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Abstract: The electronic and optical properties of three types of aluminum phosphide bilayers are
examined using density functional theory. The results indicate that they all possess proper direct
gaps, which exhibit a rich variety of behaviors depending on the strain. The band gaps of these
aluminum phosphide bilayers could be easily tuned in the energy range from 0 eV to 1.9 eV under a
wide range of biaxial strain. Additionally, band gap transitions between direct and indirect types are
found when the external strain applied on them is changed from −12% to 12%. In addition, it was
found that these AlP bilayers show strong light-harvesting ability for the ultraviolet light range of
the solar spectrum (400–100 nm). The results obtained here indicate that these aluminum phosphide
bilayers may have significant potential applications in future nanoelectric fields.

Keywords: aluminum phosphide; electronic property; biaxial strain; heterojunction; first-principles calculation

1. Introduction

Graphene is the first example of two-dimensional (2D) single-layer material, which
has opened a new window to nanostructure materials [1,2]. From graphene, a large number
of new two-dimensional materials have been synthesized, and the new two-dimensional
material family is becoming increasingly large and prosperous. Owing to the electron
confinement effect and the absence of interlayer interaction, 2D materials usually differ
significantly from their bulk counterparts [3–5]. They also have completely different novel
properties, such as electronic structure, optical properties and mechanical properties. The
unique combination of excellent physical and chemical properties of 2D materials has
aroused enormous attention, and many freestanding monolayer crystals, such as hexagonal
BN, transition metal dichalcogenides, antimonene, etc., were systematically studied, leading
to various applications [6–8]. The design and development of nanodevices based on new
2D materials promote the rapid development of nanoelectronic technology. It is important
for people to design and synthesize novel 2D crystals, and further explore new applications
in future nanoelectronic fields.

Aluminum phosphide (AlP) is a typical III–V semiconductor with a proper band
gap [9]. In the periodic table, it is in the row next to boron nitride; however, there is
relatively little research on it. Its bulk form has many excellent optoelectronic properties
and shows magnetic properties after doping of Cr or Ga atoms [9,10]. It has been used to
manufacture nanostructure devices, for example, detectors, diodes, spintronics, etc. [10–12].
Novel electronic and magnetic properties of AlP are induced through doping. Therefore,
it is also a promising material for new nanoelectric devices [13–15]. As the isoelectronic
counterpart of silicone, low-dimensional AlP materials have attracted the interest of many
researchers [16–19]. For example, Tong et al. theoretically and firstly described two 2D
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single-layer structures of AlP structures (T-structure AlP and V-structure AlP) and their
common electronic properties [17]. Hu et al. deeply studied the geometric configurations
and electronic properties of V-structure AlP (V-AlP) using first-principles calculation [19]. It
is reported that external strain and layer stacking can both be used to modify the geometric
configurations as well as the optoelectronic property of the V-AlP monolayer. The V-AlP
monolayer belongs to the space group Pmn21 and from the top view it has inequilateral
hexagonal rings. In a vertical orientation, it resembles a large buckle. The T-AlP monolayer
belongs to the space group P4/nmm and it has a layered structure. The V-AlP monolayer
has been found to be stronger than the T-AlP monolayer [18,19]. These AlP monolayers
are new 2D semiconductor materials with wide potential application prospects in the near
future. As new 2D materials, their properties can be regulated through a variety of physical
means, such as doping, defect engineering, stress, electric field, van der Waals stacking
and chemical modification [19]. Through van der Waals stacking, especially heterojunction
stacking, new physical characteristics different from their constituent units can be induced.
At the same time, they have the advantages of their constituent units. Homogeneous
van der Waals stacking can also induce new properties. As a simple example, graphene
multilayer and monolayer have different infrared light absorption intensities; therefore, in
the field of physical therapy, single-layer graphene will be used, and the industrial field
may use more than two layers of graphene [2].

As new 2D materials, AlP monolayers provide new building units for van der Waals
nanostructures. In experiments, phosphorene-graphene hetero-bilayer structures have
already been synthesized and they possess an intrinsic Schottky contact at the photonic
crystal interface, in which the Schottky barrier can be modulated by strains and electric
fields. Subsequent to this progress, it is natural to explore hetero-systems composed of
T-AlP and V-AlP. Here, we perform comprehensive investigation on the structures and
properties of V-AlP/V-AlP, T-AlP/T-AlP and T-AlP/V-AlP bilayers. This study offers new
insights into the optoelectronic properties of AlP bilayers through strain engineering, which
can be exploited in the design of new optoelectronic devices based on 2D AlP materials.

2. Methods

All the crystal structures of AlP bilayers are optimized before calculating their material
properties. The calculations of the electronic properties of AlP bilayers are performed in
CASTEP [20]. The Perdew–Burke–Ernzerhof functional and the Heyd–Scuseria–Ernzerhof
hybrid functional are both used, and in the following they are labeled as PBE functional
and HSE06 functional, respectively [21–24]. The vacuum region adopted is greater than
20Å. The van der Waals (vdW) calculation is performed based on the Tkatchenko–Scheffler
approaches [25]. The basis set of valence electronic states is set to be 3s2 3p1 for Al and
3s2p3 for P, respectively. The kinetic energy cutoff for the plane–wave expansion is set
to 1000 eV. The energy convergence criterion was set to 10−7 eV. All the structures were
relaxed until the largest forces were less than 10−5 eV/Å. The definitions of cohesive energy
and biaxial uniform strain are the same as in reference [19].

3. Results and Discussions
3.1. Structural Properties

The crystal structures of the AlP bilayer after full relaxation are shown in Figure 1. The
characteristic parameters of the 2D AlP bilayers (for comparison, the parameters of two type
AlP monolayer are also provided) are listed in Table 1. For abbreviation, the three types
of AlP bilayers, T-AlP/V-AlP, T-AlP/T-AlP and V-AlP/V-AlP, are indicated by T/V-AlP,
T-AlP and V-AlP, respectively, in the following. Stacking orders can significantly influence
the energy band gap of bilayer van der Waals crystal. It is also necessary to research
the influence of layer stacking order on the energy band gap of the AlP bilayers. In the
AA-stacking pattern, the two AlP sheets are aligned without any rotation or displacement.
For the AB-stacking pattern, the two AlP sheets shift along the lattice vector for a distance
of half a cell. We optimized the bilayers of V-AlP and T-AlP in the AA and AB stacking



Crystals 2023, 13, 597 3 of 12

orders. It was found that different stacking patterns cause almost no difference in structural
parameters (lattice constants, bond lengths, etc). Interestingly, it was found that AA stacking
of both V-AlP and T-AlP bilayers is energetically favorable for their lower total energy,
which are, respectively, 16.7 meV and 11.6 meV per atom lower than those of AB-stacked
layers. Therefore, in the following section, the AlP bilayer structures are formed by vertical
AA stacking with weak interlayer vdW interaction [19,25].
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The distance λ (Å) between the upper layer and the lower layer is defined by the vertical distance 
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Figure 1. The geometry structures of (a) T-AlP; (b) V-AlP and (c) T/V-AlP bilayers. The two symbols
a and b are lattice parameters. The symbols λ and ∆ represent vertical distances between the inner-
and outer-layer atoms respectively.

Table 1. The parameters of the 2D AlP crystals: lattice parameter (a and b), average bond lengths (l),
cohesive energy (Ecoh) and band gap (Eg). The unit of energy is electron volts (eV), and that of length
is angstroms (Å). Thickness ∆(Å) is defined by the vertical distance and it is shown in Figure 1. The
distance λ(Å) between the upper layer and the lower layer is defined by the vertical distance between
the lower- and upper-layer atoms in these 2D material models, as is also shown in Figure 1.

Model a, b(Å) l ∆ λ Ecoh Eg

V-AlP monolayer a = 3.81, b = 5.68 2.32 2.2 — −5.12 2.62
T-AlP monolayer a = b = 3.91 2.43 2.9 — −5.35 0.97

V-AlP bilayer a = 3.81, b = 5.68 2.34 6.2 1.6 −5.00 1.86
T-AlP bilayer a = b = 3.89 2.27 8.8 3.6 −4.85 1.29

T/V-AlP bilayer a = 3.85, b = 28.4 2.37 8.6 3.4 −4.94 0.86

To obtain the most stable bilayer structures of AlP, we examine the total energy of the
systems with various distances between the two layers, as shown in Figure 2. It is found
that the distance between the two layers of the three most stable vdW bilayer structures are
3.4 Å, 3.6 Å and 1.6 Å, respectively. The lattice constants’ mismatch of the T-AlP and V-AlP
in the T/V-AlP bilayer crystal is below 1.5%, which is tolerable. The vertical distances
between the two layers (distances between the two dashed lines in Figure 1) are 3.4 Å,
3.6 Å and 1.6 Å respectively, which are in consistent with the vdW interactions. In these
stable vdW bilayer systems, the two layers of AlP are combined with each other via vdW
interactions. To examine the kinetic stabilities of these three types of AlP bilayers, their
cohesive energy values are calculated and compared.
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Figure 2. The total energy of the three systems versus the interlayer distance. (a) The case for T/V-AlP
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As shown in the cohesive energy values in Table 1, it was found that all the AlP bilayers
have high thermal stability, which is indicated by the negative values (the values are −4.94,
−4.85 eV and −5.00 eV for the T/V-AlP, T-AlP and V-AlP bilayers, respectively) [26]. The
thermal stability of V-AlP is slightly better than that of the T/V-AlP and T-AlP bilayers.
The cohesive energy of the blue phosphorene monolayer is −5.18 eV, and it almost equals
these AlP bilayers [27]. The thickness of the AlP monolayer and bilayers are shown and
compared in Table 1. It is found that the thickness value of the T/V-AlP bilayer is between
those of the T-AlP bilayer and the V-AlP bilayer, and the thickness of the V-AlP bilayer is
30% thinner than that of the T-AlP bilayer. The average bond length of the V-AlP monolayer
is 0.02 Å shorter than that of the V-AlP bilayer, while the average bond length of the T-AlP
monolayer is 0.16 Å longer than that of the T-AlP bilayer. Of the three AlP bilayers, the
average bond length of the T/V-AlP bilayer is the longest, and the average bond length of
the T-AlP bilayer is the shortest.

3.2. Electronic Properties

The band structures of these AlP bilayer systems are calculated in detail, as shown
in Figure 3. As shown in Figure 3a,b, the direct band gaps (the cyan arrows) of 1.29 eV
and 1.86 eV are obtained for the T-AlP and V-AlP bilayers, respectively. As shown in
Figure 3c, the indirect band gap of 0.86 eV is obtained for the T/V-AlP bilayer. The indirect
band gap characteristic of 2D material is a well-known shortcoming of their application in
optoelectronic devices. Therefore, the electronic properties of T/V-AlP bilayers are to be
modified by some physical method in a potential semiconductor for optoelectronic devices.

In Figure 4, the projected density of states (PDOS) of the AlP bilayers are shown.
The Mulliken layout analysis of is provided in Table S1. It is found that the valence band
edges for all AlP bilayers are contributed mainly by the p orbitals of P atoms. For the
conduction band edge, it is determined by s orbitals of Al atoms in T-AlP bilayer (As shown
in Figure 4a) and p orbitals of Al atoms in the V-AlP bilayer (As shown in Figure 4b, which
also exhibit no difference from their monolayers [18,19]). In Figure 4c, it is shown that the
s orbitals of Al atoms determine the conduction band edge in the T/V-AlP bilayer. The
electron density difference maps of the T-AlP, V-AlP and T/V-AlP bilayers are given in
Figure S1. This is in consistent with its low energy band gap compared with those of the
T-AlP and V-AlP bilayers.

External in-plain strain is proved to be an effective physical method to tune the
geometric configuration and common physical properties of 2D crystals [28,29]. However,
the electronic property of graphene is not sensitive to external strain [30]. Hence, on one
hand we are interested in exploring whether applied stress is effective in changing the
geometric configurations of AlP bilayers and their electronic properties. On the other
hand, we doubt whether the indirect-direct transition of energy band structure of the T-AlP
bilayer can be induced by external strain. Therefore, many computations are performed on
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these AlP bilayers under a wide range of biaxial strain. The variations in the band gaps of
T-AlP, V-AlP and T/V-AlP bilayers versus biaxial strain are plotted in Figure 5. In Figure 6,
under the axial strain applied along the lattice direction from 20% to +8%, the direct band
gap character of V-AlP is retained. The value of the direct band gap decreases with the
increasing tension and compression. As the biaxial tension strain increases, the VBM moves
from the G point to a near point and a direct–indirect band gap transition occurs when the
tension increases from +8% to +10%. Firstly, the biaxial strain effect on the T-AlP bilayer is
considered. As seen in Figure 5, under the biaxial strain from −12% to +12%, the band gap
of the T-AlP bilayer changes from 0.53 eV to 1.62 eV. The direct band gap character of the
T-AlP bilayer is retained only when the biaxial strain varies from −2% to +2%. As shown
in Figure 6, the band gap transition is induced by the competition of the band-edge states.
As shown in Figure 5, the band gap of the T-AlP bilayer can be tuned upmost to 1.62 eV at
HSE level. The biaxial strain can effectively change the direct band gap of the T-AlP bilayer
in a wide range from 1.06 eV to 1.55 eV. The band gap of the T-AlP monolayer is reported to
be easily tuned by biaxial strain, and the variation trend upon biaxial strain is analogous to
that of the T-AlP bilayer in Figure 5 [18]. The band gap variation trends of T-AlP monolayer
and bilayer both increase with biaxial strain, then begin to decrease with the increase in the
biaxial strain, but the turning point of the former is −5%, and that of the latter is −4%.
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represent the direct band gaps of T-AlP and V-AlP materials, and the diagonal arrow in (c) represents
indirect band gap of the T/V-AlP heterojunction. The horizontal dotted line represents Femi level
and the light green areas denote the bandgap.

Secondly, the influence of external biaxial strain on V-AlP is researched in detail. It can
be seen from Figures 5 and 7 that the band gap of the V-AlP bilayer changes from 0.9 eV
to 1.9 eV (the blue arrows). The electronic band structure of the V-AlP bilayer is retained
when the biaxial strain varies from −12% to +10%. The biaxial strain can change the direct
band gap of the V-AlP bilayer in a large range from 0 eV to 1.9 eV. However, in the same
biaxial strain range (from −12% to +12%), the direct band gap of the V-AlP monolayer can
change in a different range from 0 eV to 2.6 eV [19].



Crystals 2023, 13, 597 6 of 12Crystals 2023, 13, 597 6 of 13 
 

 

 
Figure 4. The PDOS of (a) T-AlP, (b) V-AlP and (c) T/V-AlP bilayers. The vertical dotted line 
represents Femi level. 

External in-plain strain is proved to be an effective physical method to tune the 
geometric configuration and common physical properties of 2D crystals [28,29]. 
However, the electronic property of graphene is not sensitive to external strain [30]. 
Hence, on one hand we are interested in exploring whether applied stress is effective in 
changing the geometric configurations of AlP bilayers and their electronic properties. On 
the other hand, we doubt whether the indirect-direct transition of energy band structure 
of the T-AlP bilayer can be induced by external strain. Therefore, many computations are 
performed on these AlP bilayers under a wide range of biaxial strain. The variations in 
the band gaps of T-AlP, V-AlP and T/V-AlP bilayers versus biaxial strain are plotted in 
Figure 5. In Figure 6, under the axial strain applied along the lattice direction from 20% to 
+8%, the direct band gap character of V-AlP is retained. The value of the direct band gap 
decreases with the increasing tension and compression. As the biaxial tension strain 
increases, the VBM moves from the G point to a near point and a direct–indirect band gap 
transition occurs when the tension increases from +8% to +10%. Firstly, the biaxial strain 
effect on the T-AlP bilayer is considered. As seen in Figure 5, under the biaxial strain 
from −12% to +12%, the band gap of the T-AlP bilayer changes from 0.53 eV to 1.62 eV. 
The direct band gap character of the T-AlP bilayer is retained only when the biaxial strain 
varies from −2% to +2%. As shown in Figure 6, the band gap transition is induced by the 
competition of the band-edge states. As shown in Figure 5, the band gap of the T-AlP 

Figure 4. The PDOS of (a) T-AlP, (b) V-AlP and (c) T/V-AlP bilayers. The vertical dotted line
represents Femi level.

Crystals 2023, 13, 597 7 of 13 
 

 

bilayer can be tuned upmost to 1.62 eV at HSE level. The biaxial strain can effectively 
change the direct band gap of the T-AlP bilayer in a wide range from 1.06 eV to 1.55 eV. 
The band gap of the T-AlP monolayer is reported to be easily tuned by biaxial strain, 
and the variation trend upon biaxial strain is analogous to that of the T-AlP bilayer in 
Figure 5 [18]. The band gap variation trends of T-AlP monolayer and bilayer both 
increase with biaxial strain, then begin to decrease with the increase in the biaxial strain, 
but the turning point of the former is −5%, and that of the latter is −4%. 

 
Figure 5. The band gaps of the T-AlP, V-AlP and T/V-AlP bilayers versus biaxial strain. The vertical 
dotted line corresponds to the unstressed condition. The biaxial strain step is 2% in our work. 

 
Figure 6. Changes in the electronic band structure for the T-AlP bilayer influenced by external 
strain of (a–f) ε = -12%, -8%, -4%, 4%, 8%, and 12%. Here and in the following, the vertical arrow 
represents the direct band gap, and the diagonal arrow represents the indirect band gap. The 
horizontal dotted line represents Femi level. 

Figure 5. The band gaps of the T-AlP, V-AlP and T/V-AlP bilayers versus biaxial strain. The vertical
dotted line corresponds to the unstressed condition. The biaxial strain step is 2% in our work.



Crystals 2023, 13, 597 7 of 12

Crystals 2023, 13, 597 7 of 13 
 

 

bilayer can be tuned upmost to 1.62 eV at HSE level. The biaxial strain can effectively 
change the direct band gap of the T-AlP bilayer in a wide range from 1.06 eV to 1.55 eV. 
The band gap of the T-AlP monolayer is reported to be easily tuned by biaxial strain, 
and the variation trend upon biaxial strain is analogous to that of the T-AlP bilayer in 
Figure 5 [18]. The band gap variation trends of T-AlP monolayer and bilayer both 
increase with biaxial strain, then begin to decrease with the increase in the biaxial strain, 
but the turning point of the former is −5%, and that of the latter is −4%. 

 
Figure 5. The band gaps of the T-AlP, V-AlP and T/V-AlP bilayers versus biaxial strain. The vertical 
dotted line corresponds to the unstressed condition. The biaxial strain step is 2% in our work. 

 
Figure 6. Changes in the electronic band structure for the T-AlP bilayer influenced by external 
strain of (a–f) ε = -12%, -8%, -4%, 4%, 8%, and 12%. Here and in the following, the vertical arrow 
represents the direct band gap, and the diagonal arrow represents the indirect band gap. The 
horizontal dotted line represents Femi level. 

Figure 6. Changes in the electronic band structure for the T-AlP bilayer influenced by external
strain of (a–f) ε = −12%, −8%, −4%, 4%, 8%, and 12%. Here and in the following, the vertical
arrow represents the direct band gap, and the diagonal arrow represents the indirect band gap. The
horizontal dotted line represents Femi level.
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Lastly, the variation in band structure of the T/V-AlP bilayer induced by biaxial strain
is studied. In Figure 5, under the biaxial strain, the band gap of the T/V-AlP bilayer changes
from 0.42 eV to 1.16 eV (the cyan arrows). The direct band structure of the T/V-AlP bilayer
is retained only when the biaxial strain varies from −12% to +1%. As the biaxial tension
strain increases, the VBM moves from the G point to a nearby point and a direct-indirect
band gap transition takes place when the tension increases from +10% up to +12%, which
is shown in Figure 8. The direct band gap of the T/V-AlP bilayer is changed from 0 eV to
1.16 eV by applying biaxial strain (the red arrows).
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Figure 8. Band structure change and the band edge shift under biaxial strain for the T/V-AlP bilayer
based on HSE functional. In the case of compression, figures (a–c) show direct band gaps (vertical
arrows), while in the case of tension, figures (d–f) show indirect band gaps (diagonal arrows).

3.3. Optical Properties

The optical properties can be described by the dielectric function as ε(ω) = ε1(ω) + iε2(ω).
The imaginary part of the dielectric function ε2(ω) is an important factor of 2D material, which
contains much information about the energy band structure, and various optical spectra can be
calculated from it. We plotted the dielectric functions and absorption coefficients, the reflectivity
and the extinction coefficient of the three types of AlP bilayers in Figure 9. It can be seen in
Figure 9a that the imaginary part of the dielectric function of AlP bilayers exhibits different
peaks; the corresponding photon energies are 2.93 eV, 4.70 eV for the T/V-AlP bilayer, 4.74,
7.56 for the T-AlP bilayer and 3.98 eV for the V-AlP bilayer, respectively. It is clear that the
peak of the T/V-AlP bilayer is much higher than the others. Compared with the V-AlP and
T-AlP bilayers, the first dielectric peak of T/V-AlP shows a slight shift (red shift), which
corresponds to the narrow band gap in Figure 3. It was found that ε2(ω) has two obvious
peaks except for the V-AlP bilayer. The dielectric peak of V-AlP first rises significantly,
arriving at its top value at an energy of 3.98 eV, and in the following it falls obviously. The
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absorption spectra of different AlP bilayers are shown in Figure 9b. The V-AlP bilayer
exhibits the highest absorption spectrum peak among the three types of AlP bilayers. It can
be seen in Figure 9b that the absorption function of AlP bilayers exhibits different peaks;
the corresponding photon energies are 5.23 eV for the T/V-AlP bilayer, 5.43 eV, 8.00 eV for
the T-AlP bilayer and 5.51 eV for V-AlP bilayer, respectively. These absorption peaks with
the energies of 5.23 eV and 8.00 eV lie in the ultraviolet (UV) range (10–400 nm), indicating
these AlP bilayers have potential applications in the UV and far-UV light detector fields.
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Figure 9. (a) The imaginary dielectric function; (b) the absorption spectra of the AlP bilayers. Curves
of different colors represent the optical spectra of the different types of AlP bilayer materials.

It can be seen in Figure 10a that the reflectivity of the AlP bilayers exhibits different
peaks; the corresponding photon energies are 3.4 eV and 6.0 eV for the T/V-AlP bilayer,
9.5 eV for the T-AlP bilayer and 8.3 eV for the V-AlP bilayer, respectively. From Figure 10b,
it is found that the extinction coefficient of AlP bilayers exhibits five different peaks; the
corresponding photon energies are 3.1 eV and 5.1 eV for the T/V-AlP bilayer, 3.0 eV and
5.8 eV for the T-AlP bilayer and 4.3 eV for the V-AlP bilayer, respectively.
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The remaining optical spectra of the AlP bilayers, such as loss function, refractive index
and conductivity, are shown in Figure 11. They are also important factors in evaluating
the AlP bilayers and their optical applications. From Figure 11a, it is found that the energy
loss peaks’ energy positions are in agreement with those of the reflectivity spectrum tail
edge. It is found that the energy loss of the AlP bilayers exhibits four different peaks; the
corresponding photon energies are 3.4 eV and 6.0 eV for the T/V-AlP bilayer, 9.5 eV for
the T-AlP bilayer and 8.3 eV for the V-AlP bilayer, respectively. The loss function spectrum
peaks and reflectivity spectrum peaks of these AlP bilayers all emerge at the energy position
of 6.0 eV, 9.5 eV and 8.3 eV. In Figure 11b, it can be seen that the real part of the dielectric
function in the T-AlP bilayer is negative in the range from 5.0 eV to 9.4 eV. Additionally,
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that of the V-AlP bilayer is negative in the range of 4.7–7.7 eV. Figure 11b also shows the
real dielectric spectrums of the T/V-AlP bilayer, and it can be found that the transition
between the dielectric property and the metallic property will happen when the photon
energy changes at approximately 4.0 eV and 10.0 eV.
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(d) the conductivity of the three types of AlP bilayers.

The refractive index and conductivity spectra of AlP bilayers are plotted in Figure 11c,d.
As shown in Figure 11c, the real refractive index of AlP bilayers are 1.34, 1.79 and 1.68 for the
T/V-AlP, T-AlP and V-AlP bilayers, respectively. It can be seen from Figures 10b and 11d
that the curves of the conductivity spectra of AlP bilayers have similar shapes to their
extinction coefficient spectra, and their peaks also have the same energy positions.

4. Conclusions

In summary, we have systematically studied the electronic band structure and optical
properties of the three types of AlP bilayers. The high stabilities of the three types of AlP
bilayers are proved by considering their binding energy. Interestingly, the T-AlP and V-AlP
bilayers both possess direct band gaps, which are useful in nanoelectronic devices. These
band gaps exhibit remarkably diverse behavior induced by changes to the biaxial strain
applied. Under biaxial strain, the electronic band structures and band gaps of AlP bilayers
can be tuned in different ranges. In particular, the indirect energy band gap of the T/V-AlP
bilayer is tuned into a direct band gap by applying biaxial compressive strain. The tunable
range of the direct band gap of the T-AlP bilayer is from 1.06 eV to 1.55 eV, that of the
T/V-AlP bilayer is from 0 eV to 1.16 eV, and that of the V-AlP bilayer is from 0 eV to 1.9 eV.
The AlP bilayers show novel optical properties, especially strong light absorption in the UV
range of the sunlight spectrum. Therefore, these 2D AlP bilayers have potential applications
in nanoelectronic fields. These results provide important reference and information for the
design of new nanoelectric devices based on AlP materials.
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