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Abstract: The photocatalytic degradation of Acid Red 26 was examined utilizing a graphitic carbon
nitride (g-C3N4) catalyst and a UV-A light in this study. We investigated how successfully the
photocatalytic approach removed Acid Red 26 from synthetic and actual municipal wastewater. Both
aqueous matrices allowed for extremely high clearance rates. Wastewater degraded at a slower rate
than the other matrices, this might be ascribed to the wastewater’s complicated chemical composition.
Using a liquid chromatography-mass spectrometry (LC-MS), the IPs in both synthetic and actual
municipal effluent were determined. The photocatalytic degradation mechanisms of Acid Red 26
are hypothesised to comprise oxidation, dealkylation, and methoxy group cleavage based on the
observed intermediate products (IPs). Using proven scavengers, we were also able to investigate
the role of reactive species in the degradation process and illustrate the significance of h+ and O2

•

in the reaction. Chlorococcum sp. and Dunaliella tertiolecta microalgae were also utilised to assess the
development of ecotoxicity. We observed low toxicity throughout the process when clean water was
used as the matrix, with no production of hazardous IPs. In the case of actual municipal wastewater,
there was an early rise in toxicity, which scientists believe was caused by the matrix’s chemical
make-up. To lower the toxicity, a heterogeneous photocatalysis was used, and at the end of the
treatment, nearly full detoxification was obtained.

Keywords: photocatalysis; g-C3N4; pharmaceuticals; Acid Red 26; reactive species; intermediate
products; ecotoxicity

1. Introduction

Aquatic pollution can be derived from chemicals that are released into water bodies
through various sources, such as industrial effluents, agricultural runoff, textile industry,
hazardous dye waste, and household waste. Chemical pollution can harm aquatic organ-
isms, ecosystems, and human health. Heavy metals, insecticides, medicines, and industrial
chemicals are some of the most frequent chemical contaminants encountered in aquatic
habitats. Heavy metals, such as mercury, lead, and cadmium are hazardous to aquatic
organisms and can build up in the food chain, causing biomagnification. Pesticides, such
as herbicides and insecticides, can harm aquatic creatures and disrupt the ecosystem’s
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balance [1,2]. Pharmaceuticals and personal care items, such as antibiotics and hormones,
can also infiltrate bodies of water and impact aquatic organisms, and the long-term impli-
cations of low-level exposure to these chemicals remain unknown. Industrial chemicals,
such as polychlorinated biphenyls (PCBs) and dioxins are persistent organic pollutants
that can linger in the environment for a long time and harm aquatic organisms and human
health [3,4]. Chemical pollution prevention and control necessitate effective management
and regulation of their use and disposal, the development and use of safer alternatives,
and the adoption of treatment technologies to remove these pollutants from bodies of
water. Furthermore, public awareness and education are required to decrease inappropriate
chemical disposal and encourage responsible environmental practices. Pharmaceutical and
textile chemical species enter aquatic systems in amounts ranging from ng/L to µg/L; yet,
even at such low levels, they pose a toxicological hazard to live species [5,6].

Azo dyes are synthetic dyes with one or more azo groups (-N=N-) as the chromophore,
giving them their distinctive colours [6]. They are frequently utilised as colourants in the
textile, food, cosmetic, and pharmaceutical industries. Azo dyes are poisonous, and some
of them can induce allergic responses or cancer; hence, their usage is strictly regulated in
many countries. Azo dyes contribute significantly to water contamination, particularly in
underdeveloped nations where laws are low or non-existent [7,8]. Azo dyes can linger in
the environment for a long time and are potentially hazardous to aquatic life. Moreover,
some azo dyes can degrade into aromatic amines, which are carcinogenic and may endanger
human health. To address the issue of azo dye pollution, some governments have imposed
restrictions on the use of these dyes and efforts to create safer and more sustainable
alternatives are ongoing [9–12].

Acid Red 26 is a synthetic azo dye that is widely used as a colorant in a variety of
industries, such as textiles, leather, paper, and food. Acid Red A, Acid Brilliant Scarlet 3R,
and C.I. 16150 are some of the alternative names for it. Acid Red 26 is a water-soluble dye
that is typically red to reddish-brown in colour but when combined with other dyes, it can
generate pink and orange shades [13,14]. Acid Red 26, similar to other azo dyes, has been
linked to environmental pollution and probable health hazards, and its usage is restricted
in several countries. Acid Red 26 is deemed environmentally harmful due to its ability to
produce contamination and harm to aquatic life. When released into bodies of water, it
might persist for long periods of time and may not decompose easily, potentially leading to
bioaccumulation in the food chain. Furthermore, Acid Red 26 may cause oxygen depletion
in bodies of water, which can result in the death of fish and other aquatic species. Many
countries control its usage and discharge into the environment in order to prevent or lessen
these negative consequences [15–17].

Acid Red 26 can be broken down in a variety of ways, including biological, chemical,
and physical processes. Biodegradation, for example, uses microorganisms to break down
the colour into less hazardous chemicals. Chemical processes, such as ozonation, advanced
oxidation, and reduction can also degrade the dye by destroying the azo link, which is
responsible for its colour [18–20]. Adsorption and membrane filtration, for example, can
remove colour from the water by trapping it on a surface or selectively permitting it to
pass through a membrane. However, the efficiency of these procedures is affected by a
number of parameters, including the starting dye concentration, the type of water matrix,
and the treatment circumstances [21]. As a result, while selecting a suitable degradation
method for Acid Red 26, these variables, as well as the potential environmental impact of
the degradation products, should be taken into account.

Acid Red 26 is photodegradable, which means it can be broken down into less dan-
gerous chemicals using light. Acid Red 26 photodegradation usually includes the use
of ultraviolet (UV) radiation, which can cleave the azo link, resulting in the production
of smaller, less complicated molecules [22]. The starting concentration of the dye, the
intensity and wavelength of the light, the presence of additional chemicals in the aqueous
matrix, and the kind and concentration of the photocatalyst all influence photodegradation
efficiency. While photodegradation can be a successful method for treating Acid Red 26
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in water, it should be used with caution due to the potential environmental impact of the
degradation products as well as the safety of the UV light and the photocatalysts [23].

A multilayer polymeric semiconductor, g-C3N4, is made up of carbon, nitrogen, and
hydrogen atoms that are metal-free. Because of its unusual electrical and optical properties,
it is a promising material for a variety of applications, such as photocatalysis, energy
conversion, and optoelectronics [24]. As g-C3N4 absorbs visible light, it is an effective
photocatalyst for the breakdown of organic contaminants and the creation of hydrogen
from water. Furthermore, g-C3N4 is stable, non-toxic, and simple to synthesise using
low-cost precursors, making it an appealing alternative to the standard photocatalysts,
such as TiO2 [25]. However, characteristics, such as its shape, crystallinity, and surface
qualities, which vary according on the synthesis method utilised, can have an impact on its
performance and stability.

Due to its unusual electrical and optical properties, g-C3N4 has been widely researched
as a catalyst for numerous chemical reactions, including photocatalysis. Additionally, g-
C3N4 can absorb visible light as a photocatalyst, allowing it to stimulate the breakdown
of organic contaminants, the creation of hydrogen from water, and other photo-driven
reactions [26,27]. Furthermore, g-C3N4 can operate as a heterogeneous catalyst for a
variety of chemical transformations under heat circumstances, including alcohol oxidation,
amination, and coupling reactions. Modifying the surface characteristics of g-C3N4 as a
catalyst, doping with other elements, or creating composite materials with other catalysts
or supports can all improve its efficacy as a catalyst. However, issues, such as a limited
catalytic activity, poor stability, and difficulty in large-scale synthesis remain, necessitating
additional study and development [28–31].

In addition, g-C3N4 has demonstrated considerable promise as a photocatalyst in
a variety of environmental and energy applications [28–32]. As a photocatalyst, g-C3N4
may absorb visible light, allowing it to enhance photo-driven processes, such as organic
pollutant degradation, hydrogen synthesis from water, and carbon dioxide reduction. The
use of g-C3N4 as a photocatalyst has a number of advantages, including non-toxicity, low
cost, and stability in ambient circumstances [33]. Furthermore, by altering its structure,
such as doping with other elements, its bandgap energy can be altered, which can improve
its photocatalytic performance [34]. However, the photocatalytic efficacy of g-C3N4 can be
influenced by parameters, such as crystallinity, shape, and surface characteristics, which
can vary depending on the synthesis process used [35]. Researchers have also investigated
the formation of g-C3N4-based composite materials with other photocatalysts or supports
to improve their photocatalytic efficiency. Overall, the use of g-C3N4 as a photocatalyst is
a promising field of research that has the potential to help develop sustainable and clean
energy systems [35].

When it comes to photodegradation of reactive azo dyes, ultraviolet (UV) radiation
outperforms visible light in several ways. As UV radiation has more energy than visible
light, it can more easily break the chemical bonds between the dye molecules and release
the dye. This improves its ability to decompose the colour into less hazardous chemicals.
The fact that UV light is absorbed by the dye molecules’ chromophoric groups promotes
photodegradation of reactive azo dyes. Additionally, because of its selectivity, the dye
may be degraded faster and with less energy lost due to unintended reactions. UV light
can quickly destroy reactive azo dyes, usually within minutes or hours, depending on the
strength of the radiation and the dye’s properties. Its rapid breakdown may reduce the
treatment’s duration and power requirements, making it less expensive [36]. There are
no waste products: As far as we know, UV photodegradation does not produce any toxic
by-products that could endanger wildlife or humans. This guarantees that the method
can be used without fear of polluting or contaminating the environment. To sum up, UV
radiation’s benefits make it a viable approach for the photodegradation of reactive azo
dyes, especially in industrial and wastewater treatment applications where vast quantities
of dye-contaminated water need to be treated rapidly and effectively [37,38].
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However, the ecotoxicity assessment of the photocatalytic treatment, identification of
the intermediate products (IPs), and use of g-C3N4 catalysts for AR-26 azo dye degradation
under different matrix environments have yet to be explored. The major goal of this study
was to see if a g-C3N4 catalyst could be utilised to photocatalyze the degradation of the
AR-26 azo dye in the presence of UV-A irradiation, and if so, what IPs were formed. The
toxicity was further assessed using the microalgae Chlorococcum sp. and Dunaliella tertiolecta.
Furthermore, the function of the reactive species in degradation was assessed.

2. Materials and Methods
2.1. Chemicals and Reagents

We obtained our azo dye Acid Red 26 from Loba Chemie (Mumbai, India). The photo-
catalyst in this case was graphitic carbon nitride (g-C3N4) [8,32]. The physical properties of
the graphite carbon nitride measured in the laboratory are tabulated in Table 1; these were
thought to be important for this study. As for the solvents, Fisher Chemical provided HPLC-
grade acetonitrile, isopropanol, methanol, and water (Mumbai, India). p-benzoquinone,
formic acid, Cyanobacteria BG-11 were provided by Freshwater Solution, and Guillard’s
(F/2) Marine Water Enrichment Solution was obtained from Sigma-Aldrich (Bangalore,
India). We used purified water and treated wastewater matrices. Table 2 lists some of the
properties of the wastewater measured in the laboratory. The remaining reagents were all
of analytical quality. Throughout the experiment, double-distilled water was used.

Table 1. Physical properties of graphite carbon nitride.

Sl. No. Property Value

1 BET Surface area 36 m2/g

2 particle size 30 nm

3 Energy gap (Eg) ~2.84 eV

Table 2. Treated wastewater characteristics.

Sl. No. Property Value

1 pH 7.5± 0.3

2 Conductivity 310.72 ± 10 µS/cm

3 Total suspended solids 1.88 ± 0.31 mg/L

4 COD 18.1 ± 1.89 mg/L

5 PO4
3− 3.87 ± 0.05 mg/L

6 SO4
2− 32.4 ± 1.44 mg/L

7 NO3
− 25.3 ± 0.77 mg/L

2.2. Photocatalytic Experiments

Experiments on photocatalysis were carried out utilising a setup that includes four
Philips black light tubes (with a peak emission of 356 nm). The photoreactor was a
250 mL cylindrical quartz cell. The 100 mL of reference sample and pollutant samples
were taken for the experiment. A typical experiment included the following parameters:
[AR-24]0 = 1 mg/L; [g-C3N4] = 300 mg/L. To reach the adsorption equilibrium, the sus-
pensions were maintained in the dark for 45 min prior to initiating the radiation. Under
these conditions, the actinometer potassium ferroxalate was utilised on a regular basis to
determine that the photon flux (I0) entering the solution was 1.1 ± 0.03 µEinstein/s [39,40].
The catalyst particles were collected and discarded using a PVDF membrane filter with
0.22 m pore size (Millex-GV).
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2.3. Scavenging Experiments

Scavengers, similar to isopropanol, p-benzoquinone, and methanol are frequently
used to identify reactive oxygen species (ROS) in chemical reactions. The ability of these
scavengers to quench or scavenge specific ROS can be evaluated by adding them at spe-
cific concentrations, and the contribution of each ROS to the degradation process can be
determined. In this case, isopropanol is frequently used to scavenge hydroxyl radicals
(HO•), p-benzoquinone for superoxide anion radicals (O2

•−), and methanol for positive
holes (h+). We can determine the relative contribution of each ROS to the degradation
by adding these scavengers at specified concentrations and evaluating the degradation
process. The contribution of hydroxyl radicals (HO•), superoxide anion radicals (O2

•), and
positive holes (h+) in the decomposition processes was explored by using scavengers, such
as isopropanol (0.1 M), p-benzoquinone (0.2 mM), and methanol (0.1 M) [41].

2.4. Analytical Methods

Using a Dionex (Make: Thermo Scientific, Waltham, MA, USA, Model: Ultimate 3000
UHPLC) equipped with an AcclaimTM RSLC 120 C18 capillary column, the amount of Acid
Red 26 in the sample was computed (Thermo Scientific, Waltham, MA, USA). The mobile
phase consisted of 0.15 mL/min of acetonitrile (80%) and distilled water containing 0.1%
formic acid (20%) at a constant flow rate. This detection was conducted at the maximum
pollutant λmax concentration.

2.5. HPLC/MS Analysis

The HPLC-MS is a useful analytical tool for analysing photodegradation products
in a variety of matrices, including environmental samples, polymers, pharmaceuticals,
and food. Photodegradation is the breakdown of molecules under the influence of light,
which can result in the formation of a variety of photoproducts. The HPLC-MS technique
is used to identify and quantify photodegradation products as well as to assess the degree
of degradation. The technique involves using high-performance liquid chromatography
(HPLC) to separate the photodegradation products and then using mass spectrometry
to detect the individual components (MS). Using an ion trap mass spectrometer (Bruker,
Billerica, MA, USA) attached to an HPLC/MS system (Cecil Instruments Limited, Bath,
BA2 9AP, London, UK) allowed us to identify the presence of IPs in the samples.

2.6. Algal Biotest

The bioassays were carried out on Chlorococcum sp. (strain SAG 22.83) and Dunaliella ter-
tiolecta (CCAP19/6B) under sterile conditions and constant lighting according to the OECD
201 protocol [35] (4300 lux). Freshwater (BG-11) and saltwater (F/2) algae were cultured.
The tests began with a consistent supply of logarithmic growth cells (1 × 104 cells/mL),
which was maintained by transferring stock algal cultures to conical flasks using the appro-
priate media (final volume 100 mL). At each stage, samples were collected and examined
in duplicate cultures for 96 h while being constantly stirred. The cells were counted using
a Neubauer haemocytometer. The growth rate (µ) and the percentage of the growth rate
inhibition were then computed. The data are presented in the form of a mean standard
deviation.

2.7. UV-Visible Spectrophotometric Analysis

The photodegradation of the dye can be monitored by measuring changes in the
absorbance spectrum of the solution over time. Typically, the absorbance of the dye at
a specific wavelength is measured at regular intervals, and the percentage degradation
of the dye is calculated based on the decrease in absorbance over time. The UV-Visible
spectroscopy is a useful technique for a photodegradation analysis of dyes because it is a
non-destructive, non-invasive, and highly sensitive method. Additionally, it is relatively
easy to perform, and the equipment required is widely available in many laboratories [42].
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The reaction mixture was pipetted out and analysed for composition at regular inter-
vals. To track the reaction development, spectrophotometric (Make: Systronics, Model:
118, Mumbai, India) measurements were obtained at the maximum of the reaction mixture
using a spectrometric quartz cell (1 cm in path length). As the reaction develops, the
absorbance of the reaction mixture decreases. According to the Beer–Lambert rule, a dye’s
absorbance is proportional to its concentration.

A = ecl

where e is the molar absorption coefficient and l is the absorption cell thickness. Given
that the molar absorption coefficient (e) and cell thickness (l) remain constant, there is a
linear relationship between the concentration of the dye in the reaction mixture and its
absorbance over time. The initial rate technique was used to investigate the kinetics of
these processes. The plane mirror technique was used to establish the initial reaction rate
(da/dt)i of each set, which entailed constructing a graph between the absorbance values at
matching periods and measuring the slope of the curve.

3. Results and Discussion
3.1. XRD

The g-C3N4 particles’, as prepared XRD patterns, are displayed in Figure 1. The g-C3N4
diffraction peaks are located at 8.1◦ and 25.5◦ for the (100) and (002) planes, respectively,
as shown in Figure 1. These two peaks are most likely caused by an interplanar gap
between the tri-s-triazine unit and the conjugated aromatic system [42,43]. This enabled
the synthesis of g-C3N4.
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3.2. TGA

The findings of a TGA examination of the behaviour of g-weight-change C3N4 are pro-
vided. The heating rate was 5 ◦C/min, and the temperature ranged from room temperature
to 700 ◦C. The first peak, induced by water and solvent desorption, developed between
100 and 300 degrees Celsius, as shown in Figure 2. The second peak temperature of 400 to
600 degrees Celsius is produced by the combustion of g-C3N4 in air. Even at the optimal
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testing temperature of 300 ◦C, the test results demonstrate that g-C3N4 was not broken
down.
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3.3. Photocatalytic Degradation Kinetics

Photodegradation, or the breakdown of organic molecules using ultraviolet (UV)
radiation, is a common approach for dealing with environmental toxins present in water
and air. The UV radiation photochemically reacts with the organic molecules, which may
lessen their toxicity by reducing their molecular weight. UV (ultraviolet) light is classified
into three wavelength ranges: UV-A (320–400 nm), UV-B (280–320 nm), and UV-C (280 nm)
(100–280 nm).

UV-A (ultraviolet-A) light is frequently used to produce photodeterioration for a
variety of reasons, including: (a) Accessibility: The most prevalent and readily available
type of UV radiation from the sun is ultraviolet A (UV-A). Artificial UV sources, such as UV
lights, can easily generate it, (b) UV-A has a stronger penetrating potential than the other
UV spectrum regions. Deeper penetration into the water or treated item results in a more
efficient photodegradation, (c) UV-A is less harmful to humans and the environment than
UV-B and UV-C. UV-C, for example, it is ideal for photodegradation but can harm humans
by causing skin and eye damage and polluting the environment, (d) As UV-A requires
less energy to produce than UV-B and UV-C, it is more cost-effective for industrial-scale
photodegradation, (e) UV-A light is a promising option for photodegradation applications
due to its accessibility, penetrating power, low environmental impact, and efficient energy
use.

Prior to researching the AR-26 photocatalytic degradation, the initial control exami-
nations (adsorption and UV photolysis) were performed in pure water, the findings are
shown in Figure 3. The equilibrium was attained after 30 min, and approximately 14% of
the AR-26 was eliminated utilising the adsorption studies. The UV-Vis spectra of AR-26
explains the little drop (~6.3%) in AR-26 caused by photolysis under UV-A light. Direct
photolysis under UV-A light was not expected under the conditions utilised since the AR-26
does not absorb at 356 nm (the maximum emission wavelength of the chosen irradiation
source).
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The findings of the examination of the g-photocatalytic C3N4 activity under a UV-A
source in both the pure water and treated wastewater are shown in Figure 4. According to
the photocatalytic analysis, when the g-C3N4 is exposed to light with an energy greater than
its bandgap (~2.844 eV), it becomes activated and creates a photo-induced electron-hole pair
(e− − h+) and other reactive species that are responsible for the destruction of the AR-26.
The AR-26 degradation kinetics (rate constants, half-lives, and correlation coefficients) are
presented in both matrices and are shown in Table 3. The experimental data was fitted
using pseudo-first order reaction kinetics. Both matrices achieved significant reductions
(Figure 4). The degrading percentages in pure water were around 86.0 after 60 min, while
in treated wastewater they were around 68.0 after 180 min [8,13].
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Table 3. (AR-26) photocatalytic degradation in pure water and effluent water: various kinetic
parameters (rate constants, correlation coefficients (R2), half-lives (t1/2)).

Matrix K × 10−2 (min−1) t1/2 (min) R2

Pure water 3.11 23.12 0.9524

Effluent water 0.72 99.12 0.9821

Pure water showed a faster rate of deterioration than the effluent water. Specifically,
the half-life of the AR-26 in pure water was determined to be t1/2 = 22.84 min minutes at a
rate constant of k = 3.05 × 10−2/min. A significantly slower depreciation of the AR-26 was
seen in the effluent water (k = 0.7 × 10−2/min and t1/2 = 98.91 min).

This pattern demonstrates the significant influence of the water matrix composition
on the photocatalytic performance. The organic and inorganic components (e.g., Cl−1,
HCO3

−1, NO3
−1, SO4

−2) that coexist in effluent water may influence the photocatalytic
activity, primarily as reactive species scavengers [44,45]. The adsorption of the effluent
water components onto the surface of a catalyst can change the surface charges and reduce
the number of active sites [46]. However, the metal ions in the effluent water may have a
negative impact on the photocatalytic efficiency. Cu+2, Zn+2, Fe+3, and Al+3 were found
to have an inhibiting effect on the photocatalytic performance under the experimental
conditions studied. The results are tabulated in Figure 5. The metal ions may influence the
photocatalytic degradation by (i) preventing O2 from being reduced by photogenerated
conduction electrons; hence, inhibiting the generation of reactive oxygen species [47], and
(ii) altering the pollutant adsorption. The degradation of the AR-26 was examined using
effluent water as a matrix, and the effect of pH was measured under similar conditions
and the results were plotted in Figure 6. The AR-26 was most successfully removed at a
neutral pH (about 7.8). The used catalyst was discovered to have a pH-PZC of roughly
5.0. The catalyst surface is negatively charged if the value is less than or equal to this
threshold; otherwise, it is positively charged. The AR-26 (pKa 9.46) molecules are largely
protonated at pH 7.8 in a similar way. Under the testing conditions, the highest removal
is accomplished due to the electrostatic attractions between the AR-26 and the negatively
charged catalyst’s surface. At pH = 4, however, the breakdown is significantly hindered
due to the electrostatic repulsion between the positively charged catalyst molecules and the
negatively charged AR-26 molecules. Under pH = 10, some electrostatic repulsion between
the negatively charged catalysts and the partly negative charged AR-26 molecules might
be assumed to verify the minor reduction in the degradation observed.

3.4. Role of Reactive Species to the Degradation Mechanism

To determine the presence of HO•, h+, and O2
•, isopropanol (IPA), methanol (MeOH),

and p-benzoquinone (p-Bqn) were used. The scavengers were selected because of their
consistently high reaction rates with their target species. As it has a high-rate constant
reaction with the radical, equal to 2.1× 109 L/mol/s, the IPA is recognized to be an excellent
HO• scavenger [23,24]. MeOH reacts with HO• at a rate of 1.1 × 109 L/mol/s [20,25],
making it efficient against both HO• and h+. The rate constant for quenching O2

•−1 by
para-benzoquinone (p-Bqn) is 1.8× 109 L/mol/s [20]. The pseudo-first order rate constants
and the degradation profiles in the presence of the scavengers are shown in Table 4 and
Figure 7, respectively.
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Figure 6. pH-dependent effects on photocatalytic degradation of AR-26 in effluent water
([AR-26]0 = 1 mg/L, [g-C3N4] = 300 mg/L).

Table 4. Photocatalytic degradation of AR-26 in the presence of scavengers: kinetic parameters (rate
constants, correlation coefficients (R2), and percentages of inhibition (% ∆k)).

Scavenger K × 10−2 (min−1) R2 % ∆k

Without Scavenger 3.11 0.9524 -

IPS 1.77 0.9821 42.3

Methanol 0.24 0.9391 92.9

p-Bpo 0.83 0.9813 74.1
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([AR-26]0 = 1 mg/L; [g-C3N4] = 300 mg/L; [IPA] = 0.1 M; [MeOH] = 0.1 M; [p-Bqn] = 0.2 mM,
matrix: pure water).

Graphitic carbon nitride (g-C3N4) has a conduction band edge potential in the range
of −1.1 to −0.6 V relative to a conventional hydrogen electrode at room temperature. In the
conduction band of g-C3N4, 0.94 eV of energy is needed to create superoxide radicals (O2

−)
from O2. This is roughly equivalent to a potential of −0.4 V with respect to the normalised
hydrogen electrode. In light of the above, it may be concluded that g-conduction C3N4’s
band edge potential is certainly high enough to generate superoxide radicals from O2.

MeOH achieved the largest decrease (94.2%) because it can neutralize both HO• and h+.
The fact that IPA only generated a 42.7% inhibition highlights both the limited contribution
of HO• and the major participation of h+. This is consistent with the literature’s findings:
Because the VB edges of g-C3N4 catalysts are still less positive than the OH/HO• redox
potential (1.99 eV vs. NHE) [48], the formation of HO• via direct water or OH oxidation
by holes is discouraged during activation. The experiments in acetonitrile verified the
significance of h+ (data not shown). The inhibition rate increased to 73.8% when p-Bqn
was added. The superoxide anions were found to directly oxidize organic pollutants. The
reactions [49] that additionally comprise O2-O2

•−1 and result in the formation of HO• are
as follows:

O2
−1 + H+→HO2

• (1)

2HO2
•→O2 + H2O2 (2)

H2O2 + O2
−1→HO• + OH− + O2 (3)

Our results support those of a recent study [46], which used g-C3N4-based catalysts
in the photocatalytic destruction of refractory pollutants. The key species reported to be
involved in this process were h+ and O2

•. The proposed photocatalytic mechanism, as
observed in the prior work, is based on the formation of electron-hole pairs in the valence
and conduction bands of g-C3N4. The e− on the CB may convert O2 to O−2·O2

•−1, while
the holes (h+) in the VB actively contribute to the degrading process in g-C3N4. O2

•−1.
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3.5. Photocatalytic Degradation Mechanism

Using mass spectrometry and interpreting mass spectra collected in positive ionisation
mode, we were able to establish which IPs are formed during the early stages of the
photocatalytic reactions in both pure water and wastewater. Three IPs were identified
structurally in both matrices using molecular and fragment ions as shown in Table 5.

Table 5. The detected IPs’ in mass (in terms of [M + H]+) and chemical formulae.

IP’s [M + H]+ Molecular Formula

AMI 435 C18H12O7N2S2

AMI-1 330 C10H4O7N2S2

AMI-2 270 C10H7O5N2S

AMI-3 241 C10H8O5S

AMI-4 170 C8H8O4

AMI-5 152 C8H8O3

Figure 6 depicts one of three potential paths. In the first, the methoxy group of AR-26
is removed, resulting in AMI1. In addition to our findings, Skibiski et al., 2011 [50,51]
discovered this IP during the photodegradation of the studied pharmaceutical. AR-26
was discovered through the photocatalytic treatment of an effluent mixture containing it.
The first step in the dealkylation pathway, the alternative metabolic route, is cleavage of
the ethyl group attached to the N atom. Through the third pathway, an oxygen transfer
mechanism results in the formation of a signature N-oxide IP. N-oxide was discovered
to be a characteristic IP while treating AR-26 using photolysis [51] and heterogeneous
photocatalysis. The absence of hydroxylated IPs support the reports that HO• plays only a
minor role in the degradation mechanism. Prior research on the photocatalytic degradation
of AR-26 containing effluent mixtures [52] is consistent with the proposed degradation
pathways. The possible route of Acid Red 26’s decomposition is shown in Figure 8.

The formation of the IP was also tracked during the photocatalytic process. According
to Figure 9, the IPs in pure water (Figure 9a) and effluent water (Figure 9b) reached their
maximal area in 20 and 60 min, respectively. The space occupied by the three IPs in both
matrices shrunk substantially after that. Before full mineralization, the rings can be split,
permitting the generation of IPs with low molecular weight. After extensive usage of
heterogeneous photocatalysis, formic and acetic acid, both with low molecular weights,
were identified.

3.6. Ecotoxicity Evolution

The toxicity to microalgae was measured over time in both saltwater and freshwater
environments (Figures 10 and 11). As shown, pure water showed little toxicity at 0 min into
the process (Figures 10a and 11a). In comparison, after 72 h of contact with an untreated
AR-26 solution in effluent water (0 min), the growth rates of both microalgae were inhibited
by nearly 25%. (Figures 10b and 11b). This matrix’s composition, which may be toxic
for the exposed microalgae, may explain the significant growth inhibition rates found
in effluent water. Toxicity tests on an early wastewater sample verified this, with an
inhibition rate of 18.1%. The obtained results were in accordance with the previously
reported literature and found essentially the same patterns [44,53]. It was discovered that
the earliest stages of the photocatalytic treatment only slightly increased the toxicity in
both matrices. There is a connection between the emergence of these IPs and the observed
increase. Notably, in pure water and effluent water, the IPs developed most strongly at 20
and 60 min, respectively, implying that these intervals are critical for growth inhibition.
The photocatalytic degradation of numerous pollutants in aqueous matrices by various
AOPs has also been reported to have increased the toxicity in the early stages, which is
consistent with our findings [53]. However, the Ips play a modest role in the overall toxicity.
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In all cases, the percentage of inhibition was significantly reduced after photocatalytic
treatment. This clearly demonstrates that g-C3N4-based heterogeneous photocatalysis
can occur without the generation of dangerous IPs. It also efficiently reduces the harmful
impacts of municipal wastewater.
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3.7. A Catalytic Investigation into the Oxidation of Azo Dyes

The oxidation of azo dyes i.e., AR-26 was examined using g-C3N4 to determine the
catalytic efficacy of g-C3N4. The UV-A irradiation on the samples was carried out for a
period of 45 min. The decomposition of the azo dyes was tracked using a kinetic spec-
trophotometric analysis. Figure 12 depicts the UV-vis spectrum of the AR-26 breakdown.
AR-26 has a maximum absorption wavelength of 510 nm. New bands at 245 and 273 nm
indicate dye degradation in this case as well.

3.8. Recyclability and Photostability

Five photocatalysis cycles were carried out to test the photocatalyst’s reusability.
Figure 13 depicts many samples of the photographs. Figure 13 shows that the efficiency of
the photocatalysis remains constant after five rounds. Furthermore, as shown in Figure 13,
the XRD measurements performed after the photocatalytic phenomena show that the
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crystalline structure of g-C3N4 has not altered in comparison to before the photocatalytic
process was carried out.
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Figure 13. The degradation profile of g-C3N4 for five cycles.

The specifics of sample collection and the reusable process may vary depending on
the photocatalyst being tested and the experimental protocol used. Sample collection: It
is essential to collect representative samples of the photocatalyst before and after each
cycle of the reusability test. The samples were collected using two distinct techniques.
First, the samples were allowed to settle down after the experiment via sedimentation.
After the catalyst material had settled, the photodegraded AR-26 sample in water was
decanted. Second, the photocatalyst at the bottom was washed three times with distilled
water, then once with methanol using a filtration technique with Whatman No: 41 filter
paper. The reusable process should be designed in such a way that the photocatalyst is fully
recovered and can be reused without loss of activity. The process may include washing the
photocatalyst with water and methanol solvent to remove any adsorbed or reacted species,
followed by drying in an oven and calcination at 350 ◦C to regenerate the photocatalyst.



Crystals 2023, 13, 577 16 of 19

The XRD and TGA measurements were performed before and after five cycles of
photocatalytic activity to provide insight into the stability of the g-C3N4 photocatalyst.
Figure 14 compares the XRD and TGA curves before and after the photodegradation
experiment and shows that the g-C3N4 structure was unaffected. The TGA was used to
determine that no change in the thermal properties occurred before or after the experiment,
and the results were positive. This is depicted in Figure 15.
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4. Conclusions 
The present study reports the photocatalytic breakdown of the azo dye AR-26 using 

UV-A irradiation and g-C3N4 as a photocatalyst in pure water and effluent water. Both 
matrices have rather high removal rates. Effluent water has a complex composition, which 
comprises both inorganic and organic compounds, explaining why it degrades more 
slowly. The scavenging tests confirmed the importance of h+ and O2•−1 in the reaction pro-
cess. The photocatalytic degradation of the examined drug was discovered to comprise 
oxidation, dealkylation, and cleavage of the methoxy group. When pure water was em-
ployed as a media, the microalgae Chlorococcum sp. and Dunaliella tertiolecta showed no 
growth inhibition and hence a low toxicity from the beginning and throughout the pho-
tocatalytic process. However, when effluent water was used as a matrix, the number of 
reported side effects rose. However, after 180 min, the effects appeared to have disap-
peared. The results showed that AR-26 may be successfully eliminated using heterogene-
ous photocatalysis, such as g-C3N4 without the production of harmful IPs. As g-C3N4 re-
acts to visible light and may thus be activated by solar light, heterogeneous photocatalysis 
using g-C3N4 is viewed as a potential technique for pharmaceutical elimination after an 
effective separation of the photocatalyst or its immobilisation on suitable substrates. 
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4. Conclusions

The present study reports the photocatalytic breakdown of the azo dye AR-26 using
UV-A irradiation and g-C3N4 as a photocatalyst in pure water and effluent water. Both
matrices have rather high removal rates. Effluent water has a complex composition, which
comprises both inorganic and organic compounds, explaining why it degrades more slowly.
The scavenging tests confirmed the importance of h+ and O2

•−1 in the reaction process. The
photocatalytic degradation of the examined drug was discovered to comprise oxidation,
dealkylation, and cleavage of the methoxy group. When pure water was employed as
a media, the microalgae Chlorococcum sp. and Dunaliella tertiolecta showed no growth
inhibition and hence a low toxicity from the beginning and throughout the photocatalytic
process. However, when effluent water was used as a matrix, the number of reported side
effects rose. However, after 180 min, the effects appeared to have disappeared. The results
showed that AR-26 may be successfully eliminated using heterogeneous photocatalysis,
such as g-C3N4 without the production of harmful IPs. As g-C3N4 reacts to visible light
and may thus be activated by solar light, heterogeneous photocatalysis using g-C3N4 is
viewed as a potential technique for pharmaceutical elimination after an effective separation
of the photocatalyst or its immobilisation on suitable substrates.
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