cut into two parts.
The first sample contains frames 1 and 2 while the second sample contains frames 3 and 4.
Figure 4 shows the Eh

2 Raman maps and the CL maps (respectively in black and white)
performed on the four different frames on the GaN wafer.
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images (in black and white, left) performed on the four frames. The red circles and rectangle are
ascribed to dislocations clusters. The blue circles correspond to the areas where Schottky diodes were
fabricated afterwards.

Table 1 summarizes the supporting quantification results extracted from the Eh
2 po-

sition and width maps obtained by fittings. We clearly see in the Table 1 the difference
in the Eh

2 position mean value. Frames 1 and 2 have the Eh
2 position mean value between

567.3 and 567.4 cm1 range while frames 3 and 4 show a lower shift between 566.5 and
566.6 cm−1. That difference of about 0.8 cm−1 may be due to the long range inhomo-
geneities of the original sample or to the fact that frames 3 and 4 have undergone many
physical experiments such as SEM, I-V, Raman, and temperature measurements: It may
have been structurally deteriorated by these operations. Therefore, we did not examine the
A1(LO) Raman map of these samples. According to Equation (1) and assuming that the
mean value corresponds to the strain relaxed state, we can see on the Eh

2 position maps a
shift below (toward the blue zone) or above (toward the red zone) the mean value, which
indicates a tensile or compressive stress, respectively. From the comparison between the
Eh

2 position maps and the CL image, we identified the presence of the dislocation clusters.
Indeed, the observed dislocations in the CL image match well zone by zone with a shift of
the Eh

2 peak to a lower position in the Raman map (Figure 4). These results established a
good correlation between the Raman spectroscopy and CL and therefore proves the effi-
ciency of the micro-Raman spectroscopy as a non-destructive tool to highlight the presence
of dislocations clusters as reported previously by Kokubo et al. [21]. Generally, three types
of threading dislocations exist: the edge dislocations (TEDs), the screw dislocations (TSDs),
and the mixed dislocations (edge and screw) (TMDs). In references [21,22] it has been
reported that the TSDs do not affect the Eh

2 peak shift because the shear strain has less
influence on the Eh

2 shift. Thus, the screw type dislocations are not detectable by means
of the Raman peak shift. However, it is still challenging to distinguish the TED from the
TMD types when they are both present in a GaN sample. In these previous studies, the
dislocations appear as zones affected by a shift of the Eh

2 peak position to a higher position
close to a zone with a shift of the Eh

2 peak position to a lower position. In our study, it seems
that the observed dislocation clusters appear only in blue on the Raman Eh

2 position map
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and then correspond to an area with a lower stress. This reveals that the dislocation clusters
may induce a tensile stress in the drift layer of the studied diodes. In addition, it is possible
that either the step used for our mapping is too large to observe the compressive stress or
that the dislocations observed here are dislocation clusters locally decreasing the stress in
a similar way as the dislocations associated with the grain boundaries [23]. From the Eh

2
width maps (not presented here, results summarized in Table 1), we see that the frames
present peak widths with the same order of magnitude (3.6∼ 3.7 cm−1). In frames 1 and 2,
the value of v = 3.6 cm−1 can be noticed while in frames 3 and 4 the value of v = 3.7 cm−1 is
obtained. We note a small Eh

2 width gap shift of 0.1 cm−1 among the frames. This gap shift
is insignificant to account for an effective crystalline inhomogeneity in the frames. Hence,
we can tentatively infer that the crystalline structure of the drift layer is homogeneous
over the whole epi wafer. Moreover, from the reference [24], the value up to v = 3.7 cm−1

indicates that the Si-doped epilayer is of good crystalline quality.

Table 1. Eh
2 position and width quantification result.

Frame Name Eh
2 Position (Mean Value) (cm−1) Eh

2 Width (Mean Value) (cm−1)

Frame 1 567.3 ± 0.1 3.6 ± 0.1
Frame 2 567.4 ± 0.1 3.6 ± 0.1
Frame 3 566.5 ± 0.1 3.7 ± 0.1
Frame 4 566.6 ± 0.1 3.7 ± 0.1

3.3. Study of the A1 (LO) Peak Behavior

The A1(LO) phonon mode is used to measure the spatial distribution of the free-
carrier concentration and carrier mobility of polar semiconductors such as GaN due to
the interaction between the longitudinal optical (LO) phonon modes and the collective
oscillation of free carriers (plasmons) that forms the LO Phonon-Plasmon coupled (LOPC)
mode [25–27]. The shift in the A1 (LO) position is known to reflect changes in the plasma
frequency and enables to estimate the free-carrier density and/or mobility. The evaluation
and the optimization of the carrier concentration of the GaN-based device drift layer is
important for their electrical performance. By tracking the A1 (LO) position shift through a
Raman mapping, we determined the effective carrier concentration of the diodes. It has
been reported that for n-doped GaN layers with a n concentration below 1017 cm−3, the A1
(LO) position shift is a linear function of the carrier concentration through Equation (2) [28]:

ω1 = 1.410−17 n +ω0 (2)

where n is the n-carrier concentration, ω1(A1(LO)) is the Raman shift in cm−1 and ω0 is an
offset value of 733.3 cm−1 deduced from the plot. This means that any A1 (LO) position shift
corresponds to a specific carrier concentration. As mentioned above, only frames 1 and 2
were considered in this part. From the A1(LO) 2D position maps as displayed in Figure 5,
this implies that the n-carrier mean concentration does not significantly vary across the
region containing these frames. The doping is therefore rather homogeneous all over the
region. This value corresponds to nearly n = 7 × 1015 cm−3 (Table 2) as an estimated carrier
concentration using Equation (2). We clearly realize that we find a similar concentration as
determined by the capacitance-voltage (C-V) mercury probe method (n = 8 × 1015 cm−3).
Therefore, we observe a good correlation between the Raman spectroscopy and the C-V
method in terms of the carrier concentration evaluation.
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Table 2. A1(LO) position and n-carrier concentration quantification result.

Frame Name A1(LO) Position (Mean Value) (cm−1) A1(LO) Width (Mean Value) (cm−1)

Frame 1 733.4 ± 0.1 7.1 × 1015 ± 10%
Frame 2 733.4 ± 0.1 7.1× 1015 ± 10%

Moreover, when considering both the A1(LO) intensity and the position maps of frame
1 and 2 (Figures 5 and 6), we observe peculiar patches (highlighted in black squares) in the
active area of the 200 µm diodes. These patches did not appear in the Eh

2 maps as shown in
Figure 3. Therefore, as no local strain changes are noticed, these patches cannot be ascribed
to dislocations. Rather, these patches may stand for the inhomogeneous incorporation
of impurities (such as carbon) during the MOCVD growth process. In these peculiar
patches, the A1(LO) intensity increases (red part) while the Raman shift position decreases
(blue zone) as shown in Figures 5 and 6. As a result, they seem to affect the doping and
its homogeneity in the diodes by apparently locally decreasing either the n-free-carrier
concentration or their mobility. According to the SIMS results, they may correspond to
local changes in the incorporation of silicon or background impurities such as oxygen (O)
or carbon (C) or to an agglomeration of them since they all exist together in the probed
epilayer thickness (5 µm). Further analyses such as EBIC [29,30] are needed to determine
the exact nature of the defects that create this kind of inhomogeneity.
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3.4. Electrical Characterization

The electrical behavior of the vertical SBDs was investigated through the I-V forward
measurements. Figure 7 shows the result of the forward I-V characterization obtained on
the four frames, containing four diodes each. The 50 µm (high) and 50 µm (low) refer to
the respective location of the 50 µm diameter diodes in each Ni frame. We notice that the
current density in the diodes have all the same exponential dependence when the voltage
increases from 0.1 V to 0.4 V. It also shows that they are dominated by the same forward
current conduction mechanism independently of the diode size. The exponential part of the
I–V curves can be explained by the thermonic emission model. In this region, the current
density J can be expressed with the following equation [31]:

J = A∗T2 exp
(
− qφB

kT

)
exp

(
qV

nkT

)
(3)

where A* is the GaN Richardson’s constant for GaN, T is the temperature, φB is the Schottky
barrier height (SBH), k is the Boltzmann constant, V is the applied bias voltage, q is the
elementary charge, n is the ideality factor. When the forward bias is beyond 0.4 V, the
increase in the current density is limited by the series resistance, and Equation (3) should
be modified. From Equation (3), applied to the linear region of the log(J)-V curve, we
deduce the ideality factor from the intercept and the barrier height from the slope. Table 3
summarizes the values obtained for n and ΦB. All the diodes show the typical Schottky
behavior with the ideality factor close to the unity and varying from 1.01 up to 1.19,
independently of the diode size. The barrier heights are between 0.74 V and 0.91 V and
seem to increase with the diode size.
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The diode electrical behavior was investigated through the I–V reverse measurements
down to −200 V. Figure 8 shows the result of the reverse I–V characterization. All the
studied diodes on the wafer display nearly the same reverse characteristics with a relatively
high leakage current density ranging between 10−3 and 10−1 A.cm−2 at −200 V. The third
column of Table 3 summarizes the reverse voltage (Vr), at which a leakage current density of
0.5 10−2 A.cm−2 is reached. This voltage varies between −70 V and −185 V. The lower Vr is
obtained for the diodes of frames 1 and 2 and the higher Vr for the diodes of frames 3 and 4.
However, Vr seems to be independent of the diode size. Then we suspect that the observed
dispersion between frames may be caused by the presence of some structural defects (such
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as dislocations) or electrical defects in the drift layer. These defects may actively play
a major role in the performance of the diodes by somehow influencing the net carrier
distribution across the drift layer.

Table 3. Ideality factor (n) and Schottky barrier height (φB ) deduced from the I-V forward measure-
ments and Vr (reverse voltage at current density J = 0.5 mA/cm2).

Frame Name, Diode Size (µm) n φB (Volt) Vr (V)

Frame 1, 200 1.08 0.74 −110 V
Frame 1, 100 1.03 0.80 −125 V

Frame 1, 50 (high) 1.07 0.83 −120 V
Frame 1, 50 µm (low) 1.11 0.83 −150 V

Frame 2, 200 1.17 0.72 −70 V
Frame 2, 100 1.09 0.78 −125 V

Frame 2, 50 (high) 1.13 0.82 NONE
Frame 2, 50 (low) 1.09 0.82 −155 V

Frame 3, 200 1.03 0.83 −180 V
Frame 3, 100 1.01 0.87 −170 V

Frame 3, 50 (high) 1.08 0.88 −175 V
Frame 3, 50 µm (low) 1.07 0.89 −180 V

Frame 4, 200 1.03 0.84 −185 V
Frame 4, 100 1.09 0.85 −160 V

Frame 4, 50 µm (high) 1.00 0.91 −180 V
Frame 4, 50 µm (low) 1.00 0.91 −175 V
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4. Discussion

The E2
h Raman position maps correlate well with the cathodo-luminescence measure-

ments (see Figure 4), showing that the Raman spectroscopy can be used to localize the
threading dislocations in the GaN active layer. Our measurements reveal that the dislocation
clusters may locally decrease the stress in a similar way as the dislocations associated with
the grain boundaries. In addition, the 2D A1(LO) position and intensities maps were used to
estimate the carrier concentration in the diodes and identify peculiar defects. Figures 5 and 6



Crystals 2023, 13, 713 10 of 12

show that the area occupied by the defects is particularly important with respect to the diode
size for the two 200 µm diodes of frames 1 and 2. These peculiar defects locally decrease
the net carrier concentration and therefore may possibly affect the Schottky diode electrical
performances. The SIMS results highlighted the presence of a significant amount of oxygen
and carbon, and the changes in the incorporation of silicon or of these impurities could explain
the observed variation of the n-carrier concentration. The I-V forward characterizations show
that all the studied diodes have a typical Schottky behavior with ideality factors between 1
and 1.17. The I-V reverse characterizations show that all the studied diodes have leakage
currents increasing with the applied reverse voltage and they are higher for the diodes of
frame 1 and 2, especially for the two 200 µm diodes. These results seem to indicate that the
defects observed in the A1(LO) Raman maps (Figures 5 and 6) are electrically active and
contribute to the reverse leakage. Thus, the electrical leakage in the reverse biased diodes
seems more correlated with the short range non-uniformities of the effective doping rather
than with the strain fluctuation induced by the dislocations, a result in agreement with our
previous investigations on dislocation clusters [12].

5. Conclusions

In this work, vertical GaN Schottky diodes on a freestanding GaN substrate were
fabricated and investigated. The physical and the electrical properties were studied with
cathodo-luminescence, micro-Raman mapping, SIMS measurements, and current-voltage
(I-V) to understand the effects of physical parameters such as threading dislocations and
doping concentration homogeneity on the electrical performances of SBDs. Evidence of
dislocations in the diode epilayer was spotted thanks to CL measurements and a correlation
with 2D mappings of the Raman E2

h signal was observed. The I-V measurements of
the diodes reveal a significant increase in the leakage current with applied reverse bias
up to 200 V. However, no clear correlation with the presence of dislocation cluster in
the area occupied by the diodes and excessive leakage current were observed. On the
contrary, the mapping of the A1 (LO) Raman mode that is sensitive to fluctuations of
the effective doping level shows correlations with the leakage. Even when the origin of
such fluctuations remains to be identified, this study shows the efficiency of micro-Raman
spectroscopy to probe structural and electronic properties of GaN-based electrical vertical
devices. The combination of physical and electrical characterization methods indicates that
the electrical leakage in the reverse biased diodes seems more correlated with short range
non-uniformities of the effective doping than with the strain fluctuation induced by the
dislocations and thus, this method can be efficient to study vertical GaN electrical power
devices. Finally, we suggest further investigations such as DLTS measurements to set up a
solid correlation between physical properties and the observed electrical behavior of the
diodes [13].
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