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Abstract: In this study, we utilized a simple and efficient microwave heating method with
polyethyleneimine (PEI) and phosphate as raw materials to synthesize room temperature persistent
luminescence (RTPL) materials that emit phosphorescent light for up to 10 s. Our investigation
revealed that the optimal synthesis conditions were a microwave radiation power of 560 W and
a heating time of 5 min. The synthesized RTPL materials had an average particle size of 2 nm
and exhibited excellent RTPL performance, with optimal excitation and emission wavelengths of
360 nm and 544 nm, respectively. Additionally, these materials displayed good water solubility.
We conducted mapping experiments and in situ phosphorescent imaging of plants to showcase the
potential applications of RTPL materials in the fields of biological imaging and anti-counterfeiting.
Overall, our findings demonstrate the promising potential of these RTPL materials as versatile tools
for various practical applications.

Keywords: long afterglow luminescent material; room temperature phosphorescence; microwave
method; anti-counterfeiting; bioimaging

1. Introduction

Long afterglow luminescent materials are a type of photoluminescent material that
can store energy from sunlight or ultraviolet light and emit light for minutes to hours after
the excitation light is removed [1–4]. Due to this unique optical property, long afterglow
luminescent materials find numerous applications in fields such as bioimaging, sensing,
composition detection, optoelectronic devices, photocatalysts, optical information storage,
information encryption, and anti-counterfeiting [5–13]. Conventional long afterglow lumi-
nescent materials include organometallic complexes and pure organic compounds without
metals, with organometallic complexes being the standard choice. However, these mate-
rials have disadvantages, such as their high cost, cytotoxicity, poor stability, complicated
preparation and purification processes, and the strict conditions required for producing an
afterglow [14–17]. Pure organic long afterglow luminescent materials, however, are low
cost and have a flexible molecular design [18], making them a viable alternative [19].

In recent years, researchers have made many efforts to prepare room temperature
phosphorescent materials as better alternatives. Combinations of polymers and organic
molecules have been used to achieve room temperature long afterglow luminescence or
efficient long afterglow luminescence through the synergistic interaction of organic small
molecules and polymers [20,21]. Furthermore, novel materials such as metal–organic
framework materials (MOFs), conjugated polymers, carbon dots, and nanomaterials have
been widely used in the preparation of room temperature phosphorescent materials [22–25].
These materials offer excellent long afterglow luminescence, simple preparation methods,
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low production costs, good biocompatibility, and can be used in biomedical imaging,
biomarkers, and pathology detection [5,26]. Recent research has also focused on embedding
organic long afterglow materials into porous silicon dioxide (SiO2) nanoparticles to prepare
a new organic–inorganic composite material that can be applied in bioimaging [27].

The application and development of long afterglow luminescent materials have been
impeded by the spin forbidden transition from the trilinear exciton to the ground state.
To produce long afterglow luminescent materials with exceptional room temperature
phosphorescence properties, two crucial factors must be addressed. Firstly, effective spin–
orbit coupling can be achieved by promoting the inter-system crossing (ISC) process
in order to efficiently populate the triplet state exciton. This can be accomplished by
introducing transition metals, halogens, and aromatic carbonyl groups [16,28,29]. Secondly,
the restriction of the transition from the lowest triplet state, the excited state (T1), to the
ground state (S0) by non-radiative leaps can be achieved by crystallizing or embedding
the luminescent material in a suitable substrate. This forms hydrogen bonds that limit the
vibration and rotation of the luminescent group [19,30,31].

In this study, we have synthesized room temperature long afterglow luminescent
materials in a single step using PEI and phosphoric acid with microwave-assisted heating.
The use of PEI and phosphoric acid as nitrogen and phosphorus sources, respectively, is
favorable for the n→π* leap in the system, facilitating the filling of the triplet state inter-
system crossover (ISC). Synthesis methods of organic room temperature phosphorescent
materials mainly include the hydrothermal method, the template method, the pyrolysis
method, and the microwave-assisted heating method. Water/solvothermal methods are
when the solvents used in the system can affect the photoluminescence performance of
the material [32]. The disadvantage of the template method is that the strong acids/bases
used during the template removal process can affect the luminescent performance of RTPL
materials [33]. The surface of RTPL materials synthesized via the pyrolysis method contains
fewer functional groups, resulting in a decrease in luminescent performance [34]. The
microwave-assisted heating method has significant advantages in this process compared
with other synthetic methods. Microwave heating permits efficient heating and mixing
in a brief amount of time, thereby expediting the synthesis of nanomaterials. It is a non-
thermal equilibrium process with localized heating and selective heating that can synthesize
nanomaterials of varying sizes, morphologies, and physicochemical properties under
varying reaction conditions. In addition, microwave heating can uniformly heat the sample,
thereby improving the uniformity and consistency of the synthesized nanomaterials. In
terms of cost-effectiveness, microwave synthesis is an energy saving technique that can
considerably reduce the reaction time and temperature as well as the energy consumption
of chemical reactions and process pollution [35]. As a result, the microwave synthesis
method has gained significant interest in the field of room temperature phosphorescent
material preparation and has been widely used in recent years.

2. Materials and Methods
2.1. Materials and Instruments

Analytical grade solvents and compounds were used for preparation. The solvents and
water used in our present work were redistilled and bubbled using N2 for 1 min to eliminate
O2 without being specific. Phosphoric acid and polyethylenimine (PEI, mw = 1800–3000)
were purchased from Alfa Aesar. All photoluminescence spectra were measured on a
Hitachi F-4500 fluorescence spectrophotometer equipped with a continuous 150 W Xe
arc lamp and a 10 mm quartz cuvette. The excitation and emission wavelength band-
passes were both set at 5 nm. Absorption spectra were recorded with a Shimadzu UV-3000
spectrophotometer. The microwave oven used was a Granz P70F23P-G5 (SO). The morpho-
logical and structural characteristics of the samples were analyzed via transmission electron
microscopy (TEM) (JEOL). The organic functional groups and elemental composition of
the sample surfaces were detected via Fourier transform infrared spectroscopy (FTIR)
(PerkinElmer) and X-ray photoelectron spectroscopy (XPS) (Thermo Fisher Scientific). Ther-
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mal gravimetric curves were measured using a TGA/DSC1 thermal analyzer from Mettler
Toledo. The dispersion stability and particle size distribution of the samples in aqueous
solution were analyzed using zeta potential and dynamic light scattering (DLS) (Malvern
Panalytical). Finally, the optical properties of the samples were characterized, mainly to
study the afterglow properties of the prepared materials.

2.2. Synthetic Procedures of RTPL Materials

Using a 100 mL beaker, 16 mL of ultrapure water and 2 mL of polyethylene imine were
adding sequentially, and then phosphoric acid was added drop-wise into the solution. After
stirring evenly, it was place in a preheated microwave oven to control the radiation power
and time. The synthesized RTPL material was allowed to settle, and the resulting mixture
solidified into a dark brown gel-like substance that was dissolved overnight by adding
40 mL of ultrapure water. The aqueous solution of the crude product was centrifuged
(10,000 rpm/min for 20 min) and the supernatant was again filtered through a 0.22 m
disposable filter to remove small impurities. The obtained filtrate was dialyzed in ultrapure
water using a 1000 Da dialysis bag for three days (72 h), during which the water was
changed seven times. The dialyzed samples were then freeze-dried to produce desiccated
powder samples. They were locked up and stored. By controlling the radiation conditions
and preparing samples at three different radiation powers and times (490 W, 6 min; 560 W,
5 min; and 630 W, 4 min), the optimal conditions for synthesizing RTPL materials were
obtained. When the radiation power was 560 W and the radiation time was 5 min, the
prepared sample had the best luminescence performance.

3. Results and Discussion
3.1. Design and Synthesis of RTPL Materials

In this study, we utilized a one-step microwave synthesis approach to prepare a long
afterglow luminescent material. PEI and phosphoric acid were chosen as the experimental
raw materials (as shown in Scheme 1a). Upon completion of the synthesis, we observed that
the reactants had transformed into a dark brown, gel-like substance with a pungent burning
odor. The resulting sample was allowed to cool to room temperature and subsequently
subjected to centrifugation, filtration, dialysis, and vacuum freeze-drying to obtain a light
brown solid product (Scheme 1b). In order to explore the best mode of synthesizing organic
room temperature phosphorescent materials, we adopted the same synthesis conditions
as before and selected amino compounds (N,N-dimethylaniline, azodiisobutyronitrile,
ammonium dihydrogen phosphate, and N,N-dimethylformamide) similar to phosphoric
acid and PEI to synthesize the RTPL materials. The RTPL materials synthesized by the four
amine containing compounds mentioned above are listed as group A, group B, group C, and
group D. No significant RTP was observed in groups A and B, and weak phosphorescence
was observed in groups C and D, but the phosphorescence intensity was lower than that of
the RTPL materials synthesized by PEI and phosphoric acid.

3.2. Characterization of the RTPL Materials

The long afterglow luminescent material which was prepared in this study exhibits
good dispersion and a spherical or nearly spherical morphology with an average particle
diameter of 2 nm (Figure 1a). The small particle size of the material significantly enhances
its surface area and reactivity, making it a promising candidate for various applications,
such as fluorescent probes, biosensing, and chemical analysis. The TEM images of the
samples confirm the morphological and structural features of previously reported long
afterglow luminescent materials [36,37], thereby demonstrating that similar materials to
carbon dots can be synthesized through the microwave heating of PEI and phosphoric
acid [16,30].
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Figure 1. TEM (a), DLS (b), and zeta potential (c) of RTPL materials.

As depicted in Figure 1b, the particle size distribution of the sample solution was
determined using two distinct techniques: DLS and TEM. The measured particle size
distribution via DLS appeared relatively larger than that via TEM, which can be attributed
to the amount of solvent in the sample in the DLS measurements. Notably, the hydrated
particle diameters measured via DLS indicated the presence of surface groups in the sample
solution, which likely contributed to its good water solubility [38].

The stability of a colloidal particle system is closely related to the magnitude of its zeta
potential. A highly positive or negative zeta value can induce a significant repulsive force
that impedes the aggregation of colloidal particles. Typically, a minimum zeta value of
±30 mV is required to ensure the stability of a colloidal particle system [39]. Nonetheless,
the stability of the colloidal particle system is influenced by both electrostatic repulsive
forces and van der Waals gravitational forces. The zeta potential only reflects the magnitude
of the electrostatic repulsive force and cannot indicate the strength of the van der Waals
gravitational forces. Therefore, a low absolute value of zeta potential does not necessarily
imply an unstable colloidal particle system [40].

In the case of the microwave-assisted synthesis of long afterglow luminescent materials,
Figure 1c reveals an absolute value of zeta potential within 20.00 mV. This measured value
may be attributed to the limited number of functional groups, such as amino or carboxyl
groups, that can undergo protonation in the sample solution. Despite the relatively low
zeta potential, the colloidal particle system remains stable.
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In this study, the surface organic functional groups of the prepared long afterglow
luminescent materials were characterized via FTIR analysis, as depicted in Figure 2a. The
stretching vibration zone above 3000 cm−1 is unsaturated C–H, which may be olefins or
alkynes. Between 3200 and 3650 cm−1 is the stretching vibration of the hydroxyl OH
or the hydrogen bonds, and between 3500 and 3100 cm−1 is the absorption of the N–H
stretching vibration. Between 2100 and 2400 cm−1, there are triple bonds and accumulated
double-bond regions. The stretching vibration zone of the carboxyl group C=O is located
between 1630 and 1680 cm−1. C–H out-of-plane vibration bending occurs at 670–880 cm−1.
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To confirm the FTIR results and further determine the chemical composition or el-
emental composition of the samples, X-ray photoelectron spectroscopy (XPS) analyses
were conducted. The full scan XPS spectrum of the sample presented in Figure 2b showed
characteristic peaks of P2p, C1s, N1s, and O1s at 131.17 eV, 283.36 eV, 395.79 eV, and
529.71 eV, respectively. The fractions of C, N, O, and P in the sample were determined to
be 57.6%, 12.58%, 22.94%, and 6.88%, respectively. The C1s spectra indicated the presence
of C–C/C=C (284.6 eV), C–N (285.2 eV), and C–O (286.2 eV) bonds in the long afterglow
powder (Figure 2c). The N1s spectra showed three peaks at 399.5, 400.4, and 401.2 eV,
corresponding to C–N=C, N–(C)3, and N–H bonds, respectively (Figure 2d). The O1s
spectra had three peaks at 530.6, 531.6, and 532.4 eV, corresponding to P=O, C–OH/C–O–C,
and P-O bonds, respectively (Figure 2e). The P2p spectra exhibited two peaks at 133.1 and
133.6 eV, corresponding to P-O and P-N bonds, respectively (Figure 2f). These XPS results,
combined with the FTIR analysis, confirmed the presence of organic functional groups such
as –OH, C–H, N–H, C–O, C=O, C–C=N, P=O, and C-N on the surface of the prepared long
afterglow luminescent materials. These organic functional groups contribute to the good
water solubility of the material.

3.3. Optical Properties of RTPL Materials

The long afterglow luminous material exhibits different properties in its solution and
solid states. In natural light, the material appears brown in solution and light yellow in its
solid form. When exposed to UV lamp radiation, the dissolved material does not emit light,
while the solid state material exhibits blue fluorescence. When the UV lamp is turned off, the
solid state material emits green phosphorescence. Figure 3a displays the phosphorescence
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emission spectrum of the prepared long afterglow luminescent material. When excited
with UV light at 360 nm, the material emits phosphorescence, with the highest intensity at
544 nm. This indicates that the material possesses excitation-dependent phosphorescence
properties. Moreover, under observation with the naked eye, the solid-state long afterglow
luminescent material shows a clear and distinct green phosphorescence that lasts for
approximately 10 s after UV light irradiation has stopped, as shown in Figure 3b.
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As can be seen from Figure 4a, the phosphorescence intensity of the prepared long
afterglow luminescent materials exhibits a distinct three-exponential decay. It is commonly
accepted that this three-exponential decay is caused by complex jumps between multiple
energy levels, including the self-excitation and self-compounding of electrons. The shape
of the fluorescence decay curve is determined by energy transfer and electron leaping in
the material. In the case of long afterglow luminescent materials, the excited electrons can
remain in an excited state for an extended period after the excitation has ended before
releasing energy in a triple-exponential form [41]. Therefore, the prepared long afterglow
luminescent materials exhibit typical phosphorescence characteristics.

Crystals 2023, 13, x FOR PEER REVIEW 7 of 12 
 

 

can also be demonstrated in the TGA curves of RTPL materials (Figure 4b). In addition to 
FTIR and XPS, which are used to analyze the types and structures of chemical bonds 
formed by phosphoric acid and polyacetamide as raw materials in RTPL, the thermal sta-
bility of both materials also affects the thermal decomposition process of long afterglow 
luminescent materials, thus affecting the characteristics of thermogravimetric curves. The 
luminescent properties of nanomaterials are affected by many factors, such as the chemi-
cal composition, crystal structure, surface modification, etc. [41]. TGA curves can provide 
information related to these factors, such as the decomposition characteristics of materials 
at high temperatures, the decomposition of surface functional groups, and so on, which 
can influence the luminescent properties of materials [44]. The thermogravimetric process 
of RTPL materials can be divided into four stages. The first stage is between 25 and 100 
°C, which is mainly water evaporation. The second is between 400 and 460 °C, the main 
stage of weight loss. The rate of weight loss is about 75%, which is mainly caused by the 
decomposition of RTPL materials. The rate of weight loss is about 10% at the slow weight 
loss stage between 460 and 600 °C, which is related to the continuous pyrolysis of the 
remaining organic materials. The end stage of thermal decomposition is between 600 and 
800 °C. Additionally, phosphoric acid and PEI can form hydrogen bonds, which can in-
hibit the nonradiative leap of trilinear excitons [14]. Lastly, PEI and phosphoric acid can 
provide N and P elements, respectively, and N and P element doping has been shown to 
favor the n→π* leap, thus facilitating the effective filling of the tristate exciton by ISC 
(Figure 4c), ultimately leading to the room temperature phosphorescence phenomenon 
[14,28,45]. The reason why long afterglow luminescent materials fail to emit phosphores-
cence in aqueous solutions is that the trilinear excitons of organic compounds are suscep-
tible to nonradiative leaps due to the vibration and rotation of covalent bonds. Further-
more, phosphorescence can be easily quenched by the aqueous environment and dis-
solved oxygen [29,46]. 

 
Figure 4. Phosphorescence decay curves for long afterglow materials (a), thermo-gravimetric anal-
ysis (TGA) curves (b), and a schematic of the room temperature phosphorescence (RTP) emission 
mechanism (the absorption process is omitted and the width of the emission line is used to roughly 
represent the intensity of fluorescence or room temperature phosphorescence emission) (c). 

3.4. Information Encryption and Anti-Counterfeiting 
The prepared long afterglow luminescent material exhibits room temperature phos-

phorescent properties, making it suitable for various applications such as information en-
cryption and anti-counterfeiting. In particular, it can be used as a special anti-counterfeit-
ing ink, as illustrated in Figure 5. A solution of RTPL materials with a concentration of 
1mg/mL was prepared and evenly sprayed onto a hollow template with a pattern on the 
surface using a small spray bottle. After the template was dried, colored patterns were 
obtained (Figure 5a). When exposed to a 360 nm UV lamp, the ink emits blue fluorescence 
similar to conventional fluorescent ink (Figure 5b). However, upon turning off the UV 

Figure 4. Phosphorescence decay curves for long afterglow materials (a), thermo-gravimetric anal-
ysis (TGA) curves (b), and a schematic of the room temperature phosphorescence (RTP) emission
mechanism (the absorption process is omitted and the width of the emission line is used to roughly
represent the intensity of fluorescence or room temperature phosphorescence emission) (c).

The mechanism underlying the fluorescence and phosphorescence emission from solid-
state long afterglow materials is as follows. Initially, a PEI and phosphoric acid solution
undergoes dehydration, condensation, cross-linking polymerization, and carbonization
through microwave heating at approximately 200 ◦C. The microwave heating process
leads to the formation of a highly cross-linked chemical structure in the material, which
suppresses the nonradiative transition of triplet excitons. This phenomenon is known
as the crosslink-enhanced emission (CEE) effect [42]. The FTIR and XPS characterization



Crystals 2023, 13, 705 7 of 12

results demonstrate that the prepared long afterglow luminescent materials are abundant
in organic functional groups such as –OH, C–H, N–H, C–O, C=O, C–C=N, P=O, and C-N.
Some of these organic functional groups, such as C=O and C–C=N, are responsible for
the luminescence. The large number of organic functional groups formed on the surface
of RTPL materials indicate that the carbonization process is incomplete [43]. This can
also be demonstrated in the TGA curves of RTPL materials (Figure 4b). In addition to
FTIR and XPS, which are used to analyze the types and structures of chemical bonds
formed by phosphoric acid and polyacetamide as raw materials in RTPL, the thermal
stability of both materials also affects the thermal decomposition process of long afterglow
luminescent materials, thus affecting the characteristics of thermogravimetric curves. The
luminescent properties of nanomaterials are affected by many factors, such as the chemical
composition, crystal structure, surface modification, etc. [41]. TGA curves can provide
information related to these factors, such as the decomposition characteristics of materials
at high temperatures, the decomposition of surface functional groups, and so on, which
can influence the luminescent properties of materials [44]. The thermogravimetric process
of RTPL materials can be divided into four stages. The first stage is between 25 and 100 ◦C,
which is mainly water evaporation. The second is between 400 and 460 ◦C, the main
stage of weight loss. The rate of weight loss is about 75%, which is mainly caused by the
decomposition of RTPL materials. The rate of weight loss is about 10% at the slow weight
loss stage between 460 and 600 ◦C, which is related to the continuous pyrolysis of the
remaining organic materials. The end stage of thermal decomposition is between 600 and
800 ◦C. Additionally, phosphoric acid and PEI can form hydrogen bonds, which can inhibit
the nonradiative leap of trilinear excitons [14]. Lastly, PEI and phosphoric acid can provide
N and P elements, respectively, and N and P element doping has been shown to favor the
n→π* leap, thus facilitating the effective filling of the tristate exciton by ISC (Figure 4c),
ultimately leading to the room temperature phosphorescence phenomenon [14,28,45]. The
reason why long afterglow luminescent materials fail to emit phosphorescence in aqueous
solutions is that the trilinear excitons of organic compounds are susceptible to nonradiative
leaps due to the vibration and rotation of covalent bonds. Furthermore, phosphorescence
can be easily quenched by the aqueous environment and dissolved oxygen [29,46].

3.4. Information Encryption and Anti-Counterfeiting

The prepared long afterglow luminescent material exhibits room temperature phos-
phorescent properties, making it suitable for various applications such as information en-
cryption and anti-counterfeiting. In particular, it can be used as a special anti-counterfeiting
ink, as illustrated in Figure 5. A solution of RTPL materials with a concentration of 1 mg/mL
was prepared and evenly sprayed onto a hollow template with a pattern on the surface
using a small spray bottle. After the template was dried, colored patterns were obtained
(Figure 5a). When exposed to a 360 nm UV lamp, the ink emits blue fluorescence similar
to conventional fluorescent ink (Figure 5b). However, upon turning off the UV lamp, the
pattern emits green phosphorescence for several seconds (Figure 5c), which can be easily
distinguished by the naked eye.

Figure 5d–f demonstrates the use of long afterglow luminescent material ink as a
special encryption ink. Brown dye and RTPL materials were used to write on A4 printing
paper with a calligraphy pen. After drying, photographs were taken under natural light
and a 360 nm UV light, respectively. When using fluorescent ink with a similar color
on ordinary A4 paper to write “UN” and long afterglow luminescent material ink to
write “HAPPY”, observation with the naked eye of the two colors is almost the same.
However, when irradiated with an ultraviolet lamp, the blue fluorescent “UNHAPPY” can
be observed, and only when the ultraviolet lamp is turned off can the green phosphorescent-
encrypted information “HAPPY” be seen. This achieves the role of information encryption
and decryption, indicating that the produced long afterglow ink can be used as a special
encryption ink.
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Furthermore, the long afterglow ink exhibits particularly stable properties in the natu-
ral environment, as it is not affected by air humidity or temperature. The phosphorescent
light emitted by the prepared long afterglow material after UV excitation remains bright
for up to 30 days.

3.5. In Situ Long Afterglow Imaging of Celery

Although fluorescence imaging technology is widely used in biological imaging [47,48],
biological samples exhibit endogenous fluorescence (background interference) that may
overlap with the emission wavelength of the target fluorescence. Phosphorescence imaging
is performed after removing the excitation light, does not require real-time imaging, and has a
higher signal-to-noise ratio, which can suppress background fluorescence interference [5,22,30].
As shown by the optical data above, the prepared long afterglow luminescent materials
have excellent phosphorescent properties, which can be applied to biological imaging
experiments. Healthy celery stems were selected and cultivated in a solution of 1 mg/mL
of RTPL materials. The growth status of the celery was observed and recorded every 24 h.
After 3 days, a young and tender section was sliced by hand and pressed, dried, and
observed under a fluorescence microscope. After 24, 48, and 72 h, in the vascular bundles
of celery stems, a large amount of long afterglow materials is distributed, indicating that
nanoscale RTPL materials can function within celery (Figure 6a). This is supported by the
fact that the previous TEM confirmed the small particle size of RTPL materials. Since the
RTPL material solution is more viscous than the plant culture solution, their migration
behavior within the celery stem should be attributed more to active uptake than to passive
syphoning. We also discovered that the treated celery plants remained fresh and upright,
indicating that the solutions of the RTPL materials had low phytotoxicity and did not affect
the celery’s biological behavior in terms of continued survival and water uptake over the
course of the three-day experimental period. This may be because the surface of the long
afterglow luminescent material is rich in functional groups such as C=N, C=O, –OH, N–H,
and –CH, which can interact specifically with biomolecules. These interactions can promote
the dispersion and degradation of particles in the organism, thereby reducing the toxicity
and side effects of particles and increasing the stability of particles in the organism. Among
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them, bonds such as C=O, –OH, and N–H can interact with biomolecules through hydrogen
bonds or van der Waals forces, thereby improving the biocompatibility and biodegradability
of particles [49]. Functional groups such as hydroxyl and amino groups on the material
surface can improve the degradation and metabolism of polymer nanoparticles in the body
and reduce their damage to biological tissues [50]. As seen in the longitudinal section of the
celery stem (Figure 6b), the field of view contains numerous brown particulate materials,
indicating that the long afterglow luminescent material in the celery stem is not always
monodisperse. When the particle size of the material is below a certain threshold, it tends
to aggregate due to excessive surface tension, and the surrounding biological environment
may also be a factor in particle aggregation. After UV excitation, fluorescence micrographs
of celery stems were observed, and the images clearly revealed the internal structure of
celery stems due to the absence of background light and autofluorescence; the green tubular
image represents the vascular structure of celery stems (Figure 6b).
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4. Conclusions

Long afterglow luminescent materials that can emit blue fluorescence under UV
irradiation and room temperature phosphorescence for 10 s after stopping UV excitation
were synthesized via the microwave-assisted heating method. By characterizing the optical
properties, morphological structure, and organic functional groups on the surface of the
samples, the reasons why the long afterglow luminescent materials synthesized with PEI
and phosphoric acid exhibit room temperature phosphorescence under ambient conditions
were analyzed, concluding that this was due to the formation of hydrogen bonds and
the doping of N and P elements. The formation of hydrogen bonds can suppress the
nonradiative leap of trilinear excitons, and the doping of N and P elements facilitates the
n→π* leap, which promotes the inter-system crossover (ISC) and can effectively promote
the radiative leap luminescence of trilinear excitons. Finally, the potential applications of
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the prepared long afterglow luminescent material in the field of anti-counterfeiting were
demonstrated experimentally, and the clear long afterglow fluorescence of celery, which
can actively absorb the long afterglow luminescent material in a living state and transport
it through vascular bundles, also verified its feasibility as a bioimaging probe.
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