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Abstract: The crystal structure of 3,3′,5,5′-tetrabromo-4,4′-bipyridine (BrBipy, 1) was determined,
and the features of non-covalent interactions in solid state were investigated by theoretical methods.
Using BrBipy as a linker ligand, 1D coordination polymer {[Co(BrBipy)(NO3)2(CH3OH)2]} (2) was
obtained and characterized.
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1. Introduction

Metal organic frameworks, or MOFs, have been intensively studied in recent decades [1–9]
due to the wide range of their possible application areas, including chemistry and modern
materials science. Those include (but are not limited to) selective separation of gases [10–14]
and other substrates (usually organic, including isomers of xylene, benzene/cyclohexane
etc. [8,15–18]), luminescent sensors [19–21], etc. The lion’s share of MOFs are homo- or
heterometallic carboxylates, mostly aromatic [22–24].

In this field, the most important role is probably played by the design of the linkers,
which provides a diversity of possible non-covalent interactions with guest molecules in
pores and, therefore, selectivity (of sorption, sensor recognition, etc.). Commonly, the most
important contribution is given by hydrogen bonds, but in recent years there is a growing
interest in MOFs in relation to building blocks able to form other, less conventional, non-
covalent interactions, with halogen bonding (XB) a particular focus [25–27]. The number
of articles focusing on this research is still quite low [28,29], but we assume that this area
has great growth potential. Our suggestion is based on the fact that XB revealed itself as
an efficient additional supramolecular “tool” that can be successfully utilized for “fine
tuning” different physical and chemical properties of materials, including the abilities of
highly selective binding and recognition (as an example, see numerous works by Beer
et al. [30–34], which serve as a convincing illustration of this feature in sensor systems).

Very recently, we used DFT calculations to demonstrate that halogen-substituted
derivatives of 4,4′-bipyridine (4,4′-bipy) are able to act as efficient XB donors [35]. De-
spite the fact that syntheses of numerous representatives of this class were described be-
fore [36,37], the number of corresponding MOFs based on them is very low—in our opinion
undeservedly low. For bromo- and iodo-substituted bipys, the information about struc-
turally characterized MOFs is limited to few homo- and heteroleptic Ag(I) complexes [38].
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Moreover, the structures of many halogen-substituted bipys remain unknown, though they
have been successfully synthesized and characterized by other physical methods (NMR
etc.).

In this work, we decided to partially fill this gap. We determined the structure of
3,3′,5,5′-tetrabromo-4,4′-bipyridine (BrBipy) (1) and examined the features of non-covalent
interactions in the crystalline state using theoretical methods. Additionally, we obtained
coordination polymer based thereon—{[Co(Brbipy)(NO3)2(CH3OH)2]} (2).

2. Experimental Section

All chemicals were purchased from commercial sources (Brbipy precursors: Sigma-
Aldrich, metal salts and solvents: ZAO Soyuzkhimprom (Russia)) and were used as
purchased. The synthesis of Brbipy was based on the procedure described earlier [39].
The solvents were purified according to the standard methods. The crystals of 1 suitable
for XRD were grown by dissolving 1 in chloroform and waiting for the consequent slow
evaporation of the solvent.

2.1. Synthesis of 2

Co(NO3)2 (0.12 g, 0.65 mmol) and BrBipy (0.63 mmol) were mixed with 22 mL of
CH3OH and stirred until complete dissolution. The mixture was then transferred into a
flask, which was closed and kept at 100 ◦C for 48 h. Slow cooling of the solution resulted
in purple crystals of 2 that were suitable for X-ray diffractometry. The yield was 60%. For
C12H12Br4CoN4O8 calcd, %: C, 20.15; H, 1.69; N, 7.84; found, %: C, 20.21; H, 1.74; N, 7.78.

2.2. X-ray Diffractometry

The XRD data were collected at 100K on a Bruker D8 QUEST with PHOTON II
CCD diffractometer (Bruker AXS, Karlsruhe, Germany), using graphite monochromated
MoKα (λ = 0.71073 Å) radiation and ω-scan rotation. Data collection images were indexed,
integrated, and scaled using the APEX2 (1) or APEX3 (2) data reduction packages and
corrected for absorption using SADABS software. The structures were solved by direct
methods and refined using the SHELXT program [40]. All non-hydrogen atoms were
refined anisotropically. H atoms were calculated on idealized positions and refined as
riding atoms. Crystal data and refinement details are presented in Supplementary Materials.
The data were deposited to the Cambridge Structural Database (2251626 and 2251676).

2.3. Powder X-ray Diffractometry

XRD analysis of polycrystals was performed on Shimadzu XRD-7000 diffractometer
(CuK-alpha radiation, Ni—filter, linear One Sight detector, 0.0143◦ 2θ step, 2 s per step).
Plotting of PXRD patterns and data treatment was performed using X’Pert Plus software
(see Supplementary Materials).

2.4. Computational Details

The single point calculations based on the experimental X-ray geometries of 1 and
2 have been performed at the DFT level of theory using the dispersion-corrected hybrid
functionalωB97XD [41] with the help of the Gaussian-09 program package. The 6-31+G*
basis sets were used for all atoms. The topological analysis of the electron density distribu-
tion has been performed by using the Multiwfn program (version 3.7) [42]. The Cartesian
atomic coordinates for model structures are presented in Supplementary Materials. The
Hirshfeld surfaces analysis has been performed by using the CrystalExplorer program
(version 17.5) [43]. The normalized contact distances (dnorm [44]) based on Bondi’s van
der Waals radii [45] were mapped into the Hirshfeld surfaces.
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3. Results and Discussion

Compound 1 (see Figure 1) crystallizes in the triclinic space group. There are two
independent Brbipy molecules in the crystal; the angles between the aromatic rings are
close to 90◦ (84.56 and 86.11◦, respectively). The crystal packing is presented in Figure 2.
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Figure 2. Crystal packing in the structure of 1. Here and below: C and H grey, N deep blue, Br
olive-green.

A comparison of N· · ·Br distances with the sum of corresponding Bondi’s van der
Waal radii (Sw, 3.38 Å [45,46]) indicates the possible presence of non-covalent interactions,
but their systems are different for two non-equivalent Brbipy units. The XB involves either
only one N atom and two Br atoms of another aromatic ring or else both N and one Br
atoms (Figure 3), respectively. The N· · ·Br are 3.088, 3.150, and 3.160 Å (91.3, 93.2 and 93.5%
of Sw, respectively). It can also be assumed that there are Br· · ·Br interactions (Sw = 3.66 Å)
of two types (Figure 4; 3.459 and 3.603 Å, respectively). Interestingly, the overall system
of non-covalent interactions results in the assembly of a 3D supramolecular structure that
is porous.
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Previously, only one XRD dataset for 3,3′,5,5′-tetrahalo-4,4′-bipyridine (3-bromo-3′-
iodo,5-bromo-5′-iodo) was described [47]. In this case, the cell parameters are very similar
to those in 1, so it can be regarded as isostructural, but the system of hypothetic non-
covalent interactions is more sophisticated due to Br/I disordering. The structures of the
other halogen-substituted derivatives of 4,4′-bipy, such as 2,2′,3,3′,5,5′-hexabromo- [48],
also feature numerous N· · ·X and X· · ·X interactions.

In the structure of 2, Co(II) metal centers have ordinary slightly distorted (L-Co-
L = 86.49–93.51◦) octahedral geometry. The coordination environment consists of two
CH3OH (Co-O = 2.074 Å), two nitrate (Co-O = 2.098 Å), and two BrBipy ligands (Co-
N = 2.120–2.200 Å). The latter connect Co(II) into one-dimensional coordination polymer
(Figure 5). Interestingly, the angle between the aromatic rings of Brbipy is slightly different
(82.78◦) from those found in pure 1. There are also Br· · ·O interactions, which can be
regarded as halogen bonds (3.146 and 3.289 Å; Sw = 3.35 Å) connecting all Br atoms of
Brbipy with nitrate ligands of neighboring coordination chains (Figure 6) to give an ex-
tended supramolecular motif. Unfortunately, our primary attempts to prepare coordination
polymer of greater dimensionality (including 3D MOFs, which are particular cases of coor-
dination polymers we aimed to prepare) by adding carboxylate (terephthalate, isophthalate,
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etc.) linkers to the reaction mixture did not give any crystals suitable for characterization
by diffraction techniques. However, we do not exclude the possibility of preparation of
such compounds in the future.
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Figure 6. Br· · ·O interactions in the structure of 2.

As mentioned above, 2 represents the first case of a coordination polymer based on Br-
or I-substituted derivatives of 4,4′-bipy with metal other than Ag(I), which makes direct
comparison of its structure with previously reported ones rather problematic. However,
there are numerous examples of complexes bearing {Co(NO3)2} unit as well as other bipy
derivatives (in 1:1 or 1:2 ratio) featuring one- or two-dimensional geometry [49–53]. The
key bond lengths in these structures are, in general, similar to those found in 2.

The element analysis data agree very well with theoretically calculated values. In-
terestingly, the powder X-ray diffractometry data indicate some impurities (there are the
target phases and some by-products), which, in our opinion, can be polymorphs.

To examine the nature and approximately estimate the energies of halogen bonds
Br· · ·N, Br· · ·Br and Br· · ·O in 1 and 2, we performed DFT calculations as well as the topo-
logical analysis of the electron density distribution (ωB97XD/6-31+G*, see Computational
details and Supplementary Materials) for model structures. Results are summarized in
Table 1; visualization for halogen bonds Br· · ·N, Br· · ·Br and Br· · ·O in 1 and 2 is shown
in Supplementary Materials.
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Table 1. Values of the density of all electrons—ρ(r), Laplacian of electron density—∇2ρ(r) and
appropriate λ2 eigenvalues, energy density—Hb, potential energy density—V(r), Lagrangian kinetic
energy—G(r), and electron localization function—ELF (a.u.) at the bond critical points (3, −1),
corresponding to halogen bonds Br· · ·N, Br· · ·Br and Br· · ·O in 1 and 2, and estimated strength for
these interactions Eint (kcal/mol).

Contact * ρ(r) ∇2ρ(r) λ2 Hb V(r) G(r) ELF Eint **

1

Br· · ·N 3.088 Å 0.012 0.040 −0.012 0.002 −0.007 0.009 0.048 2.5

Br· · ·N 3.150 Å 0.011 0.036 −0.011 0.002 −0.006 0.008 0.046 2.2

Br· · ·N 3.160 Å 0.011 0.034 −0.011 0.001 −0.006 0.007 0.041 2.2

Br· · ·Br 3.459 Å 0.010 0.032 −0.010 0.001 −0.005 0.006 0.040 1.8

2

Br· · ·O 3.146 Å 0.009 0.031 −0.009 0.002 −0.005 0.007 0.024 1.8

Br· · ·O 3.290 Å 0.007 0.024 −0.007 0.001 −0.004 0.005 0.017 1.5

* The Bondi’s van der Waals radii for Br, N, and O atoms are 1.83, 1.55, and 1.52 Å. ** Eint = 0.58(−V(r)) (this
correlation between the interaction energy and the potential energy density of electrons at the bond critical points
(3, −1) was specifically developed for halogen bonds involving bromine atoms [54]).

The QTAIM analysis of the model structures (coordinates of atoms were taken from
XRD data and used “as is”, i.e., without optimization of geometry) indicates that there are
bond critical points (3, −1) for halogen bonds Br· · ·N, Br· · ·Br and Br· · ·O in 1 and 2, re-
spectively. The key characteristics (magnitude of the electron density (0.004–0.012 a.u.), val-
ues of the Laplacian of electron density (0.011–0.040 a.u.), energy density (0.000–0.002 a.u.),
and values of electron localization function (0.014–0.048 a.u.)) in these bond critical points
(3, −1), as well as the energies of examined contacts (0.7–2.5 kcal/mol), are quite usual
for noncovalent interactions involving bromine atoms in similar chemical systems. As
follows from the analysis of the balance between G(r) and V(r) at the bond critical points (3,
−1) for halogen bonds Br· · ·N, Br· · ·Br and Br· · ·O in 1 and 2 (viz. −G(r)/V(r) ≥ 1), the
covalent contribution in these interactions is negligible [55]. The sign of λ2 can be used to
see whether the interaction is bonding or nonvonding [56,57]; in all cases examined within
this study, the halogen bonds Br· · ·N, Br· · ·Br and Br· · ·O are attractive.

To see which sort of interatomic interaction gives the major contributions in the forma-
tion of crystal packing, we performed Hirshfeld surface analysis for the X-ray structures
1 and 2 (Table 2, Figure 7). These data demonstrate that in both cases, crystal packing is
determined predominantly by interatomic contacts of Br–H type.

Table 2. Main partial contributions of different interatomic contacts to the Hirshfeld surfaces of X-ray
structures 1 and 2.

Structure Contributions of Different Interatomic Contacts to the Hirshfeld Surfaces

1 Br–H 34.2%, Br–Br 17.6%, N–H 11.1%, Br–C 10.9%, Br–N 8.3%, C–H 7.1%, H–H 6.3%,
N–C 2.5%, C–C 1.9%

2 Br–H 31.2%, O–H 23.3%, Br–O 11.6%, H–H 9.7%, Br–Br 7.0%, Br–C 5.4%, C–H 3.0%,
O–C 2.3%, Br–N 1.9%, O–N 1.4%, Co–N 1.3%, N–H 1.1%, O–O 0.5%, Co–H 0.1%
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4. Conclusions

To conclude, we demonstrated that bromine-substituted derivatives of 4,4′-bipyridine
can, on the one hand, be regarded as promising building blocks for design of supramolecu-
lar systems based on halogen bond formation, and, on the other, they can, as expected, act
as linkers for the design of coordination polymers. However, we isolated only one example,
and it is one-dimensional, but we can nonetheless expect that other geometries, including
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