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Abstract: Determining the phase transition temperature of different types of liquid crystals based on
their structural parameters is a complex problem. The experimental work might be eliminated or
reduced if prediction strategies could effectively anticipate the behavior of liquid crystalline systems.
Neuro-evolutive modeling based on artificial neural networks (ANN) and a differential evolution
(DE) algorithm was applied to predict the phase transition temperatures of bent-core molecules based
on their resorcinol core. By these means, structural parameters such as the nature of the linking
groups, the position, size and number of lateral substituents on the central core or calamitic wings
and the length of the terminal chains were taken into account as factors that influence the liquid
crystalline properties. A number of 172 bent-core compounds with symmetrical calamitic wings
were selected from the literature. All corresponding structures were fully optimized using the DFT,
and the molecular descriptors were calculated afterward. In the first step, the ANN-DE approach
predicted the mesophase presence for the analyzed compounds. Next, ANN models were determined
to predict the transition temperatures and whether or not the bent-core compounds were mesogenic.
Simple structural, thermophysical and electronic structure descriptors were considered as inputs
in the dataset. As a result, the models determined for each individual temperature have an R2 that
varied from 0.89 to 0.98, indicating their capability to estimate the transition temperatures for the
selected compounds. Moreover, the impact analysis of the inputs on the predicted temperatures
showed that, in most cases, the presence or not of liquid crystalline properties represents the most
influential feature.

Keywords: artificial neural networks; differential evolution; bent-core molecules; liquid crystals;
melting; isotropization; crystallization; DFT

1. Introduction

Displaying mesophases with distinctive characteristics is a well-known property of
bent-core mesogens. Bent-core liquid crystals represent an essential class of achiral bent-
core (BC) compounds packed into bent directions, parallel aligned to each layer. The layers
present spontaneous polarisation, and the molecules can switch, a property especially useful
for electro-optical devices such as liquid crystal displays or tactile devices. After discovering
these remarkable materials’ electro-optical, ferroelectric and anti-ferroelectric responses [1],
the technological interest in BC liquid crystals has dramatically increased. So far, many
banana-shaped molecules with different structural combinations have been synthesized to
understand the relationship between chemical structure and mesomorphic behavior [1–6].
It has been found that structural parameters influencing the liquid crystalline properties
vary according to (1) the type of central core, (2) the overall length of the molecular structure,
(3) the symmetrical or asymmetrical calamitic wings, (4) the nature, position and orientation
of the linking groups, (5) the position, size, number and electronic (polarisable) properties of
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lateral substituents on the central core or calamitic wings and (6) the length of the terminal
chains. Furthermore, the presence of electrical switching properties in bent-core systems
depends not only on the shape of the molecules but also on other factors, such as local polar
moments and the extent of conjugation that affect the intermolecular interactions [7–10].

The following units have been reported as the central part of the bent-core molecules:
1,3-disubstituted benzene, 2,7-disubstituted naphthalene, 1,3-disubstituted biphenyl, or
heterocyclic units [11]. Of the 1,3-disubstituted benzene derivatives, resorcinol is the most
widely used central core unit [1,6,12–17].

To induce a certain degree of flexibility into BC structure, the linking groups are
inserted within the calamitic wings and vary from ester, azomethine, azo, double or
triple bonds, respectively [1,7,18]. At the same time, the linking units promote the liquid
crystalline behavior and prevent crystallization [11].

The introduction of different lateral substituents such as bromo [1,13], chloro [10,19–21],
fluoro [16,22–31], cyano [2,20,32,33], nitro [10,27] or methyl groups [10,20,21] to the central
core or the aromatic calamitic wings greatly influences the thermal and mesomorphic behavior.
Generally, the presence of lateral substituents on the central core or wings of the mesogens
lower transition temperatures, compared to their non-substituted analogues.

The development of smart materials based on liquid crystals with desired proper-
ties for a wide range of applications should be conducted more efficiently and planned,
knowing that a little change in the molecular structure could drastically influence their
physicochemical properties. Neural networks can be used to achieve this goal. Hence, a
neuro-evolutive modeling procedure combining artificial neural networks (ANNs) with
a differential evolution (DE) algorithm was applied to model the temperatures for the
considered class of liquid crystals. The concept is similar to our previous work [34], where
acceptable performance was obtained for some homopolymers’ glass transition tempera-
ture (Tg) with saturated carbon chain backbone modeling using a neuro-evolutive approach,
combining ANNs with bacterial foraging optimization. The ANNs were chosen because
of their ability to model highly non-linear multiple input–multiple output relations. The
flexibility and capability of ANNs to act as universal approximators allowed the application
of this model for various types of use cases.

Although there are studies that use ANNs and other artificial intelligence techniques
that model isotropization temperatures or liquid crystalline behavior of some bent-core
liquid crystals (e.g., decision trees and multivariate adaptive regression splines) [35,36],
nematic transition temperatures [37] or physical properties [38], to the authors’ knowledge,
the application of the neuro-evolutive technique for the determination of all phase transition
temperatures (melting, isotropization, crystallization) has not been reported before. From
the multitude of bio-inspired optimizers, the DE algorithm is a well-established approach
that has proven its efficiency for various problems from different areas.

The high number of bent-core liquid crystal compounds reported so far motivated
us to perform the current research and to determine the predictive model for transition
temperatures. This might substantially contribute to the synthesis of compounds with
targeted properties by avoiding the synthesis of non-mesomorphic compounds. This
work represents a proof of concept that aims to demonstrate the potential of artificial
intelligence techniques (ANNs and DE) in solving this critical issue. We focused on bent-
core compounds based on resorcinol with symmetric arms. The bent-core compounds were
chosen due to their electro-optical characteristics. The novelty of this work is supported
by the prediction of liquid crystalline properties and the development of a series of neural
models for all phase transitions of bent-core compounds based on resorcinol, regardless of
their mesogenic characteristics.

This work is organized as follows. Section 2.1 presents the data gathering and analysis
strategy, and details the structural, physical and energetic parameters considered inputs for
the ANN-based models. Section 2.2 details the ANN-DE modeling methodology. Section 3.1
describes the main characteristics of the gathered dataset, and Section 3.2 focuses on the
modeling and prediction strategy, with a detailed analysis of the impact of the considered
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features on the model output (Section 3.3). Section 4 concludes the manuscript. A list of
acronyms is presented at the end of the article.

2. Materials and Methods
2.1. Dataset

The modeling strategy considered in this work is data-dependent. Thus, the first step
consists in creating and analyzing the database containing the compounds with targeted
characteristics. The properties of the bent-core compounds are influenced by their structure;
moreover, if they are liquid crystals, they can be either monotropic or enantiotropic. Un-
fortunately, non-mesomorphic bent-core compounds are rarely mentioned in the scientific
literature because they are deemed irrelevant.

The resorcinol-based bent-core compounds that have reported experimental data
were chosen to create the database (works [2,10,19–21,32,33,39–44], with details in the
Supplementary Information Table S1). Subsequently, only the compounds with identical
arms connected to the central core and 5 benzene rings in their structure were considered.
The investigation was limited to pure compounds and not to mixtures. Since one of the
objectives of the current study was to predict the mesophase properties based on the
molecular structure, compounds that fulfill the previously mentioned selection criteria but
do not present mesomorphic properties were also included in the database (Table S1).

The general molecular formula of bent-core derivative compounds is presented in Figure 1.
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Figure 1. Schematic representation of the investigated bent-core compounds (X—linking group,
R—terminal flexible chain). Substituents can be found in positions S2, S4, S5, S6, S7 and/or S8.

After data collection and analysis, the final dataset contains 172 bent-core compounds.
The dataset consists of compounds with different linking group substituents on the central
core and/or calamitic wings and with different types (alkyl or alkoxy group) and lengths
of terminal chains. Linking group X is an azo (-N=N-), ester (-OC(=O)-) or imine (-N=CH-)
group (Table S1). The substituents are, depending on the case, -F, -Cl, -Br, -CN, -CH3, -OH
or -NO2, which can be found in the S2, S4, S5, S6, S7 and/or S8 positions.

The molecular structures corresponding to bent-core compounds in their most exten-
sive form were optimized. The geometry optimization of the compounds was performed
in the ground state at the density functional theory (DFT) level, using a B3LYP hybrid
functional [45–47] and 6-31G basis set. All theoretical quantum–chemical computations
were performed using the Gaussian 16 package. Finally, the descriptors were calculated
using the Materials Studio package, version 4.0 [48].

2.2. Modeling

To construct models for all phase transitions of a BC compound based on resorcinol,
whether or not it shows mesophase behavior, the first step of the developed strategy is
determining the presence of liquid crystalline properties. In addition, if the mesophase
property is identified, the neural model also determines the mono- or enantiotropic charac-
ter. Finally, all these aspects are introduced into a new feature (named F21) that, along with
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the other considered features (described in Section 2.1), represents the input for the models
that predict the individual transition temperatures from one phase to another.

Since finding the optimal neural network is a problem-dependent complex task,
applying neuro-evolution as a strategy to automatically determine the optimal parameters
represents an excellent alternative solution to the classical manual topology identification.
Neuro-evolution can evolve different ANN parameters (weights, topologies, activation
functions or groups of learning rules) [49]. In this work, the DE algorithm is applied
at the topology level to determine the number of hidden layers and neurons in each
hidden layer for a fully connected Keras sequential model. DE is a metaheuristic based
on the Darwinian principle of evolution [50]. It evolves a series of potential solutions
(that are initially randomly generated) until a stop criterion is reached. The evolutionary
process includes mutation (where a new population of mutants is created by applying the
differential operator), crossover (where a new trial population is formed from individuals
that combine characteristics from the corresponding parents belonging to the current
and the mutated populations) and selection (where the best individuals are selected to
create the new generation). Depending on the mutation and crossover operations and
how the parameters that control them are set, DE has many variants. In this work, a
DE/Best/2/Bin self-adaptive variant is used. This implies that the mutation strategy
consists of 2 differential terms added to the so-far best individual in the population, the
crossover version is binomial and the control parameters are set adaptively (by including
them in the individuals). More details regarding DE variants can be found in [51].

Since DE only performs a topology determination in this work, the individuals that
form the population contain the necessary encoded information (number of hidden layers
and neurons in each hidden layer). The activation function for the neurons in the hidden
layer is ReLU, while the output layer contains neurons with a linear activation function.
The training is performed in batches using Adam optimizer [52] with a 0.05 learning rate.
The loss function was selected as the mean squared error (MSE), and this metric is used to
compute the fitness function that indicates the fit of a specific individual. About 70% of the
data is randomly assigned to training and 30% to testing. From the training data, 20% is
designated for model validation. Before training, the features were standardized by scaling
them to the unit variance using the StandardScaler from the Scikit package. Thus, the entire
implementation of the neuro-evolutive algorithm was performed in Python, supported by
packages such as NumPy, Scikit, Keras and Pandas.

After identifying the best model for each considered case, the impact of the considered
features on the model output was analyzed using the SHapley Additive exPlanations
(SHAP) approach [53]. SHAP assigns to each feature of a black box model an importance
value corresponding to a particular prediction. The resulting dataset (with the exact
dimensions as the training subset) contains SHAP values. The sum of these SHAP values
can be used to reproduce the model’s predictions. Moreover, the SHAP values can reveal
how the input variables influence the predictions at individual instances and across the
entire subset.

3. Results and Discussions
3.1. Dataset Analysis

The features used in this work are simple ones. Even though many properties could
significantly influence the phase transitions, the current work focuses on easy-to-identify
parameters that do not need complex simulations and experiments.

With the help of the Material Studio software, a variety of structural (molecular weight,
lengths, bending angle), thermophysical (van der Waals volume, enthalpy of formation) and
electronic descriptors (HOMO-LUMO energies, dipole moment) of the minimum energy
structures were obtained (Table 1). In addition, the type of linking group or topological
information, such as substitution on the central core and/or wings, were also considered.
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Table 1. List of the features included in ANN with the type of descriptor and a short description.

ANN Feature Descriptor Definition, Scope or the Value of the Descriptor

F0 substitution at S6
Depending on the type of atom or functional group present, the value of
this feature is as follows: 1 (-H), 2 (-CN), 3 (-Br), 4 (-Cl), 5 (-F), 6 (-CH3), 7
(-OH), 8 (-NO2).

F1 substitution at S5 idem.
F2 substitution at S4 idem.
F3 substitution at S2 idem.
F4 substitution at S7 idem.
F5 substitution at S8 idem.
F6 types of linking group, X The value of F6 is as follows: 1 (- N=N-), 2 (-OCO-), 3 (-N=CH-).

F7 arm’s length (Å)
Length of the mesogen’s wings in the most extended conformation with
all-trans terminal alkyl chains.

F8 molecule length (Å)
Length of the long axe of mesogen, meaning the distance between the
terminal C of each wing.

F9 bending angle (◦) The angle between the two wings of the molecule.

F10 van der Waals volume (A3)
The sum of van der Waals atomic volumes, the real space occupied by
the atoms.

F11 van der Waals surface area(A2)
The contour obtained by the representation of the van der Waals radii of
all covalently bound atoms and the overlap of these where it
has happened.

F12 energy HOMO (eV) The energy of the highest occupied molecular orbital.
F13 energy LUMO (eV) The energy of the lowest unoccupied molecular orbital.
F14 dipole moment (Debye) Total dipole moment.

F15 enthalpy of formation (kcal/mol) The enthalpy change for the formation of 1 mol of a compound from its
component elements.

F16 molecular weight (a.m.u.) Size of the molecule.

F17 heat capacity (cal/K/mol) at 298 K The amount of heat to be supplied to an object to produce a unit change
in its temperature.

F18 entropy (cal/K/mol) at 298 K
A parameter that depends on the intrinsic energy, involving only
contributions of the individual atoms in the molecule, ignoring
interactions with atoms in other molecules [54].

F19 stiff segment length (Å)
Length of the mesogen’s wing from the central core to the flexible
terminal chain.

F20 flexible segment length (Å) The length of the flexible terminal chain in the most extended conformation.

Both types of terminal chains (alkyl or alkoxy group) did not have specific descriptors
as there are for the types and positions of the substituents. It was considered that terminal
chains, through their type and size, will influence descriptors such as the length of the
terminal chains, the length of the arm, the length of the flexible arm, the length of the
molecule and its mass.

The competition between steric effects, excluded volume and interaction in or between
layers leads to a particular ordering of the mesogens. A few reasons that influenced the
choice of the descriptions used as an entering date in the ANN are as follows: kinetic stabil-
ity is determined by the HOMO-LUMO energy gap; the enthalpy of formation indicates
the stability of the isomer; the dipole moment is a crucial parameter for the stability of
the mesophase; the length of the flexible terminal chains affects the organization and the
fluidity of bent-core molecules in the mesophase or the spacing of consecutive smectic
layers; and the molecular shape and, in some cases, the substituents influence the packing
of the molecules, minimizing the free volume. As the length of the stiff segment to that of
the flexible segment is a crucial parameter for rod-like mesogens, it was intended to know
how these descriptors could affect the mesomorphism of bent-core molecules.

Scheme 1 presents the considered temperatures that were modeled using the ANN-
DE strategy.
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Scheme 1. The outcome temperatures (T1–T6) of the ANN. T1 or T3 are known as the melting point,
T2 as the isotropization/clearing point and T5 or T6 as the crystallization point.

3.2. Modeling Results

After the dataset was gathered and analyzed, the ANN-DE methodology was applied
to model and predict the phase transition temperatures. The data used in each modeling
case varied depending on the available information. Thus, to select the exemplars used in
the training and testing datasets, the compounds for which the modeled output was not
present (N/A) were temporarily eliminated. For instance, there have been cases when the
T1 temperatures for enantiomers were reported in the scientific literature but not the T2
temperatures. Therefore, exemplars were retained for the T1 model evaluation but removed
for the T2 model evaluation. After that, the data was split into subsets and normalized, as
described in Section 2.2.

Given that the objective was to predict phase transition temperatures (Scheme 1)
without specifying whether or not mesophase properties are present, the first step of the
modeling procedure involved identifying these properties. Thus, the first determined ANN
was a multi-input–multi-output model that simultaneously predicted all T1-T6 temper-
atures (Scheme 1) based on which, through logical rules, the feature F21 was computed.
This feature is 0 if the compound does not have liquid crystalline properties, 1 if it is a
monotropic liquid crystal and 2 if it is an enantiotropic liquid crystal. Next, the neuronal
models with a single output were built for the temperatures present in Scheme 1. In this
case, the inputs for the ANN were those from Table 1, including the F21 one. Due to the
stochastic nature of DE, it was executed 10 times for each case considered, and the solution
with the highest fitness was chosen. The self-adaptive parameters are F (which controls the
mutation phase) and Cr (which controls the crossover step), and both of them have values
in the interval [0, 1]. The other parameters of the DE algorithm, population dimension and
the number of generations, were set manually to 20 and 50, respectively.

A preliminary study indicated that F21 highly influences the outputs of the ANN
models, and its elimination from the feature list raised the errors significantly. However,
directly predicting F21 using the remaining features proved difficult, as the preliminary
tests focusing on the direct application of different machine learning techniques (including
ANNs, support vector machines and decision trees) provided unsatisfactory results. As
such, the modeling and prediction of phase transition temperatures were performed in two
stages using a series of ANN models linked, as presented in Figure 2. The first phase aims
to predict F21 based on a general ANN model that focuses on simultaneously determining
all T1-T6 temperatures. Based on these general predictions and using logical rules, F21 is
predicted. In the second phase, the initial 21 features (F0–20) along with F21 are used to
determine individual models for each temperature.
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Figure 2. Modeling strategy for phase transition temperatures.

As previously mentioned, the modeling strategy’s first step is identifying the lack or
the presence of liquid crystalline properties corresponding to each compound, characterized
by features (Features 0–20 from Table 1). To this mean, a multi-input–multi-output ANN
model that estimates all six temperatures (Figure 2) is determined with the neuro-evolutive
approach. Next, F21 is calculated based on the predictions generated and a set of logical
rules. The best model selected in this case had two hidden layers with 9 and 20 neurons,
respectively. The mean absolute error (MAE) varied between 9.7 and 13.3 with correlations
from 0.81 to 0.96 in the training phase and between 22.02 and 32.24 with correlations
between 0.15 and 0.83 in the testing phase. The lowest performance was obtained for T6,
indicating that simultaneously considering all temperatures as outputs does not provide
acceptable results in some cases. Next, the temperature predictions performed in this case
were used in a logical rule to estimate F21 as follows: if T3 is 0 (tested as a lower value
than 20 to include a high margin for the prediction errors), then the corresponding value of
F21 is 2 (identifying the enantiotropic compounds with temperature of both cooling and
heating); if T5 is 0 (tested similarly as in the case of T3) then the class is 0 (corresponding to
the compounds without liquid crystalline properties); otherwise, F21 is 1 (corresponding to
monotropic compounds with only cooling temperature). This strategy was applied instead
of direct prediction due to the high errors introduced by the machine learning classifiers
tested. The logical rule approach led to a misclassification rate of 4.3% in the training phase
and 17.2% in the testing phase. In total, 8 exemplars from the 98 data points available (with
complete values for all 6 temperatures analyzed) were wrongly identified. From those
8 exemplars, 6 correspond to class 2 that were improperly assigned to class 1.

In the next phase, the identified feature F21 is considered in determining individual ANN
models for each temperature. Table 2 presents the main characteristics of the best models
determined for each temperature, where the topology is represented using a notation in the
form inp:H1:..Hn:out with inp indicating the number of inputs (corresponding to the model’s
features), Hi is the number of neurons in the hidden layer and out is the number of outputs.
In Table 2, RMSE represents the root mean squared error, and MAPE represents the mean
absolute percentage error. For the outputs where temperatures are not applicable (data set to
0), the MAPE has very high values. The reported MAPE is computed only for temperatures at
which experimental values are stated (see previous explanations regarding the exclusion of
N/A data). Lower values show better models for all three indicators, RMSE, MAE and MAPE
(Equations (S1)–(S3) in Supplementary Information).
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Table 2. The best ANN obtained for a single output modeling.

Output Topology RMSE Training MAE Training MAPE Training RMSE Testing MAE Testing MAPE Testing

T1 22:15:5:8:1 6.3506 3.41059 0.047475 10.4202 6.38020 0.09367
T2 22:15:01 6.0332 2.76686 0.029141 13.9295 7.12744 0.08375
T3 22:17:8:1 5.4194 2.84321 0.053734 12.9596 5.48218 0.13090
T1
T4 22:15:01 6.5939 4.46069 0.041046 13.4473 13.02247 0.13327

T5 22:19:5:9:1 5.6258 3.84472 0.056967 15.2732 11.31098 0.11245
T6 22:04:01 11.6825 2.86585 0.070765 18.6110 8.071391 0.20796

Figure 3 shows the experimentally measured data versus the ANN predictions for
the data in the testing phase. The statistical indicators show that the determined models
perform well for all solutions. In terms of correlations, the predictions for T1 and T2
have the highest R2 (>0.98), while the lowest was for T6 (R2 = 0.89). Even for the single
output models, T6 remains the most challenging temperature to model. This is because,
for many compounds, T6 = 0 (is not applicable or corresponds to classes 1 and 2) (from
160 compounds analyzed, only 15 have values greater than 0). For the testing data, as
Figure 3f shows, from 42 compounds with T6 = 0, for 6 cases, the predictions were greater
than 20, indicating a high error. For the other compounds, no outliers were identified.

The explanation for this somewhat reduced ANNs performance for T3 and T6 is related
to the fact that the compounds that exhibit these temperatures lack the characteristics of
mesophase. The dataset used in this work is gathered from the available literature, where
authors often do not mention the compounds that do not exhibit mesophases since they
are considered irrelevant. On the other hand, the compounds with T3, T4 and T5 show
monotropic behavior. This induced some difficulties for the neural network, given that
some compounds present higher errors in the prediction phase.

3.3. Feature Analysis

After that, the SHAP method was applied for each identified model to explain how
the predictions were made. Thus, the beeswarm plots were drawn and analyzed (Figures
S1–S6, Supplementary Information). In a beeswarm plot, for each feature, every instance
of the dataset appears as a colored point, red indicating relatively high values and blue
relatively low values. The values falling inside the positive range indicate an upward
tendency compared to the mean. Thus, the points on the scale with negative values indicate
that the feature will provide a forecast that is less than the mean. Finally, the features are
ranked from top to bottom based on the dataset’s mean absolute SHAP values.

The SHAP data for T1 (Figure S1, Supplementary Information) showed that the input
with the most significant influence on the model is Feature 21. This surprisingly high impact
of Feature 21 indicates that the model efficiently correlated the rise of T1 for enantiotropic
compounds compared with other types. Features 9 and 19 have opposite effects, so high
values for Feature 9 (bending angle) will predict lower values for T1, while high values for
Feature 19 (stiff segment length) will predict higher values for T1 than the absolute mean
value. Scrolling through the SHAP representation from top to bottom, it can be observed
that the importance of the descriptors in determining T1 decreases in the order Feature 9,
Feature 19, Feature 4, Feature 12, Feature 13, Feature 0, Feature 2 and so on. As a general
trend, T1 is influenced by bending angle, substitution in positions S7 and S4, and to a lesser
extent by that in S8. In addition, high importance of the energy factors in establishing the
mathematical model of T1 is observed. Focusing on Feature 4 (substitution in S7), it can
be seen that large values, i.e., substitution with OH, will result in large values of T1. In
contrast, small values, i.e., lack of a substituent, will decrease transition temperature T1.
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Figure 3. Experimental versus predicted temperatures (◦C) for phase transition (a) T1; (b) T2; (c) T3;
(d) T4; (e) T5; and (f) T6.

The SHAP analysis for the T2 model (Figure S2, Supplementary Information) reveals a
different order of the descriptors than that of T1, except Feature 21, which again has the most
significant influence. In this case, a higher relevance of the HOMO energy (Feature 12),
the type of bonding (Feature 6) and the molecular mass (Feature 16) can be seen. The
observations for Feature 21 are the same as for T1; its value 2 will lead to higher values of
T2; otherwise, the value of T2 decreases. If the type of linking group is analyzed (Feature 6),
the connection by imine (-N=CH-) group will increase the value of T2. Higher molecular
mass values (Feature 16) predict lower values of T2.

As for the T1 and T2 models, the SHAP data show that F21 is the most crucial feature
for modeling T3 transition temperature (Figure S3, Supplementary Information), maintain-
ing the behavior observed in T1 and T2. Then in descending order of descriptor relevance in
model prediction, that the following is found: HOMO energy (Feature 12), connection type
(Feature 6), substitution in position S2 (Feature 3), LUMO energy (Feature 13), substitution
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in S4 and S7 (Features 2 and 4) and entropy (Feature 18). High values of the HOMO energy
(Feature 12), as in T2, positively impact T3. On the other hand, if the connection (Feature 6)
is made through the imine (-N=CH-) group, then the predicted value of T3 will be lower.

Feature 21 significantly decreases its relevance in predicting T4 (Figure S4, Supplemen-
tary Information), ranking fifth compared to the previous cases. At first glance, the ranking
of the stiff segment length descriptor (Feature 19) on position 1 seems surprising. In fact,
the stiff segment length changes with the type of connection (Feature 6), a descriptor that
also ranks high in the SHAP analysis. Further, also crucial in predicting the T4 transition
temperature are the LUMO and HOMO energies (Features 13 and 12) and substitution in
S8 and S4.

For the T5 model (Figure S5, Supplementary Information), Feature 21 is no longer
in the first place. Instead, the most essential parameter this time is the LUMO energy
(F13), followed by Feature 21, rigid segment length (Feature 19), bending angle (Feature
9), enthalpy (Feature 15), substitutions in positions 4 and 5 (Features 2 and 1) and dipole
moment (Feature 14).

For the T6 model (Figure S6, Supplementary Information), Feature 21 is the most
influential input. In some descriptors, chaotic behavior is observed, such as in the bond
type (Feature 6) and the substitution at position S4 (Feature 2), where their large values
influence the temperature prediction positively and negatively, respectively. We attribute
this to implementation restrictions. It is noted that improving the quality of this model can
be achieved by introducing more information from the experimental level.

It was found that the influence of the features on the T1–T6 model output is different
from case to case. Although some features seem to have a higher importance in relation
to others, their order varies from model to model, showing that the considered inputs
distinctly influence the phase transition temperatures. These features are F21, substitution
at positions 4 and 7, HOMO energy, LUMO energy, dipole moment and type of linking
group, which can be correlated with the length of the rigid segment. It can be stated that
the phase transition temperatures are influenced by lateral substituents on the central
core in position 4 and by lateral substituents on the calamitic wings (in position 7), by the
dipole moment of the mesogens and by the type of linking group. According to the results
of the SHAP analysis, the flexible segment length, arm length, molecule length, van der
Waals area or volume and molecular weight had the most negligible impact on the phase
transition prediction. These descriptions are probably considerably more pertinent for a
certain mesogen’s self-assembly that generates a particular kind of mesophase.

The resulting ANN for all types of modeling performed in this work and the script that
allows generating predictions for different values for the considered features (corresponding
to other compounds than the ones used in this work) can be found at: https://elenadragoi.
ro/CV/Documents/ModelsAndScripts.7z (accessed on 1 February 2023). Through their use,
different predictions can be performed for additional compounds from the considered class,
thus directing the focus toward the ones with desired properties.

4. Conclusions

The phase transition temperatures of five-ring bent-core molecules derived from resor-
cinol were predicted using neural models developed by a neuro-evolutive approach based
on a differential evolution algorithm. The uniqueness of this work’s findings arises from
the fact that the identified models allow one to determine whether or not liquid crystalline
characteristics are present and predict all the possible transition temperatures. This problem
was challenging, bearing in mind the proposed strategy has never been tested until now.
The structural, topological, thermophysical and electronic descriptors were obtained after
the minimization of the structures at the DFT level. To reach the objectives set, two ANN
modeling steps were required. In the first phase, the type and behavior of BC compounds
were determined (property of liquid crystal, monotropic or enantiotropic behavior). All
these aspects were included in the F21 feature that was further used in combination with
the F0-F20 features in the second phase to determine the individual temperature models.

https://elenadragoi.ro/CV/Documents/ModelsAndScripts.7z
https://elenadragoi.ro/CV/Documents/ModelsAndScripts.7z
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About 70% of the data were randomly assigned to training and 30% to testing. From the
training data, 20% were designated for model validation. Regarding the analysis of features,
only their importance was analyzed, and no feature selection strategy was applied to reduce
the number of features. The idea was to use the same inputs for all temperatures and to be
able to make a comparison in the same conditions. The best performance (indicated by R2)
was obtained for T1 and the lowest for T6. Finally, the analysis of features’ influence on the
model predictions was performed using the SHAP method. The results showed that the
highest impact on all models except those for T4 (liquid–liquid crystal transition) and T5
(crystallization temperature) was for F21. Although some features seem more significant
than others, and their order varies from model to model, showing that the considered inputs
distinctly influence the temperature models. In addition, it was found that phase transition
temperatures are influenced by the lateral substituents attached to the outer ring and on the
central core, the dipole moment and the linking group type. According to the results of the
SHAP analysis, the flexible segment length, arm length, molecule length, van der Waals area
or volume and molecular weight had the least impact on the phase transition prediction,
being more critical in the packing interactions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cryst13040583/s1, Table S1: The molecular formula of the bent-core
compounds included in the database; Equations (S1)–(S3)—equations of the accuracy indicators; Figure
S1: the SHAP values for T1 model; Figure S2: the SHAP values for T2 model; Figure S3: the SHAP
values for T3 model; Figure S4: the SHAP values for T4 model; Figure S5: the SHAP values for T5 model;
Figure S6: the SHAP values for T6 model.
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